Object Technology for Ambient Intelligence and
Pervasive Computing: Language Constructs and
Infrastructures

Holger Miigge!, Pascal Cherrier?, Wolfgang De Meuter?, and Eric Tanter?

! University of Bonn, Germany
2 France Telecom, France
3 Vrije Universiteit Brussels, Belgium
4 University of Chile, Chile

Abstract. This report summarizes the main activities held during the
second workshop on object-technology for Ambient Intelligence and Per-
vasive Computing held at ECOOP 2006. The workshop covered top-
ics varying from low-level considerations such as garbage collection and
object migration, via programming language infrastructure such as re-
flection and context-oriented programming, to engineering applications
using maturing techniques such as aspects.

1 Introduction

In the near future, a new level of dynamicity will be required in order to con-
struct software that is highly context-dependent due to the mobility of both the
software itself and its users. This peculiar setting has been given different names
like Ambient Intelligence (Aml), Pervasive Computing or Ubiquitous Comput-
ing with slightly different meanings. We use the term Ambient Intelligence but
address equally all kinds of mobile, distributed software from the software engi-
neering point of view. The idea of Ambient Intelligence is that everybody will be
surrounded by a dynamically-defined processor cloud, of which the applications
are expected to cooperate smoothly.

Currently, Ambient Intelligence seems to incorporate aspects from previously
unrelated fields such as ubiquitous computing, mobility, intelligent user inter-
action, context dependency, domotics, etc. Early experiments in these fields, as
conducted for example by Philips and MIT, already indicate that a full realiza-
tion of their potential will need a new generation of concepts. These concepts
need to support software which is able to operate in extremely dynamic hard-
ware and software configurations. Ambient Intelligence is put forward as one of
the major strategic research themes by the EUs IST Advisory Group for the
financing structure of the 6th Framework of the EU. “The focus of IST in FP6
is on the future generation of technologies in which computers and networks
will be integrated into the everyday environment [...]. This vision of ‘ambient
intelligence’ places the user, the individual, at the centre of future developments
for an inclusive knowledge-based society for all.” (from the overall vision of the
working programme of IST in FP6).

M. Siidholt and C. Consel (Eds.): ECOOP 2006 Ws, LNCS 4379, pp. 130-[I40] 2007.
© Springer-Verlag Berlin Heidelberg 2007



Object Technology for Ambient Intelligence and Pervasive Computing 131

2 Scope of the Workshop

2.1 Goals

Important goals of the workshop were to identify and discuss the impact of
Ambient Intelligence on object-oriented technologies and vice versa, and to out-
line some fruitful paths for future research concerning the connection between
Ambient Intelligence and object-oriented programming languages and systems.
In this context, we understand the term object technology to cover the whole
range of topics that have evolved around the notion of object-orientation in the
past decades, starting from programming language design and implementation,
ranging over software architectures, frameworks and components, up to design
approaches and software development processes.

We expect a special emphasis on the (seemingly?) conflicting forces of high
dynamicity as offered, for example, by delegation- and reflection-based object-
oriented systems that provide a high level of adaptability on the one hand, and
peoples needs for security, safety and stability on the other hand. How can these
forces be resolved, and does the notion of Ambient Intelligence with its concept
of high availability of services even lead to new opportunities in this regard?

2.2 Topics

In the call for participation, the following non-exhaustive list of potential topics
was included:

— Programming languages: Concepts for coping with new levels of dynamicity
and security.

— Reflection: Why could it still be interesting to imagine a better reflective
virtual machine and what about security and reflection: Can a reflective
(structural / behavioural) object-oriented virtual machine be secured?

— Software evolution: Mobile software must continually adapt itself to poten-
tially unanticipated environments. How can this be tackled?

— Context Modelling: What are the most promising ways to model context and
integrate it into the software architecture?

— Adaptivity: What are the requirements for adaptive software? What do cur-
rent methods and tools provide for building adaptive systems and what is
missing?

— Quality of Service: What software engineering techniques support depend-
able, reliable and safe systems? How to bridge the gap between (too) low-level
and (too) high-level rules? How to take structural constraints into account?

— Software development processes: Are the current approaches to analysis,
modelling and development able to cope with the specific demands of mobile
software?

— Human-device interactions: What is new in comparison to the good old
model view controller? What are good new ways for GUI design and im-
plementation? What about extending to 3D graphics and sounds? What
about multimodalities?



132 H. Miigge et al.

— Device-device interaction: What are the requirements for embedded virtual
machines? How do the existing models (Java, Smalltalk, Scheme, Python)
differ from each other in handling events and communicating with people
and other devices? Do they enable the software to exploit spontaneous col-
laborations between multiple devices and people?

