
Mirages: Behavioral Intercession in a Mirror-based Architecture ∗

Stijn Mostinckx1 Tom Van Cutsem1

1Programming Technology Lab
Vrije Universiteit Brussel, Belgium

{smostinc,tvcutsem,stimberm}@vub.ac.be

Stijn Timbermont1 Éric Tanter2

2Computer Science Dept DCC/CWR
University of Chile, Chile

etanter@dcc.uchile.cl

Abstract
Mirror-based systems are object-oriented reflective architec-
tures built around a set of design principles that lead to
reflective APIs which foster a high degree of reusability,
loose coupling with base-level objects and whose structure
and design corresponds to the system being mirrored. How-
ever, support for behavioral intercession has been limited
in contemporary mirror-based architectures, in spite of its
many interesting applications. This is due to the fact that
mirror-based architectures only support explicit reflection,
while behavioral intercession requires implicit reflection.
This work reconciles mirrors with behavioral intercession.
We discuss the design of a mirror-based architecture with
implicit mirrors that can be absorbed in the interpreter, and
mirages, base objects whose semantics are defined by im-
plicit mirrors. We describe and illustrate the integration of
this reflective architecture for the distributed object-oriented
programming language AmbientTalk.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Reflection, Metaprogramming, Mirrors, Mi-
rages, AmbientTalk

1. Introduction
Computational reflection [23, 17] provides programs with a
well-defined interface to reason about themselves. Reflec-

∗ S. Mostinckx and S. Timbermont are funded by a doctoral scholarship of
the Institute for the Promotion of Innovation through Science and Technol-
ogy in Flanders (IWT-Vlaanderen). T. Van Cutsem is a Research Assistant
of the Fund for Scientific Research Flanders, Belgium (F.W.O.). É. Tanter
is partially financed by the Millenium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile, and Fondecyt project 11060493.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’07, October 22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-868-8/07/0010. . . $5.00

tion is often further refined according to what kind of rea-
soning is allowed and what parts of the program can be
reasoned about. A reflective architecture supports structural
introspection if it allows programs to inspect the structural
aspects of a program. It allows for structural intercession
if programs can modify their structure. It supports behav-
ioral introspection if programs can inspect their runtime be-
havior (e.g. a stack trace). It allows for behavioral interces-
sion if programs can change their behavior, using custom
metaobjects to change the semantics of the language itself.
Reflection has been widely adopted in object-oriented lan-
guages (e.g. Java, Self, Smalltalk, CLOS), although they dif-
fer greatly in terms of the reflective power they convey.

In this paper, we present the metaobject protocol of
AmbientTalk, a distributed actor-based object-oriented lan-
guage. In previous work, we have explicitly presented Am-
bientTalk as a “language laboratory” for experimenting with
novel language constructs in the context of volatile, ad hoc
networks [9]. More concretely, we realized this “language
laboratory” by making AmbientTalk a reflective language,
such that novel language constructs can be expressed within
the language itself. Whereas our previous metalevel archi-
tecture provided adequate support for behavioral interces-
sion, it lacked a modular, stratified design.

Bracha and Ungar have proposed a set of design princi-
ples for the design of a mirror-based metaobject protocol:
a reflective API which fosters a high degree of reusability,
loose coupling with base-level objects and whose structure
and design directly corresponds to the system being mir-
rored [5]. Therefore, mostly influenced by Self’s mirrors [1],
we decided to redesign the AmbientTalk architecture in a
mirror-based way. While mirror-based architectures usually
provide proper access to the structure of programs, their sup-
port for behavioral intercession has been relatively limited.
However, behavioral intercession is a key enabler for the re-
flective implementation of language constructs.

This paper reports on our experiments in reconciling Am-
bientTalk’s mirror-based architecture with behavioral inter-
cession. We introduce the mirage: a base-level object whose
semantics is described by a custom implicit mirror, i.e. it is
an object with a custom metaobject protocol. We describe
the design issues that arise from introducing mirages in a

89

mirror-based architecture, describe the introduction of fu-
tures – a distributed language construct – as a use case of
mirages and show how mirages are implemented with mod-
erate effect on the overall performance of the system.

Availability An AmbientTalk interpreter with support
for behavioral intercession through mirages is available at
http://prog.vub.ac.be/amop. The included standard li-
brary contains the complete code for the futures language
construct outlined later in this paper.

2. Mirror-based Reflection
Bracha and Ungar define a mirror-based architecture as any
reflective architecture that adheres to three key design princi-
ples, to wit encapsulation, stratification and ontological cor-
respondence[5]. In what follows, we describe what is meant
by each of these principles in the context of a mirror-based
reflective architecture.

2.1 Encapsulation

The principle of encapsulation states that metalevel enti-
ties should encapsulate their implementation details [5]. In
essence, it should be possible to write metalevel programs
(source code browsers, debuggers, object inspectors) against
an abstract API, which fosters a higher degree of reuse be-
cause the API can serve as an abstraction barrier for mul-
tiple implementations. For example, consider that we want
to reuse as much code as possible from existing metapro-
grams to be able to debug or inspect objects on a remote
virtual machine. When the metaprograms only code against
an interface, rather than a specific reflective implementation,
large parts of the code can be reused without change.

To enable metalevel entities to encapsulate their imple-
mentation, a necessary (but not necessarily sufficient) con-
dition is that their type should expose only their interface,
not their implementation. This rules out nominal type sys-
tems based on classes (implementation), as e.g. employed by
Java or C++. The Java reflection API, for example, ties meta-
level representations to a specific implementation, inhibiting
reuse. On the other hand, the Java Debugger Interface is a
reflective API based on interface types. Hence, clients are
shielded from specific implementation classes [5]. Dynami-
cally typed or structurally typed languages (e.g. StrongTalk
[4]) inherently avoid such encapsulation breaches.

Of course, using e.g. a dynamically typed language does
not imply that a reflective API preserves encapsulation. For
example, if it is desirable that a reflective API can be used on
both local and remote objects without substantial changes in
the client, the API still has to be designed accordingly.

2.2 Stratification

The principle of stratification states that metalevel entities
should be cleanly separated from base-level functionality
[5]. This separation ensures among others that e.g. a base-
level method is not accidentally regarded as part of meta-
object protocol. A stratified design also implies less coupling

between the base- and metalevels which has benefits in terms
of deployment: if access to the metalevel architecture can be
easily trapped, it is easier to deploy programs without reflec-
tive support if it can be derived that programs never access
it, or at least to postpone the activation of reflective support
until it is required by the application.

The principles of encapsulation and stratification are also
innately connected. In order for reflection to be stratified,
base-level objects should not contain any explicit reference
to metalevel entities. The very presence of such a link often
breaks encapsulation and stratification. For example, invok-
ing obj.getClass() on a Java object links the object di-
rectly to its metalevel representation. This makes it hard for
metalevel programs to uphold encapsulation. For example, if
obj is an instance of a proxy class, perhaps a metalevel pro-
gram would like to hide this fact from its metalevel clients.
This is virtually impossible given the hard-wired link from
the base- to the metalevel.

