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Abstract
Aspect-Oriented Programming (AOP) promotes better separation of concerns

in software systems by introducing aspects for the modular implementation of
crosscutting concerns. It is therefore not surprising that the distribution concern
is recently being addressed from an AOP point of view, and finally materialized in
AOP frameworks like ReflexD or languages like AWED. The motivation of this
paper is to compare the implementation of a solution to the N-Queens problem
in a distributed environment, when using the ReflexD library for distributed AOP
and when using the ProActive middleware. Although the paradigms and target
environments are different, precisely in this difference lies the interest of the
exercise: this comparison is one of the necessary steps in a path to validate the
applicability of AOP in a distributed setting. Beyond the software engineering
interest of an AOP-based solution over a standard middleware approach, this
paper highlights the good performance of the ReflexD platform.
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1. Introduction
Aspect-Oriented Programming (AOP) provides means for proper modular-

ization of crosscutting concerns [5], i.e. concerns that cannot be cleanly mod-
ularized using traditional programming paradigms. Typical examples of such
concerns are non-functional concerns such as monitoring, security, concur-
rency, etc., but also functional concerns such as observation relationships and,
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in general, coordination between different modules. Without AOP, the imple-
mentation of such concerns is scattered across several modules. AOP also helps
adaptation of software systems: for a given concern to be adaptable, it first has
to be modularized.

The relation between AOP and distributed computing is interesting. Even
though AOP is used in application servers [6], aspects are defined and applied
locally to enhance the implementation of the application server. In other words,
AOP in distributed systems is NOT distributed AOP. Extensions to OOP to
the world of distribution, like Java RMI, do not help for distributed AOP: a
distributed aspect cannot be modularly implemented. This is why proposals like
JAC [8], DJcutter [7], and AWED [3] have appeared, addressing the distribution
concern from an AOP point of view. ReflexD [10] also targets distributed AOP.
Being a versatile kernel for distributed AOP, ReflexD offers the basic building
blocks for distributed aspects, on top of which (domain-specific) distributed
aspect languages like AWED can be implemented. Distributed AOP is being
applied in various settings, like unit testing [7], sophisticated distributed cache
policies, and checking of architectural constraints in distributed systems [2].

In this paper we consider a traditional Grid computing problem, and see if
and how ReflexD can help in turning a non-distributed implementation into a
distributed one, running on a Grid. An existing approach to such a problem is to
use a middleware library like ProActive [1], which allows the original solution to
be run on a Grid, with some modifications to the source code. Although quite
minimal, these modifications to the source are undesirable from a software
engineering point of view. We rather adopt the AOP approach, abstracting
the distribution aspect and using a distributed AOP library (like ReflexD) to
implement it, hence avoiding direct modifications to the source code.

More precisely, we consider an implementation of the N-Queens problem
using ReflexD and a comparison of this solution with a variation of the im-
plementation that won the “ProActive N-Queens GRID Contest” in 2004 by
Cansado and Leyton [12], based on ProActive. The N-Queens problem con-
sists in finding the number of ways N queens can be placed on an N × N
board without any of them attacking each other. This problem is known to be
O(nn), which makes it impossible to solve for big values of N . In fact, for
values greater than 20 of N , the algorithm takes more than one day to finish the
calculation in an average computer (Pentium IV of 3.0 GHz and 1Gb of RAM).

In addition to the software engineering benefits of using aspect orientation,
the aim of this work is to concretely compare the efficiency of the ReflexD
platform versus the well-known ProActive middleware. The hypothesis is that
ReflexD, being more lightweight than ProActive, should have gains in terms
of performance. However, the considered problem does not entail much com-
munication between nodes, so the gain should be marginal. The results of
the benchmarks outweigh our expectations, first by validating that ReflexD is
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more efficient for solving the N-Queens problem, and also by indicating a great
potential for more complex problems that entail much more communication
between nodes.