— Constrained resources: Specificities of small mobile equipments, impact on
the software in terms of object oriented concepts.

This topic list led to the submission of seven papers with topics varying from
low level considerations such as garbage collection and object migration, via
programming language infrastructure such as reflection and context-oriented
programming, to engineering applications using maturing techniques such as
aspects.

3 Workshop Organization

The workshop organisation was centred around two invited talks that were sched-
uled in the morning and in the afternoon. Apart from the invited talks, authors
have presented their position papers according to the following schedule. In the
schedule, the actual presenter is indicated in a boldfaced fashion.

Time Content

9:00 Start: Welcome and Introduction

9:30 Invited Talk by Jacques Malenfant
“Programming for Adaptability in Ambient Computing:
Towards a Systemic Approach”

10:30 “Using Mixin Layers for Context-Aware and Self-Adaptable Systems”
(B. Desmet, J.V. Vargas, S. Mostinckx and P. Costanza)

11:00 “Prototypes with Multimethods for Context-Awareness”
(S. Gonzéles, K. Mens and S. Mostinckx)

11:30 “Semi-Automatic Garbage Collection for Mobile Networks”
(E.G. Boix, T. Van Cutsem and S. Mostinckx)

12:00 “Design of a Multi-level Reflective Architecture for Ambient Actors”
(D. Standaert, E. Tanter and T. Van Cutsem)

14:00 Invited talk by Bill Griswold:
“Software Architectures for Context-Aware Computing -
Experience and Emerging Challenges”
15:00 “Towards an Integration Platform for Aml: A Case Study”
A. Fortier, J. Munoz, V. Pelechano, G. Rossi and S. Gordillo
15:30 “Towards Context-Sensitive Service Aspects”
T. Rho and M. Schmatz
16:00 “Context-Aware Adaptive Object Migration”
R. Kapitza, H. Schmidt, F.J. Hauck
16:30 Summary and roundup discussions
17:00 End



Object Technology for Ambient Intelligence and Pervasive Computing 133
4 Summary of Contributions

This section summarizes the main points of the submitted position papers. These
papers can be downloaded from the workshop’s home page at
http://sam.iai.uni-bonn.de/ot4ami/Wiki.jsp?page=Program

Using Mixin Layers for Context-Aware and Self-Adaptable Systems by B. Desmet.
This talk was about technology that allows an application to dynamically adapt its
behaviour according to changes in the context in which the application operates.
Current-day technology typically consists of a series of programming patterns to
achieve such dynamic behaviour adaptation. As a consequence, combining differ-
ent contexts in such systems has proven to be far from trivial. The talk proposed
the use of mixin layers to modularize the context-dependent adaptations sepa-
rate from the application core logic, together with a composition mechanism that
deals with runtime context interactions. Since the classes in mixin layers have no
fixed superclasses, they can be combined easily to reflect different combinations
of context. The relationships between the different mixin-layers was proposed to
be programmed in a declarative way. This enables a dynamic composition mecha-
nism to construct and apply valid compositions of mixin layers according to con-
text changes. The combination of using mixin layers and a declarative language
to describe relationships between mixin layers was argued to be a powerful mech-
anism to deal with the continuously varying behaviour of context-aware systems.

Prototypes with Multimethods for Context-Awareness by S. Gonzales. The talk
argued that the incorporation of context information into running mobile ap-
plications is currently often achieved using ad hoc mechanisms. To allow for
an application to behave differently in a given context, this context-specific be-
haviour is typically hard-wired in the application under the form of if -statements
scattered in method bodies or by using design patterns (e.g. Visitor, State, Strat-
egy) and best-practice patterns (e.g. Double Dispatch). Therefore, the talk ex-
plores the Prototypes with Multiple Dispatch (PMD) object model in the light
of context-aware mobile applications. The proposal provides a structured mech-
anism to deal with contextual information in a flexible and fine-grained manner.
Context-aware mobile applications rely on a context architecture that aggregates
the input from sensors (and possibly other applications) in a way that is acces-
sible to the application. Using multiple dispatch the aggregated context directly
influences the dispatch of methods, thereby avoiding hard-wiring context-related
behaviour in the application. In other words, the programming model directly
supports Context-Oriented Programming as recently proposed by P. Costanza.