Another example of a violation of stratification occurs in
Smalltalk. Performing obj class results in a reference to
the class of an object. In Smalltalk, classes play a dual role:
they are used both for base-level tasks such as instance cre-
ation (e.g. self class new) and for metalevel tasks such
as code browsing (e.g. obj class subclasses). Because
of this, it is hard to deploy Smalltalk applications without
the reflective capabilities of classes.

In a mirror-based architecture, access to the metalevel
should be a dedicated, explicit operation, such that it is not
normally used by regular base-level programs. Moreover,
when metalevel programs can intervene in the execution of
this operation, they can preserve the encapsulation of the
metalevel representation of base-level objects. For example,
in StrongTalk the reflective API can only be accessed by per-
forming Mirror on: obj [5]. Likewise, in Self a mirror on
an object is created by performing reflect: obj [1]. These
methods often serve as factory methods for the creation of
appropriate mirrors on objects. The downside is that access
to the metalevel is not a polymorphic message send, such
that methods like reflect: often have to perform some in-
ternal dispatching based on the object’s type.

2.3 Ontological Correspondence

The principle of ontological correspondence states that the
metalevel should be structured according to the same con-
cepts and rules that govern the base-level [5]. Bracha and
Ungar further distinguish between structural and temporal
correspondence, which corresponds to the distinction be-
tween code (a description of a computational process) and
computation (the actual execution of that process).

A mirror-based architecture that is temporally correspon-
dent should make the distinction between code and compu-
tation manifest in its API. The advantage is that the API that
reflects on code can be used both for reasoning about pure
source code, as well as for reasoning about code that has
been turned into live objects. For example, when writing a

90

code browser against such an API, it becomes easy to use
the browser both for viewing code loaded from a database,
as well as for inspecting live or even serialized objects.

Structural correspondence implies that every language
construct has a reified representation at the metalevel [5].
In a truly structurally correspondent mirror-based architec-
ture, this principle requires that even the body of a method
should have a metalevel representation. However, reasoning
about the body of a method brings us on dangerous grounds.
If the method has been compiled into e.g. bytecode, it does
not suffice to provide a representation for bytecodes in the
reflective API: the bytecodes are concepts from a different
language, i.e. the virtual machine language. If exposed di-
rectly to the reflective API of the high-level language, trans-
formations employed by the compiler may present clients
of the reflective API with inconsistent information. Hence,
a structurally-correspondent mirror architecture ideally pro-
vides separate APIs for reasoning about each distinct lan-
guage in the system [5].

2.4 Summary

An ideal mirror-based system: 1) provides a reflective API
based on interfaces which preserves the encapsulation of
metalevel objects; 2) factors the link from base-level ob-
jects to metalevel objects out of the base-level objects them-
selves. This stratifies base- and metalevels, making it easier
for metaprograms to preserve encapsulation or to disable re-
flection when it is not required; 3) makes the distinction be-
tween APIs that manipulate code and those that manipulate
computation manifest. The API that reflects on code does
not require a running computation to reflect upon; 4) reifies
every element of the base-level language. Language features
that are transformed, optimized or desugared should remain
intact when mirrored by the language’s reflective API.

3. The AmbientTalk Language
Having presented the design principles underlying a mirror-
based architecture, we present a concrete embodiment of
these principles in the reflective architecture of Ambi-
entTalk, a distributed object-oriented programming lan-
guage. The language described here is actually Ambi-
entTalk/2, an updated version of the language whose re-
flective API differs from the version presented in previous
work [9]. In the remainder of this paper, we will simply refer
to the updated language as AmbientTalk.

This section begins with a bird’s-eye overview of Am-
bientTalk’s object model. Subsequently, we describe the in-
trospective mirror infrastructure which allows reflecting on
standard objects. Section 3.3 subsequently introduces Ambi-
entTalk’s actor-based concurrency model and illustrates how
the actor mirror can be used to group reflective behavior
shared between all objects belonging to the same actor. Fi-
nally, we demonstrate how the metalevel architecture con-
forms to the criteria outlined in the previous section.

3.1 Base-level objects

AmbientTalk is an object-based language. Objects are not
instantiated from classes. Rather, they are either created ex-
nihilo or by cloning and adapting existing objects. Ambi-
entTalk objects consist of field and method slots. Consider
the definition of a prototypical planar point object:

// Point is a prototypical point object
def Point := object: {
def x := 0; // defines a field x
def y := 0;
// this method serves as the "constructor"
def init(newx, newy) {
x := newx;
y := newy;

};
def +(other) { self.new(x+other.x, y+other.y) };
def distanceToOrigin() { (x*x + y*y).sqrt() };

}
def p := Point.new(1,2); // instantiate a new point

The above code defines a new anonymous object and
binds it to a variable named Point. This object serves as
a prototypical point object and can be used to create clones,
as shown on the last line. Every object understands the mes-
sage new, which creates a clone of the receiver object and
initializes the clone by invoking its init method with the
arguments that were passed to new. This protocol closely
corresponds to that of class instantiation, but rather than al-
locating a new empty object from a class, a clone is created
from a prototype.

By convention, when an object receives a message it
does not understand, it delegates the message to the ob-
ject bound to its slot named super. We employ the dele-
gation semantics of Self [25] and Act1 [15]: a delegated
message is a message that is forwarded to another object,
but the self pseudo-variable remains bound to the delegat-
ing object. Hence, AmbientTalk supports object-based (sin-
gle) inheritance. The super slot is assignable, such that the
“parent” of an object may change. This enables dynamic in-
heritance which is useful for implementing objects that can
change states [25]. A declarative syntax is provided for spec-
ifying that a new object delegates to an existing prototype:

// the SpatialPoint prototype delegates to Point
def SpatialPoint := extend: Point with: {
def z := 0;
...

}

In the above example, SpatialPoint and Point remain
separate objects in their own right. The extends relationship
between a child and a parent object implies that the child’s
super field is initialized to the parent object and that when a
child is cloned, the clone’s super field is bound to a clone of
the parent object. Hence, when a SpatialPoint is cloned,
the clone has its own Point parent object with its own copies
of the x and y fields.

AmbientTalk provides support for block closures remi-
niscent of those in Self and Smalltalk. A block closure is an
anonymous function object that encapsulates a piece of code

91

and the bindings of lexically free variables and self. Block
closures are constructed by means of the syntax { |args|
body }, where the arguments can be omitted if the block
takes no arguments. The following code excerpt shows a typ-
ical usage of blocks to remove all elements from a collection
that fail to satisfy a predicate:

def from: collection retain: predicate {
result := clone: collection; // shallow copy
collection.each: { |elt|
predicate(elt).ifFalse: {

result.remove(elt)
}

};
result;

};
from: [1,-2,3] retain: { |e| e > 0 }

Note that AmbientTalk supports both traditional canoni-
cal syntax (e.g. o.m(a,b,c)) as well as keyworded syntax
(e.g. dict.at: k put: v) for method definitions and mes-
sage sends. As a general rule, we use keyworded syntax for
control structures (e.g. while:do:) or language constructs
(e.g. object:). The canonical syntax is used for expressing
application-level behavior.