This paper is organized as follows: Section 2 introduces the algorithmic
solution to the N-Queens problem, and how it is parallelized. Then, Section 3
briefly introduces ProActive and the ProActive-based solution to the N-Queens
problem. The ReflexD approach is shown in Section 4. Finally, Section 5
presents and analyzes the results of benchmarking the two solutions; Section 6
concludes and discusses future work.

2. Extended Parallel Takaken’s Algorithm
The fastest sequential algorithm to solve the N-Queens problem nowadays is

the Takaken’s algorithm (TA). The TA is based on the symmetry of the N-Queens
problem to avoid unnecessary calculations besides of making intensive use of
bitwise operations to test all the possible configurations of the board.

The Extended Parallel Takaken’s Algorithm (EPTA) is an extension of the
TA that works on multiples CPUs. In [12], EPTA is used to refer to the dis-
tributed implementation, but in this paper we use EPTA for just the concurrent
(multi-cpu, non-distributed) algorithm, since it is the base for our experiment.
We therefore assume that the original EPTA implementation is correctly imple-
mented for a non-distributed, but concurrent environment (hence issues such as
thread safety are addressed).

The methodology used by the EPTA algorithm is to divide and conquer: it
reduces the complexity of a problem of size N in several problems of a certain
size M < N , which can be computed in a single computer in reasonable time.
This division is achieved by pre-placing N − M queens on the board, which
reduces the number of rows and columns the remaining queens can use. It
is important to notice that as N − M increases, the number of sub-problems
we generate also increases because the number of possibilities of placing the
N −M queens is bigger.

The principal entities in this algorithm are the manager and the workers,
which interact in the following way:

1 The manager divides the problem into sub-problems, called tasks, by
fixing the board positions of some queens.

2 The workers, running on different CPUs, continuously a) ask the manager
for a task to solve, b) solve it, c) submit their result back to the manager
upon completion.

3 The manager receives the sub-results calculated by the workers and finally
joins them to find the complete solution.
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Figure 1. Extended Parallel Takaken’s Algorithm

Figure 1 illustrates the basic working of EPTA. The taskServe and
submitResult methods from the communication protocol between the work-
ers and the manager.

3. ProActive Solution
In this section we briefly describe some of the elements present in ProActive

to later explain the implementation of the distributed version of EPTA that uses
it. Finally, we discuss the advantages and disadvantages of this implementation.

3.1 ProActive in a Nutshell
ProActive is a middleware for seamless parallel, distributed, and concurrent

computing in Java [1]. ProActive is based on a model of active objects. An
active object encapsulates its own execution thread, and has a queue of requests
based on which it can decide the request to serve, either based on the request type
(e.g. calls to the stopImmediatelymethod) or based on some request property
(e.g. the oldest unattended request). An active object is remotely accessible in
ProActive, and interactions between active objects is asynchronous.

In order to support return values of asynchronous calls, ProActive supports
transparent futures. A future is a placeholder for the result of an asynchronous
call, which is immediately returned to the sender. The sender can then proceed
in parallel with the server active object, as long as it does not need to access the
result. Upon access, either the future has already been resolved to the actual
result of the server activity, in which case the sender proceeds as normal, or the
sender is blocked till the server activity completes. This mechanism, known as
wait-by-necessity [4], is therefore a convenient mean to augment parallelism.

3.2 ProActive Implementation
The ProActive implementation we consider in this work is a variation of the

implementation that won the “ProActive N-Queens GRID Contest” in 2004.
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We say “variation” because we have actually disabled the optimization that
allows the solution to run on very large Grids1. This change does not invalidate
our study, because the core of the implementation itself is not changed at all,
and our benchmarks are performed on a Grid of limited size.

The ProActive implementation is simply the non-distributed (although con-
current) implementation we discussed previously. In order to run it on a Grid,
we need to modify the source code to create active objects explicitly in some
remote nodes. The code below illustrates the modified code when creating
workers:

1 Node node = . . . ; / / obtain desired node for worker
2 Object [] args = . . . ; / / include reference to the manager
3 Worker worker =
4 (Worker) ProActive .newActive("Worker" , args , node) ;
5 / / . . . proceed with worker . . .