Semi-Automatic Garbage Collection for Mobile Networks by E.G. Boix. In recent
years remarkable progress has been made in the fields of mobile hardware and
wireless network technologies. Devices communicate by means of such wireless
infrastructure with other devices in their environment in ad hoc way sponta-
neously creating networks. However, developing applications for such devices is
very complex due to the lack of support in current programming languages to



134 H. Miigge et al.

deal with the specific properties that distinguish mobile networks from the tra-
ditional distributed systems. The research presented in this talk focusses on pro-
viding programming language support to alleviate the complexity encountered
when developing such applications. The talk identified the following phenomena
intrinsic to mobile networks: connection volatility, ambient resources, autonomy.

The Ambient-Oriented Programming paradigm was postulated as a new com-
puting paradigm which incorporates these hardware phenomena at the heart of
its programming model in order to ease the development of applications for mo-
bile networks. The talk gave an overview of this paradigm and then focussed on
the issues of distributed garbage collection for mobile networks. Subsequently
a new family of distributed garbage collection mechanisms to cope with them
was introduced. It requires annotations from programmers to steer the garbage
collection mechanism and is therefore called semi-automatic garbage collection.

Design of a Multi-level Reflective Architecture for Ambient Actors by E. Tanter.
This work describes a multi-level reflective architecture for a language that au-
tomatically supports open network topologies where devices may join and leave
at any point in time, where reliance on central servers is usually impractical and
where the connection between two communicating devices is often volatile due to
the limited wireless communication range. Rather than requiring the developer
to manually deal with the difficult issues engendered by the ambient hardware
at the base level, where this code would be severely tangled with and scattered
throughout the functional code, the research proposes to offer the programmer a
means to express a solution for the issues in a generic manner, at the metalevel.
This metalevel is structured according to different levels of abstraction, which
gives rise to what is known as a multi-model reflection framework. This struc-
ture is simply derived from the fact that not all distribution-related issues are
expressible at the same level of abstraction.

The talk proposed a multi-level reflective architecture for ambient actors and
its instantiation in the AmOP language AmbientTalk. The architecture com-
bines (a) the engineering benefits of multi-model reflection by structuring meta-
level facilities according to different levels of abstraction (passive ob jects, active
ob jects, virtual machine), (b) the extreme encapsulation properties of mirror
methods by ensuring that objects that are reflected upon can themselves restrict
access to their meta-level facilities depending on the client, and this at all levels,
and (c) the power offered by an extensible virtual machine in which facilities
are made accessible to actors so that they can customize their execution envi-
ronment, as well as adapting their own behavior according to it. The resulting
MOP respects the extreme encapsulation principle thanks to its systematic use
of mirror methods.

Towards an Integration Platform for AmI: A Case Study by A. Fortier. Creat-
ing intelligent environments requires knowledge from different disciplines such
as HCI, artificial intelligence, software engineering and sensing hardware to be
combined to produce an application. Therefore, the integration of independently
components developed will be necessary. This talk argues that what is needed



Object Technology for Ambient Intelligence and Pervasive Computing 135

to support this is an integration framework (comprising formalisms, tools and
a software platform), which allows different components to seamlessly interact,
to provide pervasive services and ambient intelligence. In such framework one
should be able to specify, in an abstract way, the contextual information that
a certain software module needs to perform his task, so that the integration
platform can dynamically discover which providers can fit the module needs.

As a contribution towards the development of an integration platform, the talk
presents a concrete example of systems cooperation. This example involves two
different projects developed at different universities. Both projects address the
problem of building ubiquitous software, but they do so using somewhat different
approaches. The Software Engineering And Pervasive Systems (SEAPS) project,
being developed in the OO-Method research group from the UPV, focuses on the
development of a model driven method for the automatic generation of pervasive
systems from abstract specifications. The systems that are generated by this
method are used to provide services in a particular environment, generally smart
homes. To implement the systems, the OSGi middleware, which is based on Java,
was used. On the other hand, the Context-Aware (CA) pro ject being developed
at LIFTA, in the UNLP, focuses on the user as a service consumer. In this view
of a pervasive system, the user carries a mobile device most of the time, which
is used to present services according to his context, which can vary dynamically.
This framework is implemented in Smalltalk.

By integrating both systems the authors expect to improve the SEAPS project
with dynamically-varying context information, to extend the CA project so that
it can remotely manipulate SEAPS services, and to build a context model based
on the information sensed by the SEAPS. They also expect to gain knowledge
about more generic integration needs, to be able to effectively build the inte-
gration platform mentioned before. As a result of the work carried out, the talk
presents as its contributions: the presentation of a concrete case of independent
systems integration, the identification of a set of problems encountered during
the integration process and the presentation of the lessons learned for others.