3.2 Introspective Mirrors

AmbientTalk has a mirror-based architecture that has been
inspired by that of Self [1]. The following code excerpt gives
some example uses of introspecting objects by means of
their mirror:

// retrieve a mirror by invoking reflect:
def mirrorOnP := (reflect: p);
// read the contents of a field via its mirror
mirrorOnP.grabField(‘x).value; // 1
// retrieve a mirror on a method
mirrorOnP.grabMethod(‘init); // <mirror on method:init>
// reflectively invoke a method
mirrorOnP.invoke(Message.new(p, ‘distanceToOrigin, []));
// print all method names
mirrorOnP.listMethods().each: { |method|
system.println(method.name)

};
// add a z coordinate
mirrorOnP.addField(Field.new(‘z, 0));

As can be seen from the examples, mirrors support intro-
spection (retrieval of field and method mirrors), invocation
(explicit invocation of methods) and self-modification (ad-
dition of fields and methods). The Message object passed
to invoke encapsulates a receiver (any object), a selector (a
symbol) and actual arguments (an array). The receiver is the
object to which self is bound during method invocation.

Mirrors on objects are created by means of the reflect:
construct. This ensures that the creation of the appropriate
kind of mirror is separated from any base-level concerns.
The reflect: construct creates a mirror by calling a factory
method, which can be replaced by metaprograms. This is
explained in more detail in the following section.

3.3 Mirrors on Actors

AmbientTalk is a concurrent actor-based [2] language. While
we will not go into the details of AmbientTalk’s concurrency
features, we have to briefly describe actors in order to give
a complete view of the mirror architecture. AmbientTalk
does not represent objects as active objects. Rather, it adopts
the communicating event loops model of the E program-
ming language [19], in which an actor is conceived as an
event loop which contains regular objects, shielding them
from harmful concurrent modifications. Each regular object
is said to be owned by exactly one actor. Only the owning
actor of an object may execute its methods.

Objects owned by one actor can only communicate with
objects owned by another actor by means of asynchronous
message passing: a message sent to an object owned by an-
other actor is enqueued in the owner’s message queue and
processed by the owner itself at a later point in time. Am-
bientTalk borrows from E the syntactic distinction between
synchronous sends (e.g. o.m()) and asynchronous sends
(e.g. o<-m()). The beneficial concurrency properties of this
event loop architecture can be found elsewhere [19].

Each actor hosts both base-level objects (representing an
application) and metalevel objects (mirroring base objects).
Each actor also hosts an actor mirror, a special object denot-
ing the mirror on the actor as a whole. This mirror is special
in that it does not reflect upon a concrete base-level object
because an AmbientTalk actor is an event loop rather than
a concrete object. The actor mirror allows manipulating the
event loop without exposing its implementation, just like a
java.lang.Thread object in Java allows for the manipu-
lation of a thread without exposing its implementation. The
actor mirror also hosts metalevel behavior which is shared
by all of the objects it owns. The operations reified by the
actor mirror are those which transcend the scope of a single
object (e.g. the creation and sending of asynchronous mes-
sages to communicate with remote objects).

Actor

Base level

Meta level

obj

reflect: obj
actor causal

connection

Figure 1. Layout of an AmbientTalk actor.

Figure 1 gives an overview of the different objects that
constitute an actor. The actor mirror is bound to the actor
field in the global scope. An actor mirror can be accessed
without passing by mirror factory. This does not violate
stratification as actor is already a pure metalevel entity.

The mirror factory method is defined in the actor mir-
ror. reflect: obj is implemented as actor.create-
Mirror(obj). Metalevel programmers may install a cus-
tom actor mirror at runtime. By overriding createMirror

92

in the custom actor mirror, one may customize the mirrors
of all objects owned by the actor. For example, the follow-
ing excerpt shows the installation of a custom actor mirror
that overrides only the mirror factory method. The custom
factory returns “sealed object” mirrors which disallow the
explicit addition of fields to an object at the metalevel.

actor.install: (extend: actor with: {
def createMirror(onObj) {
extend: super.createMirror(onObj) with: {
def addField(field) {
raise: IllegalOperation.new(
"Sealed object: field addition prohibited.");

}
}

}
})

After the installation of a custom actor mirror, actor is
bound to the extended mirror, such that all calls to reflect:
within the same actor use the new mirror factory. Section 5.3
presents an additional example where a custom actor mirror
is installed to hook into the asynchronous message sending
protocol of the actor.

3.4 Evaluation

In this section, we briefly describe why AmbientTalk’s meta-
level architecture can be regarded as a mirror-based archi-
tecture, by showing how it exhibits the three properties de-
scribed in section 2.

AmbientTalk mirrors preserve encapsulation, primarily
because AmbientTalk is dynamically typed. Hence, any ob-
ject can be returned from a call to reflect: as long as it
implements the metaobject protocol appropriately.

AmbientTalk’s mirror architecture is stratified: mirrors
are not accessed from the base object they reflect, but rather
need to pass via a mirror factory which can be customized by
metaprograms. Similarly, the actor mirror is stratified, since
it contains only metalevel behavior.

AmbientTalk’s mirror architecture is structurally corre-
spondent to the base-level: mirrors reflect all operations ap-
plicable on objects. Also, because AmbientTalk uniformly
represents all base-level entities (e.g. numbers, block clo-
sures, parse trees) as objects, every element of the language
can be mirrored. The issue of requiring a separate API for
high-level and low-level language does not apply to Ambi-
entTalk: the interpreter currently uses the parse trees them-
selves to evaluate method bodies, hence there is no low-level
language to reflect upon.

AmbientTalk’s mirrors are not temporally correspondent:
mirrors do not explicitly distinguish code from computation.
It is not possible to introspect the source code of an object
using the same API to introspect the object itself.

4. Mirages: Mirror-based Intercession
Behavioral intercession has traditionally been introduced in
languages to allow programs to modify parts of their own
semantics [23, 17]. As such, it has a huge number of appli-

cations. In particular, it can be used as a general framework
to introduce new data types in a programming language such
as proxy objects (which trap invocations and forward them
to their principal), persistent objects (which trap slot assign-
ments and update the persistent storage accordingly), and so
on [28]. As a language laboratory, AmbientTalk relies on be-
havioral intercession to develop new language constructs for
mobile ad hoc networks [9].

Behavioral intercession requires a different kind of reflec-
tion from that provided by mirror-based architectures such as
the one described in the previous section, or that of Self and
Strongtalk. These architectures allow for explicit reflection,
that is, metacomputation is triggered explicitly by programs
using mirrors, whereas behavioral intercession requires im-
plicit reflection, where metacomputation is triggered implic-
itly by the interpreter as a result of evaluating base code [18].
In the following, we first illustrate this issue of implicit re-
flection, and introduce a distinction between explicit and im-
plicit mirrors. Subsequently, in Section 4.2, we describe how
implicit mirrors can be absorbed by the interpreter by means
of dedicated mirage objects, thereby enabling behavioral in-
tercession in a mirror-based architecture.