With ProActive, this is all that needs to be modified: apart from worker
creation, which has to be done explicitly on remote nodes by calling a ProActive
library method after obtaining a Node reference, the core of the algorithm is the
same, since other issues arising in distribution are handled by ProActive. Note
that also, the manager itself has to be created as an active object in order to be
remotely accessible.

3.3 Discussion
Although a reasonable amount of changes in the original code is necessary,

these changes have bad software engineering properties. As we have to modify
the code in order to explicitly create nodes objects and active objects using
the newActive method, the resulting code is tightly coupled to the ProActive
library, and is no more runnable in a non-distributed, non-ProActive setting.
In other words, the concern of deploying workers on nodes using ProActive is
tangled with the actual implementation of the algorithm, thereby compromising
its reuse in other contexts. Furthermore, using ProActive implies using the
whole object model, with support for active objects with their request queues,
and futures (whose implementation in Java is not trivial). This has impact on
the performance as validated later on. Furthermore, it has to be considered that
in the case of the N-Queens problem, the place of worker instantiation in source
code is quite localized, but in more complex problems, this may imply making
modifications is several places spread out over the original code.

1Basically, the optimized version works in a hierarchical way: it defines intermediary entities between the
manager and the workers. One of the purposes of these entities is to avoid the overhead that the workers
produce over the manager when they communicate with it (when asking for new tasks to solve and when
submitting their results).



6

4. ReflexD Solution
In order to solve the software engineering issue of the ProActive solution,

we now consider a solution based on ReflexD, a platform for distributed aspect-
oriented programming [10].

4.1 ReflexD in a Nutshell
ReflexD [10] is a platform for distributed AOP in Java. It is an extension

to distribution of the Reflex AOP kernel [11], which relies on the notion of
an explicit link binding a cut to an action, in order to specify aspects. The
cut refers to the basic elements one wants to intercept with an aspect (such
as calls to particular methods or instantiations of particular classes), and is
specified in a hookset. The action to undertake upon occurrences of the events
of interest is implemented in an object usually called a metaobject, but which
is indeed a normal Java object. Finally, the binding is the specification of the
exact protocol between the cut and the action (that is, which method to call
on the metaobject, passing which pieces of information from the interception
operation occurrence), along with a number of customization parameters. A
link is the first-class entity that packages this piece of information defining an
aspect. This is illustrated as needed in the following of the section. For more
details we refer the reader to the above-mentioned papers.

ReflexD extends Reflex with notions such as distributed cut, remote action,
and distributed binding. These advanced mechanisms are however not needed
here. We just rely on the remote object creation service of ReflexD and on
the Remote Consistency Framework for dealing with different types of remote
communications. This is presented hereafter.

4.2 ReflexD Implementation
The two requirements we need to meet in order to turn EPTA into a distributed

version is a) provide a way to execute the workers on a different host, and b)
provide a way to let them communicate with the manager in order to submit the
partial solutions.

Transparent Creation of Workers in Remote Hosts. An important factor
of motivation for using ReflexD is to transparently create workers in remote
hosts, rather than having to explicitly modify the actual source code as in the
case with ProActive. This is done in ReflexD by specifying a link binding all
instantiations of Worker objects occurring in any class to a remote creation
service:
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1 link RemoteWorkerCreation {
2 on Instantiation in named(∗) where named(Worker)
3 around : RemoteCreator . createRemote(#args)
4 by shared(new RemoteCreator( ‘ ‘Worker’ ’ ))
5 }

The above code uses the concrete syntax of Reflex presented in [9], because
of the enhanced readability it provides. All occurrences of the instantiation
operation (that is, calls to new) occuring in any class (*) where the instantiation
class is named Worker are replaced (around) by a call to the createRemote
method of a RemoteCreator object, passing it as parameters all the arguments
of the original instantiation (#args). The RemoteCreator instance is unique
and shared by all objects creating workers (by shared), and is created by
giving it the name of the worker class. The RemoteCreator class is a utility
class, whose simplified implementation is as follows:

1 public class RemoteCreator {
2 String classname; / / ini t ial ized in constructor
3 public Object createRemote(Object [] args){
4 RHost host = RHosts. get ( . . . ) ; / / determine appropriate host
5 return host . create (classname , args ) ;
6 } }

The createRemote method first gets a reference to the remote host in which
the worker should be created (4). Then the create method of the RHost is
used to create an object in that host with the same original parameters, and the
reference to this remote object is returned (3). It is important to note that from
now on, the application will use this remote reference in the same way as a local
reference. Remote communication is managed behind the scene by Reflex. For
space reasons, we deliberately skip the whole issue of determining the target
hosts for worker creation, both in the ProActive and ReflexD solutions.

Communication Between Workers and Manager. An element that we
have not addressed yet is the fact that the manager is passed as a constructor
parameter to the workers to allow them to ask for tasks and to notify their results;
and with the link definition above, it is now passed through the network, when
instantiating remotely a worker (line 5 in the code above). If nothing is done, the
code above will fail because the Manager class has no reason to be serializable.
Making it serializable does not solve the problem neither, because the default
semantics of Java is to pass objects by copy. As a result, each worker will have
a local reference to a copy of the manager.
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Fortunately, ReflexD includes a Remote Consistency Framework2, which
makes it possible to specify custom policies when turning non-remote ob-
jects into remote ones. The policy we need in the present case is known as
a SlaveToMasterPolicy in ReflexD, meaning a remote copy of a Manager
should act as a slave delegating to the original instance (residing on the host
in which the remote creation service was invoked). Hence, the code below
configures ReflexD appropriately:

ReflexD. handleConsistency("Manager" , new SlaveToMasterPolicy ( ) ) ;

Consistency policies in ReflexD are customizable on a per-method basis (al-
lowing some methods to be executed locally while others remotely), but in the
current case, all calls from a Worker to the Manager should be dealt with in
the same way: by forwarding the call to the original manager. With the above
configuration, embedded in the definition of the aspect, we ensure that the tasks
are obtained from the host where the manager resides in and that the result
submission is forwarded there.

4.3 Discussion
In this section we have reviewed an implementation of the N-Queens problem

with a distributed version of EPTA using ReflexD. As expected, it was possible
to turn the non-distributed EPTA implementation into a distributed one with
no modification to the EPTA code at all. All that is needed is to express the
deployment of workers and their communication as an aspect in ReflexD. This
difference with the ProActive solution is, from a software engineering point of
view, fundamental: we have isolated the distribution aspect from the original
problem and even more, implemented it as an independent module, without
having to change a single line of the original EPTA code. Just applying the as-
pect embedding the remote instantiation and the specification of the consistency
policy of the manager turns the original EPTA code into a distributed version,
runnable on a Grid.

5. Performance Evaluation
In this section we explain the benchmarks we run and the cluster configuration

we used. We then present the results we obtained from benchmarking the two
implementations, and compare them.

2The Remote Consistency Framework of ReflexD is described in details on the Reflex website.
http://reflex.dcc.uchile.cl/.
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5.1 Benchmark Setting
Our experiment consisted in comparing the performance, in terms of time, of

ProActive versus ReflexD when solving the N-Queens problem. The ProActive
solution is the EPTA code modified to use ProActive in order to communicate the
different workers through the network. The ReflexD solution is the unmodified,
original EPTA code plus the ReflexD configuration presented before.

Configuration. We ran the two algorithms in the following configuration:
an Itanium 2 cluster with 15 nodes, 2 CPUs per node and 1.9 GB RAM, all of
them connected through a 10 Mbit LAN and Red Hat Linux as the operating
system. It is worth noticing that we took some precautions like changing the
names of certain classes in order to ensure that the same amount of data were
transmitted through the network (due to the Java serialization mechanism).

Benchmarks Parameters. In this experiment, we considered the M param-
eter equals to 16, which implies that for N equals to 20 we are resolving 22.000
tasks approximately. We chose such a small M on purpose: the more traffic we
produce on the manager, the bigger will be the differences in terms of message
processing time between both solutions.