4.1 Explicit vs. Implicit Mirrors

To illustrate the difference between explicit and implicit re-
flection, and pinpoint what is lacking in mirror-based ar-
chitectures, consider the implementation of a simple meta-
program that logs all methods invoked on an object. Because
mirrors support the invoke operation, a metalevel program-
mer can install a custom mirror factory returning mirrors that
override the invoke method as follows:

actor.install: (extend: actor with: {
def createMirror(onObj) {
extend: super.createMirror(onObj) with: {
def invoke(invocation) {

system.println("invoked "+invocation.selector);
super.invoke(invocation); // default behavior

}
}

}
})

However, the result of installing this mirror is that only
invocations performed explicitly upon the mirror are logged
(e.g. (reflect: o).invoke(invocation)). When the in-
terpreter is evaluating a standard base-level invocation on the
referent of that mirror (e.g. o.m()), no logging happens. This
is because the interpreter uses an implicit implementation of
the invoke operation, rather than consulting the mirror pro-
vided by the mirror factory. In other words, the logging mir-
ror is not absorbed by the interpreter.

One approach to introduce implicit reflection, and hence
behavioral intercession, in a mirror-based architecture would
be to make the interpreter consult the mirror factory rather
than using implicit implementations for metalevel opera-
tions. However, this approach is impractical for a number
of reasons. Perhaps the most obvious one is performance:

93

Base level

Meta level

mirage

default
factory

I
E

object:
mirroredBy:

reflect:

explicit
mirrorimplicit

mirrorinterpreter
invoke(msg)

meta-
program

invoke(msg)

custom
factory

Figure 2. Implicit versus Explicit Mirrors

having the interpreter consult the mirror factory for every
meta-operation on every object would impose an unaccept-
able performance penalty on the application. But more im-
portantly, having the interpreter absorb mirrors confuses two
fundamentally different kinds of reflection and could simply
break the interpretation of objects. Consider the sealed ob-
ject mirror introduced in section 3.3: it can be used to ensure
read-only reflection by metaprograms such as object inspec-
tors; however if it is absorbed by the interpreter, the inter-
preter itself would be precluded from adding slots to an ob-
ject, making it impossible to instantiate base-level objects.

Our solution to this dilemma is to introduce two kinds of
mirrors: i) explicit mirrors, for use by metaprograms, such as
the sealed object mirror; ii) implicit mirrors, to be absorbed
by the interpreter, enabling behavioral intercession, such
as the log mirror. The difference between both kinds of
mirrors is illustrated in figure 2. The figure shows a mirage
causally connected to its implicit mirror. The implicit mirror
is absorbed such that when the interpreter manipulates the
mirage, it uses its implicit mirror without consulting the
mirror factory. Metalevel programs on the other hand need
to pass via the mirror factory which may return the implicit
mirror (as is done by the default mirror factory), but can
also return another explicit mirror, such as the sealed object
mirror described previously.

Implicit and explicit mirrors can be distinguished accord-
ing to the following characteristics:

Reflection Type The fundamental distinction between ex-
plicit and implicit mirrors is the type of reflection they
enable: explicit mirrors enable explicit reflection, while
implicit mirrors enable implicit reflection.

Cardinality Since an implicit mirror is effectively absorbed
by the interpreter and henceforth used in the actual inter-
pretation process of that object, there is a strict one-to-
one correspondence between an object and its unique im-
plicit mirror1. Conversely, objects can be reflected upon
by multiple and unrelated explicit mirrors, each provid-
ing a different form of reflective access to its referent. For
instance, when reflecting upon a proxy object for a re-
mote object, two explicit mirrors can be conceived: one

1 Of course, the implicit mirror bound to a base-object can be the result of
a composition of multiple implicit mirrors, however this composition needs
to be semantically coherent [20].

which reifies the proxy object itself and one which reifies
the remote object.

Completeness Unlike explicit mirrors whose interface is
only constrained by their use in the program, implicit
mirrors are required to provide a complete implementa-
tion of the metaobject protocol. This is a direct conse-
quence of the fact that implicit mirrors are absorbed by
the interpreter which can invoke any method of the meta-
object protocol.

Finally, note that an implicit mirror can be seamlessly
used as an explicit mirror. For example, the default mirror
factory returns the implicit mirror of an object as its default
explicit mirror. As previously mentioned, the opposite rela-
tion does not necessarily hold because an explicit mirror is
not necessarily complete and may impose restrictions that
can break the interpreter.

4.2 Absorbing Mirrors using Mirages

Mirror-based architectures provide means to define new ex-
plicit mirrors on objects by hooking into the mirror factory,
yet they lack the notion of an implicit mirror. To avoid hav-
ing to absorb explicit mirrors, implicit mirrors are not cre-
ated by means of a mirror factory but rather introduced us-
ing the concept of a mirage. A mirage is an “immaterial”
object whose semantics is entirely described by an implicit
mirror. A mirage behaves as a regular object, but consists of
a special base-level object causally connected to an implicit
mirror that defines its MOP.

The causal connection between a mirage and its implicit
mirror is established in two steps. First, a prototype object
must be created, which will serve as the mirror object, defin-
ing the semantics of the object it mirrors. Then, copies of that
prototype can be used as the implicit mirror of new mirages.

4.2.1 Mirror Prototypes

Any object can serve as an implicit mirror for a mirage as
long as it provides a complete implementation of the Ambi-
entTalk metaobject protocol. To facilitate the development of
mirror objects which require only small changes with respect
to the default language semantics, the actor mirror contains a
prototypical mirror object named the defaultMirror which
encapsulates AmbientTalk’s default metaobject protocol.
Most implicit mirrors extend the default mirror to imple-
ment their custom semantics.

Reconsider the logging example from the previous sec-
tion. In order to log all messages sent to an object, it is neces-
sary to first define a prototypical logging mirror object which
redefines the invoke metalevel operation:

def LogMirror := extend: actor.defaultMirror with: {
// override invoke to log the message
def invoke(inv) {
log("invoked "+inv.selector+" on "+self.base);
super.invoke(inv); // default behavior

};
}

94

mirage

defaultMirror
clone

LogMirror
clone

base

super

nil

defaultMirrorLogMirror

base

super

Figure 3. Left: an unabsorbed mirror prototype. Right: an
absorbed mirror instance causally connected to a mirage.

The above LogMirror serves as a prototypical logging
mirror. It has not been tied to a mirage yet, and hence has not
yet been absorbed by the interpreter. The defaultMirror it
extends similarly is such a prototype mirror. Note that these
prototype mirrors are not causally connected to any object
at this point. To be absorbed, a prototype mirror must be
associated to a mirage.

4.2.2 Mirage Creation

A mirror object can only be absorbed by the interpreter when
a mirage object is defined to be explicitly mirrored by that
mirror object. The code excerpt below redefines the Point
prototype from section 3 as a mirage, whose behavior is
defined by the LogMirror presented above.

def Point := object: {
def x := 0;
def y := 0;
def init(newx, newy) { ... };
...

} mirroredBy: LogMirror

The object:mirroredBy: language construct first cre-
ates a new, empty mirage object. The empty mirage needs
to be associated with an implicit mirror describing its se-
mantics. The required implicit mirror is created by copying
the specified mirror object, passing the empty mirage to the
constructor of the new mirror. The mirror is then set as the
implicit mirror of the empty mirage. From that point on, the
mirage and its mirror are causally connected and the new in-
stance of the mirror is effectively absorbed by the interpreter.
This is illustrated in Figure 3. Only after the mirror has been
absorbed is the initialization code of the object definition ex-
ecuted, such that this code is properly reflected by the new
implicit mirror. For example, the field definitions for x and y
are reified as addField invocations on a LogMirror.

In section 3.1, it was explained that when an object ex-
tends another object, the parent object is cloned when the
child object is cloned. Because the LogMirror extends the
defaultMirror, the defaultMirror is also instantiated
when the LogMirror is used to create a new mirage. The
constructor of the defaultMirror initializes its base field
to refer to the new, empty mirage object. This ensures that
when an absorbed LogMirror instance invokes self.base
while logging an invocation, this field will refer to a causally
connected Point mirage.

To base-level code, the logged Point mirage behaves
like any other AmbientTalk object. This mirage may be
instantiated or cloned. The default cloning and instantiation
semantics (that can be overridden at the metalevel) uphold
the one-to-one correspondence between the mirage and its
implicit mirror. When a mirage is cloned, its implicit mirror
is cloned and vice versa. Hence, clones are always created in
pairs such that they too can become causally connected.

4.2.3 Summary

AmbientTalk introduces support for behavioral intercession
in mirror-based architectures by distinguishing implicit mir-
rors from explicit mirrors. Unlike explicit mirrors, implicit
mirrors are not defined by adapting a mirror factory. Rather,
they are absorbed by the interpreter when a new mirage ob-
ject is created by means of the object:mirroredBy: lan-
guage construct.

4.3 Mirages and Stratification

The introduction of mirages in a mirror-based architecture
may at first sight jeopardize its adherence to the design prin-
ciples advocated by Bracha and Ungar [5]. The encapsula-
tion principle is upheld: an implicit mirror properly encap-
sulates the metalevel behavior of the mirage and a mirage
need not be aware of the implementation details of its mir-
ror. The stratification principle is upheld even though there
exists a one-to-one correspondence between mirages and
their implicit mirror. Although the metalevel mirror object
must be explicitly tied to the base-level mirage object, base-
and metalevel code remain strictly separated in different ob-
jects. One advantage of this strict separation is that base-
level methods cannot accidentally override metaobject pro-
tocol methods and vice versa.

Whether or not an object is a mirage is not leaked to other
base-level code. Once a mirage is created, it is indistinguish-
able from an ordinary object. Since mirages are treated iden-
tical to ordinary objects, the only way to reflect upon them is
by using the reflect: construct. Since this ensures that the
mirror factory is consulted, a custom explicit mirror can be
returned. For instance, when reflecting upon a Point mirage
(as defined in the previous section), the returned explicit mir-
ror may be the sealed object mirror presented in section 3.3.
This illustrates that mirages enjoy the same loose coupling
with their explicit mirrors as any other object.

As noted in section 2.2, the stratification principle facili-
tates the deployment of base-level programs separate from
the deployment of reflection support. In spite of the fact
that reflective access to implicit mirrors is stratified, the use
of mirages does necessitate the presence of reflective in-
frastructure. With respect to deployment, code that uses the
object:mirroredBy: construct must be regarded similar to
code that uses the reflect: construct.

95

5. Mirages Applied: Futures
In this section, we demonstrate the use of behavioral inter-
cession by means of a concrete language construct, namely
future-type message passing [27]. Future-type message pass-
ing is a classic technique to allow asynchronous messages to
return a result, without resorting to explicit callback mes-
sages. We first describe the base-level behavior of futures in
AmbientTalk. Subsequently, we describe the role of behav-
ioral intercession in the reflective implementation of futures.
Finally, we show how to integrate futures with the asyn-
chronous message passing protocol of AmbientTalk actors.

5.1 Future-type Message Passing

By default, an asynchronous message send has no return
value (i.e. it returns nil), forcing the programmer to rely
on manual callback methods to obtain the result of an asyn-
chronous computation. Future-type message passing rec-
onciles asynchronous message sends with return values,
by making an asynchronous send immediately return a fu-
ture object [27, 16]. A future is a placeholder object (i.e.
a proxy) which is eventually resolved with the return value.
The code excerpt below illustrates future-type message pass-
ing in AmbientTalk.

def db := dbms<-connect("dbname","user","pass");
def employees := db<-query("SELECT * FROM Employee");
when: employees becomes: { |table|
system.println(table)

}

In the above example an asynchronous message is sent
to create a connection to a database. The resulting future
object is stored in the database variable. Subsequently,
an asynchronous query message is sent to the database
future, which buffers the message and forwards it to its
resolved value once this value is available. Note that only
asynchronous messages can be sent to a future object. This
ensures that the message can be delayed by the future as long
as the return value is not yet available.

In traditional approaches, when code requires synchronous
access to the actual return value of an asynchronous send,
the thread executing the code is suspended until the future
is resolved [7]. However, because AmbientTalk actors are
event-driven (as explained in section 3.3), the event loop of
an actor should not be suspended. Instead, one may register a
block closure with the future which encapsulates the code to
be postponed until the future is resolved. This is done using
the when:becomes: construct which was first introduced in
the E programming language [19].

In the remainder of this section we describe how to inte-
grate future-type message passing in AmbientTalk using the
behavioral intercession techniques described in section 4.2.

5.2 Futures

Futures are proxy objects whose message reception seman-
tics deviate from those of normal objects. Rather than imple-

menting such proxies by means of hooks such as Smalltalk’s
doesNotUnderstand: protocol, we implement futures as
mirages in order to redefine their default message reception
semantics. We describe two changes to the semantics. First,
the future’s implicit mirror should disallow synchronous
method invocations. Second, any asynchronously received
message is either buffered if the future is unresolved or for-
warded if it is resolved. The code excerpt below shows part
of the definition of this future mirror. Asynchronous mes-
sage reception is reified by means of the receive operation.

def FutureMirror := extend: actor.defaultMirror with: {
def state := UNRESOLVED;
def resolvedValue := nil;
def inbox := [];
def invoke(invocation) {
raise: IllegalOperation.new(
"Cannot synchronously invoke methods on a future");

};
def receive(msg) {
// msg received by a resolved future?
if: (state == RESOLVED) then: {
// forward msg to the resolved value
msg.sendTo(resolvedValue);

} else: {
// buffer message in this future’s inbox
inbox := inbox + [msg];