In order to avoid the pollution of the measured times due to startup activity, we
only took into account the time necessary to calculate the number of solutions
to the N-Queens problem: it starts after all workers are initialized and when the
first task is served; and finishes when the last pending task is received by the
manager. In this measured time it is also included the manager activity because
it is done incrementally as the solutions for the different tasks arrive. Finally,
and to obtain more accurate results, we ran each algorithm 5 times, removing
the best and worst result and taking as a final result the average of the remaining
three.

5.2 Benchmark Results
ProActive Results. Figure 2 shows the performance of ProActive for N
equals to 18, 19 and 20 vs. the time required (in seconds) to solve the N-Queens
problem.

We can see in this graph that augmenting the number of nodes involved in the
calculation of partial solutions speeds up the application: the required time is
reduced to approximately the half if we go from 5 nodes to 10 nodes. Although,
if we look at the gain obtained when the number of nodes reaches 15 and 20,
we can see that it is marginal, only a small time percentage is reduced.

ReflexD Results. Figure 3 reveals the results of the same experiment we did
for ProActive using ReflexD. Similarly to the previous case, the addition of
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Figure 2. ProActive benchmark results.
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Figure 3. ReflexD benchmark results.

the nodes involved in the calculation diminishes the time required to solve the
problem. First, we have a 50 percent reduction (like before), but the subsequent
gains are bigger than in the previous case. We can see how the time is still
reduced to the half when the number of nodes is 20 (compared to when there
are 10 nodes).

Comparison of the Results. Figure 4 shows the average speedup (for N
equals to 18, 19 and 20) of both solutions. ReflexD always performs better than
ProActive. Although the scalability of both implementations seemed similar
before, this last graph shows that the actual performance of ReflexD is superior:
the speedup of ProActive is the 50 percent of the speedup of ReflexD in when
20 nodes are used.

As stated before, in this benchmark we artificially induced a bottleneck in
the master by using small tasks. The difference in scalability is explained by
the mechanisms used to access the master. ProActive has a lower performance
because the active object programming model puts the worker’s requests in the
master’s request queue, which requires memory allocation and modification of
the queue structure. On the other hand, ReflexD uses the regular java object
synchronization mechanism to access the master, which yields a more scalable
approach for this kind of applications.

6. Conclusion and Future Work
Comparing ReflexD and ProActive as a whole does not make sense, be-

cause both platforms have different objectives, and rely on different paradigms.
ProActive is a full-fledged middleware based on active objects, while ReflexD
is a powerful platform for distributed AOP. However, it is interesting, and it has
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Figure 4. Average speedup, for different values of N .

been the subject of this work, to compare solutions to the same problem (the
N-Queens in this case) with both systems, both in terms of software engineer-
ing and performance. This represents an important milestone in the research
agenda of validating distributed AOP.

This exercise has shown that, as expected, an aspect-oriented approach to
distribution leads software engineering benefits, associated to a better modular-
ization of concerns. It however still remains to be explored whether ReflexD
can be used in a much wider range of problems for the Grid. In this respect,
we feel that ReflexD has sufficient extensibility to address a wide range of
problems, and most of the features of ProActive can indeed be implemented as
library aspects on top of ReflexD.

The benchmarks we carried out validates the current implementation of
ReflexD: it does perform reasonably well, actually better than ProActive al-
though the gain in the considered problem is not of orders of magnitude. Still,
it has practical value, all the more when considering the time it takes to com-
pute solution of the N-Queens problem with big values on N . The overhead of
ProActive, displayed by the benchmarks, is due to the supported advanced fea-
tures. Mainly, the active object programming model, and the transparent futures
with wait-by-necessity. Our experiments suggest that these capabilities add a
performance penalty in applications where such features are not exploited. Two
conclusions derive from this: first, it has to be expected, in problems that serve
a large number of requests (usually problems with high communication rate),
that ReflexD is going to scale better than ProActive; second, it still remains to
be proven that ReflexD can support advanced features of ProActive efficiently,
in cases where those features are necessary. This represents the main agenda
for future work in this area.
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