};
};
... // continued below

};

The future’s implicit mirror is either in an unresolved or
in a resolved state, as indicated by its state field. Initially,
the mirror is unresolved. The transition from an unresolved
to a resolved state occurs when an asynchronous resolve
message is sent to the future’s implicit mirror. In addition to
the resolve method, the future mirror also extends the de-
fault metaobject protocol with a subscribe method which
allows registering closures to be applied when the future has
been resolved. These additional methods which are not part
of AmbientTalk’s default MOP are shown below:

def FutureMirror := extend: actor.defaultMirror with: {
... // previous code excerpt
def subscribers := [];
def resolve(value) {
if: (state == UNRESOLVED) then: {
state := RESOLVED;
resolvedValue := value;
// forward all buffered messages
inbox.each: { |msg| msg.sendTo(value) };
subscribers.each: { |clo| clo<-apply([value]) };

};
};
def subscribe(closure) {
if: (state == UNRESOLVED) then: {
subscribers := subscribers + [closure];

} else: {
closure<-apply([resolvedValue])

}
}

};

When a future is resolved, all messages it accumu-
lated while the result was unavailable will be forwarded
to the computed value. Similarly, all subscribed closures
are asynchronously applied to the resolved value. Note that

96

the resolve and subscribe methods reside at the meta
level. This stratification of base and metalevel methods has
the advantage that metalevel messages are not trapped and
forwarded by the receive method shown before, as this
method only traps messages sent to the base-level future ob-
ject. The following code excerpt shows the auxiliary meth-
ods required to construct and use such a base-level future
object.

def makeFuture() {
object: { nil } mirroredBy: FutureMirror;

}
def when: future becomes: closure {
(reflect: future)<-subscribe(closure);

}

Because a future’s subscribe method resides at the meta
level, the when:becomes: language construct must send the
subscribe message to the future’s implicit mirror, rather
than to the base-level future object itself. This illustrates
another advantage of stratifying base and meta-level: base-
level messages (sent to the future itself) cannot be mistaken
for metalevel messages (sent to the future’s implicit mir-
ror). For example, in an application involving newsletters,
a subscribe message sent to a future for a newsletter ob-
ject cannot be mistaken for the subscribe message which
is part of the future’s metaobject protocol.

At this point, futures have been introduced as a new data
type into the interpreter. However, we have yet to define how
futures can be integrated into the actor’s message sending
protocol. This is the topic of the next section.

5.3 Integration in Message Sending Protocol

In the previous section we have described how to create
future mirages based on a mirror object that describes their
semantics. In this section, we describe the definition of a
custom actor mirror which intercepts both message creation
(to attach a future object to the message to capture the return
value) and message sending (to return the attached future as
a result rather than the default nil value). Any base-level
asynchronous message send is reified in terms of these two
operations by the actor mirror.

The code excerpt below shows the installation of a cus-
tom actor mirror which overrides the default createMessage
and send operations. The createMessage operation is spe-
cialized to return future-type messages, asynchronous mes-
sages extended with a future field and whose process
method is overridden. The overridden process method will
be invoked when the asynchronous message is received and
is used to resolve the future with the return value of the in-
voked method. Finally, the actor’s asynchronous message
sending semantics is modified by overriding send. An asyn-
chronous message send returns a message’s associated future
rather than the default nil value.

actor.install: (extend: actor with: {
def createMessage(sel,args,annotations) {
// first, create a regular message

def msg := super.createMessage(sel,args,annotations);

// if msg was annotated with the OneWayMessage
// annotation, simply return the regular message
if: (msg.annotatedAs(OneWayMessage)) then: {
msg;

} else: {
// turn msg into future-type message
extend: msg with: {
// attach a new future to the message
def future := makeFuture();
// process is invoked upon reception
def process(receiver) {
// delegate to actually invoke the method
def result := super.process(receiver);
// resolve the attached future
(reflect: future)<-resolve(result)@OneWayMessage;
result;

};
}

};
def send(msg) {
def result := super.send(msg);
if: (!msg.annotatedAs(OneWayMessage)) then: {

msg.future; // return the message’s future
} else: {

result;
};

};
}

});

Asynchronous messages can be annotated with meta-
data. In the above code, future-type message passing is dis-
abled for messages annotated as a OneWayMessage. This
annotation is useful if no return value is required for an
asynchronous send. More importantly, the resolve meta-
message sent to the future mirror requires this annotation to
avoid an infinite loop. Without this annotation, the resolution
of one future would require the creation of another future,
whose resolution requires another future, and so on.

This section presented future-type message passing, an
exemplar language construct which relies on behavioral in-
tercession at both the object level (to define the future data
type) as well as at the actor level (to integrate futures in the
message passing protocol). The next section describes how
mirages can be implemented in the language with moderate
effect on a system’s overall performance.

6. Implementation
As noted by Bracha and Ungar, a desirable software engi-
neering property is that when a feature is not used, it should
not incur additional performance penalties [5]. When ap-
plied to behavioral intercession, this gives rise to the notion
of partial behavioral reflection [24]: the principle of limit-
ing the scope of behavioral reflection to where and when it
is really needed. AmbientTalk supports two forms of partial
behavioral reflection, namely entity selection and operation
selection.

6.1 Entity Selection

Entity selection ensures that metalevel operations on enti-
ties which do not use behavioral intercession are not rei-
fied. At the language level, AmbientTalk already features a
distinction between ordinary objects created using object:

97

(which use the default MOP) and mirages created using
object:mirroredBy: (which have a custom MOP). As a
consequence, only metalevel operations invoked on mirages
are reified.

The object-oriented AmbientTalk interpreter distinguishes
between objects and mirages since they are implemented
as distinct classes. As a consequence, when the interpreter
invokes metalevel operations (which are implemented as
methods on the implementation-level object representation),
the dynamic dispatch algorithm of the underlying language
is used as a fast test to decide whether a metalevel operation
on the receiver should be reified or not.

6.2 Operation Selection

Next to performing entity selection, one may further limit
the reification of metalevel operations to only those opera-
tions that are actually overridden at the meta level. This is
called operation selection [24]. In AmbientTalk, operation
selection is possible if the implicit mirror of a mirage ex-
tends the defaultMirror. By analyzing the methods that
the implicit mirror overrides from the defaultMirror, we
can derive which metalevel operations should be reified, and
which operations can proceed natively.

In the implementation of AmbientTalk, operation selec-
tion is realized by synthesizing appropriate object represen-
tations at runtime. Depending on which metalevel operations
need reification, the native methods that implement those op-
erations are replaced by methods which forward a reified op-
eration to the implicit mirror of a mirage.

The current implementation of operation selection in
AmbientTalk has some limitations. The code that analyzes
which metalevel operations require a reification assumes that
the set of methods overridden by the implicit mirror remains
constant. Hence, the mirror should not dynamically change
the set of methods it overrides, as additional metalevel oper-
ations would not be reified, yielding unexpected behavior.

6.3 Micro-benchmark

We have assessed the performance optimization of partial
behavioral reflection in the current implementation by means
of a small benchmark. The table below summarizes the ob-
tained results. The results show the average running time (in
microseconds) to execute the method invocation obj.m() on
different kinds of objects2. The columns distinguish between
what kind of partial behavioral reflection is applied. We dis-
tinguish three cases: 1) obj is a native object, 2) obj is a mi-
rage mirrored by a mirror that does not override invoke, 3)
obj is a mirage mirrored by a mirror that overrides invoke
with a dummy method that simply delegates to the native
behavior via a super-send.

2 The results shown are obtained by taking the average running time of
10.000 invocations on a Macbook Pro 2.33Ghz Intel Core2 Duo.

Entity Selection Entity + Operation Selection

Native Object 375.3µs 100,0% 371.5µs 100,0%
Mirage (default) 2207µs 588,06% 371.4µs 99.97%

Mirage (override) 2553µs 680,26% 2524.8µs 679.62%

Although the measured results are obvious, they illustrate
that partial behavioral reflection is critical for keeping the
performance penalties of behavioral intercession in check. It
should be mentioned that our approach to partial behavioral
reflection is not the only one to avoid unnecessary reifica-
tions. Other techniques such as static analysis or just-in-time
compilation can achieve the same goal.

7. Discussion
We now briefly discuss how the present architecture differs
from the previous version of AmbientTalk [9], as well as
related work in the area of behavioral reflection. We end by
outlining the current state of AmbientTalk and future work.

7.1 Previous Work

In previous work, we have discussed the metaobject proto-
col of AmbientTalk/1 – the predecessor of the AmbientTalk
language described in this paper – to develop language con-
structs specifically for mobile ad hoc networks [9]. In Am-
bientTalk/1, an actor is represented as an active object which
executes in a thread of its own, has a message queue and
a dedicated behavior describing the methods that may be
asynchronously invoked on the active object. This behav-
ior object contains base-level application methods as well
as metalevel methods used to hook into the metaobject pro-
tocol. Intercession is made possible by making the active
object implement a metalevel method, which is only distin-
guishable from a base-level method by name.

In AmbientTalk/1 reflection is neither stratified nor en-
capsulated: base-level code can be affected by the imple-
mentation details of metalevel constructs. For example, be-
cause the base- and metalevels are not partitioned into sepa-
rate namespaces, name clashes between the two levels could
occur. For example, a base-level method may accidentally
be regarded as a metalevel method simply because its name
accidentally matches that of a metalevel operation.

7.2 Related Work

Behavioral intercession – the ability of a program to modify
its own execution semantics– has been present since the very
first work on reflection [23] and its incarnation in object-
oriented languages [17]. Since then, there have been numer-
ous proposals to introduce behavioral intercession in lan-
guages that originally had few (if any) such capabilities.

It is indeed quite rare to see a programming language
with a clean reflective architecture for supporting behavioral
intercession –such as interception of message sending, ob-
ject creation, etc.– from the start. A notable exception is the
CLOS MOP [13, 21], which can still be considered as the
most advanced metaobject protocol in use to date. The dif-
ference between the metaobject protocols of CLOS and Am-

98

bientTalk is that AmbientTalk’s MOP is object-based rather
than class-based and that the CLOS metaobject protocol is
not entirely stratified [5].

Because the interception of messages sent to objects is
a common use case of behavioral intercession, many lan-
guages have introduced ad hoc approaches to achieve in-
tercession for this specific case. In Smalltalk, for example,
several alternatives have been proposed to control message
passing semantics [11], such as method wrappers [6] or us-
ing the doesNotUnderstand: protocol. In Java, since there
is no such thing as a doesNotUnderstand: protocol, nor
enough reflective facilities to intervene in the method lookup
process to define method wrappers, many proposals to intro-
duce behavioral reflection rely on proxies (such as the dy-
namic proxies added to Java 1.3).

The downside of these approaches is that they implement
new metalevel behavior at the base level, thereby violating
stratification. For example, when a future is represented as
an object overriding doesNotUnderstand or as a dynamic
proxy, the future acts as both a base and a metalevel object.
Because both levels are indistinguishable, name clashes can
occur making it difficult to distinguish between e.g. sending
subscribe to a future and sending subscribe to the object
denoted by the future. As exemplified in section 5.2, Am-
bientTalk’s stratified mirror-based MOP avoids such name
clashes.

Bytecode transformation is another technique for inter-
vening in the method lookup process of a language [8, 26].
Recently, techniques relying on bytecode transformation
have been used to add fine-grained behavioral reflection to
Smalltalk [10, 22]. On the one hand, these transformation-
based approaches mostly ignore the principles of mirror-
based architectures, in particular the issue of structural corre-
spondence: applying standard introspection on transformed
code unfortunately reveals the implementation tricks used
by the transformation engine. On the other hand, the mirror-
based architectures that have been proposed up to now offer
only limited behavioral intercession [5]. The architecture
presented in this paper precisely reconciles mirrors with be-
havioral intercession.

Our work also relates to partial behavioral reflection [24]:
the principle of limiting the cost of behavioral reflection to
where and when it is really needed. We have discussed the
implementation of AmbientTalk mirrors and mirages which
support entity selection and operation selection [24]. How-
ever, AmbientTalk does not support intra-operation selec-
tion, the ability to limit reification to specific occurrences of
a given operation. This feature is particularly useful for sup-
porting efficiently aspect-oriented extensions [12, 24], and
can be provided by the language processor [3].

7.3 Current Status and Future Work

An interpreter for the AmbientTalk language has been im-
plemented in Java. The implementation can run on the Java 2
micro edition (J2ME) platform, under the connected device

configuration (CDC). Hence, AmbientTalk can be executed
on PDAs and high-end cellular phones. Our current exper-
imental setup consists of a number of smartphones which
communicate by means of a wireless ad hoc WiFi network.

Currently, AmbientTalk’s metaobject protocol reifies
among others object instantiation and cloning, object seri-
alization, field and method access, message reception and
method invocation. The reflectively implemented futures
language construct of which a simpler variant has been dis-
cussed in this paper is used as the actual support for future-
type message passing in AmbientTalk. The optimizations
discussed in section 6 have been achieved in the current Java
implementation by generating dedicated Java classes used to
represent mirage objects at runtime, using the BCEL byte-
code generation toolkit.

Future work focuses on two different uses of the mirror-
based architecture. First, we want to employ the architecture
to implement more language constructs in the context of
mobile ad hoc networks. Second, we would like to apply
the mirror-based architecture to develop tool support for
AmbientTalk, in the form of e.g. (remote) object inspectors.

8. Conclusions
AmbientTalk has a mirror-based reflective architecture that
supports behavioral intercession. Because of this, Ambi-
entTalk brings the benefits of mirror-based reflection to
the realm of reflectively implemented language extensions.
First, to meta-level programs, mirrors remain only accessible
via the mirror factory, allowing an object to encapsulate its
meta-level behavior. Second, implicit mirrors are stratified
with respect to base-level code, such that extensions to the
metaobject protocol do not interfere with application code.
We have illustrated these benefits in a reflective implemen-
tation of future-type message passing in AmbientTalk.

AmbientTalk reconciles traditional, structural mirrors
with behavioral intercession by dinstinguishing between
explicit and implicit mirrors. Explicit mirrors are used by
metaprograms and can only be acquired by means of a mir-
ror factory, which is customizable by the metalevel program-
mer. Implicit mirrors are used by the interpreter itself in or-
der to intercess metalevel operations on base-level objects.
In order to absorb such mirrors, AmbientTalk introduces mi-
rages: objects whose MOP is implemented by a causally
connected implicit mirror. Finally, AmbientTalk provides
support for partial behavioral reflection to minimize the per-
formance penalty for objects which require limited or no
support for behavioral intercession.

Acknowledgments
The authors would like to thank David Ungar for his helpful
comments and suggestions for improvement.

99

References
[1] AGESEN, O., BAK, L., CHAMBERS, C., CHANG, B.-W.,

HÖLSZLE, U., MALONEY, J., SMITH, R., UNGAR, D.,
AND WOLCZKO, M. The SELF 4.1 programmer’s reference
manual. Tech. rep., Sun Microsystems, Inc. and Stanford
University, 2000.

[2] AGHA, G. Actors: a Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[3] BOCKISH, C., HAUPT, M., MEZINI, M., AND OSTER-
MANN, K. Virtual machine support for dynamic join points.
In Lieberherr [14], pp. 83–92.

[4] BRACHA, G., AND GRISWOLD, D. Strongtalk: Typecheck-
ing Smalltalk in a Production Environment. In Proceedings of
the 8th annual Conference on Object-oriented Programming
Systems, Languages and Applications (1993), pp. 215–230.

[5] BRACHA, G., AND UNGAR, D. Mirrors: Design principles
for meta-level facilities of object-oriented programming
languages. In Proceedings of the 19th annual Conference
on Object-Oriented Programming, Systems, Languages and
Applications (2004), pp. 331–343.

[6] BRANT, J., FOOTE, B., JOHNSON, R., AND ROBERTS, D.
Wrappers to the rescue. In Proceedings of the 12th European
Conference on Object-Oriented Programming (1998), LNCS
vol. 1445, Springer-Verlag, pp. 396–417.

[7] CAROMEL, D. Service, asynchrony and wait-by-necessity.
Journal of Object-Oriented Programming 2, 4 (November–
December 1989), 12–18.

[8] CHIBA, S., AND NISHIZAWA, M. An easy-to-use toolkit
for efficient Java bytecode translators. In Proceedings of
the 2nd ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (2003), LNCS
vol. 2830, Springer-Verlag, pp. 364–376.

[9] DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S.,
D’HONDT, T., AND DE MEUTER, W. Ambient-oriented
Programming in Ambienttalk. In Proceedings of the 20th
European Conference on Object-oriented Programming
(2006), LNCS vol. 4067, Springer-Verlag, pp. 230–254.

[10] DENKER, M., DUCASSE, S., AND TANTER, É. Runtime
bytecode transformation for Smalltalk. Journal of Computer
Languages, Systems and Structures 32, 2-3 (2006), 125–139.

[11] DUCASSE, S. Evaluating message passing control techniques
in Smalltalk. Journal of Object-Oriented Programming 12, 6
(1999), 39–44.

[12] HILSDALE, E., AND HUGUNIN, J. Advice weaving in
AspectJ. In Lieberherr [14], pp. 26–35.

[13] KICZALES, G., RIVIERES, J. D., AND BOBROW, D. G. The
Art of the Metaobject Protocol. MIT Press, Cambridge, MA,
USA, 1991.

[14] LIEBERHERR, K., Ed. Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development
(2004), ACM Press.

[15] LIEBERMAN, H. Using prototypical objects to implement
shared behavior in object-oriented systems. In Conference
proceedings on Object-oriented Programming Systems,

Languages and Applications (1986), ACM Press, pp. 214–
223.

[16] LISKOV, B., AND SHRIRA, L. Promises: linguistic sup-
port for efficient asynchronous procedure calls in distributed
systems. In Proceedings of the ACM SIGPLAN 1988 confer-
ence on Programming Language design and Implementation
(1988), ACM Press, pp. 260–267.

[17] MAES, P. Concepts and experiments in computational
reflection. In Conference proceedings on Object-oriented
Programming Systems, Languages and Applications (1987),
ACM Press, pp. 147–155.

[18] MAES, P., AND NARDI, D., Eds. Meta-Level Architectures
and Reflection. North-Holland, Alghero, Sardinia, Oct. 1988.

[19] MILLER, M., TRIBBLE, E. D., AND SHAPIRO, J. Con-
currency among strangers: Programming in E as plan coor-
dination. In Symposium on Trustworthy Global Computing
(2005), LNCS vol. 3705, Springer, pp. 195–229.

[20] MULET, P., MALENFANT, J., AND COINTE, P. Towards
a methodology for explicit composition of metaobjects. In
Proceedings of the 10th International Conference on Object-
Oriented Programming Systems, Languages and Applications
(1995), ACM Press, pp. 316–330. ACM SIGPLAN Notices,
30(10).

[21] PAEPCKE, A. User-level language crafting: Introducing the
CLOS metaobject protocol. In Object-oriented program-
ming: the CLOS perspective. MIT Press, Cambridge, MA,
USA, 1993, pp. 65–99.

[22] RÖTHLISBERGER, D., DENKER, M., AND TANTER, É.
Unanticipated partial behavioral reflection: Adapting appli-
cations at runtime. Journal of Computer Languages, Systems
and Structures (2007). To appear.

[23] SMITH, B. C. Reflection and semantics in Lisp. In
Proceedings of the 14th Annual ACM Symposium on
Principles of Programming Languages (1984), ACM Press,
pp. 23–35.

[24] TANTER, É., NOYÉ, J., CAROMEL, D., AND COINTE, P.
Partial behavioral reflection: Spatial and temporal selection
of reification. In Proceedings of the 18th ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications (2003), ACM Press, pp. 27–
46. ACM SIGPLAN Notices, 38(11).

[25] UNGAR, D., CHAMBERS, C., CHANG, B.-W., AND

HÖLZLE, U. Organizing programs without classes. Lisp
Symb. Comput. 4, 3 (1991), 223–242.

[26] WELCH, I., AND STROUD, R. J. Kava - using bytecode
rewriting to add behavioral reflection to Java. In Proceedings
of USENIX Conference on Object-Oriented Technologies and
Systems (2001), pp. 119–130.

[27] YONEZAWA, A., BRIOT, J.-P., AND SHIBAYAMA, E.
Object-oriented concurrent programming in ABCL/1. In
Conference proceedings on Object-oriented programming
systems, languages and applications (1986), ACM Press,
pp. 258–268.

[28] ZIMMERMANN, C. Advances in Object-Oriented Metalevel
Architectures and Reflection. CRC Press, 1996.

100

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