Towards Context-Sensitive Service Aspects by T. Rho. The talk argued that
context-aware behavior is usually hard-coded into the application itself using the
deployed libraries on the device. Since these have to be known at development
time context-processing is limited to the known libraries on the corresponding
target device. Besides that, not all context-sensitivity can be anticipated. Being
bound to one device neither composition nor sharing of context information
is possible. To build flexible applications that adapt themselves to the current
situation, the underlying architecture must provide the means to dynamically
reconfigure the application based on context information.

Service-oriented architectures (SOA) help to support the dynamic reconfigu-
ration of applications. They modularize applications by decomposing them into
distributed components, so called services. Ap- plications are build by compos-
ing these services and configuring them at runtime. Therefore the architecture
is based on service-orientation.



136 H. Miigge et al.

Aspects help to improve the software design by encapsulating the unstable
composition concern. AOP frameworks like have been proposed which realize
this concept. Ambient intelligence introduces an even more unstable element
—the varying context—, which influences the runtime adaptation of the service
composition. Using AOP to encapsulate the service composition the services stay
compact and stable because they are independent of adaptation strategies and
context information. However, common aspect languages only consider the event
flow of programs. The AOP terminology for program flow events is join point.
Typical join points are method calls, field accesses or thrown exceptions. In an
ambient intelligence setting these join points are not sufficient. The properties
of the environment must also be taken into account. To combine contexts and
join points a powerful pointcut language is needed.

One cannot apply AOP techniques in full extend on the SOA level, because
the concrete implementation of services is, at most times, not accessible to a
local system. And even if the service implementation is available there may still
be different views onto the same service from the local or a remote system which
are in a different contexts. The authors therefore restrict the join point model
to calls on the service level. This paper introduces the Ditrios architecture and
the service aspect language CSLogicAJ, which provide context-sensitive services
aspects for the service-oriented architecture OSGi.

Contezt-Aware Adaptive Object Migration by H. Schmidt. There is an ongoing
trend to integrate and link the physical world to the virtual world of comput-
ing resources and applications. Techniques like RFID (radio frequency identi-
fications), sensors (e.g. BTNodes 1) and mobile devices, but also positioning
systems like GPS (global positioning system) and wireless communication of all
kinds, push this trend. Accompanied with this evolution and the rising diversity
of systems, new concepts and techniques to provide adaptable and context-aware
applications are required. Often, these applications will migrate between different
platforms during their lifetime. As a typical example, a follow me application
(e.g. personal information manager application) can have a different interface
and state on a laptop, a cellular phone or a publicly accessible web-terminal.
In other words, we expect that a mobile application has to adapt its state, the
provided functionality and the implementation basis to its execution context,
the target system and application-dependent restrictions.

Most recent object-based middleware and agent platforms restrict migration
support to a certain programming language and environment. In this talk, the
concept of adaptable mobile objects was proposed. These objects are capable of
adapting their state, functionality and underlying code basis during migration
to the requirements of the target platform and the needs of the object itself. We
focus on weak migration. This means that only the state of an object is migrated
but no execution-dependent state like, e.g., values on the stack. The proposed
research builds on our recent platform- and ORB-independent implementation
of the CORBA Life-Cycle Service that is based on CORBA value types, a stan-
dard CORBA mechanism for passing objects by value. This service combined
with a logical separation of the mobile objects state, functionality and code



Object Technology for Ambient Intelligence and Pervasive Computing 137

enables support for adaptive ob ject migration in heterogeneous environments.
In fact, our current prototype of a dynamic adaptation service for mobile ob-
jects, the adaptive ob ject migration (AOM) service, supports the migration of
ob jects between Java and C++. Supporting other CORBA-supported languages
requires only moderate implementation effort. To assist the developer during the
implementation process, the AOM tool was presented. Additionally, mobile ob-
jects acting as mobile agents (an object having an own thread that executes
autonomously on behalf of a user) is supported.

5 Summary of Invited Talks

We were happy to welcome two invited talks:

— “Programming for adaptability in ambient computing: towards a systemic
approach” by Jacques Malenfant, Universit Pierre et Marie Curie, Paris,
France (http://www-poleia.lip6.fr/ malenfant/)

— “Software Architectures for Context-Aware Computing - Experience and
Emerging Challenges” by Bill Griswold, University of California, San Diego,
USA (http://www.cs.ucsd.edu/ " wgg/)

This section briefly summarizes these talks. The slides shown by the presenters
during the talks can be downloaded from the workshop’s website:
http://sam.iai.uni-bonn.de/ot4ami/Wiki.jsp?page=Program.

Programming for adaptability in Ambient Computing: Towards a systemic ap-
proach by Jacques Malenfant. The talk starts by motivating the point of view
that ambient systems are systems that have to survive in a constantly evolving
context or environment and that disconnection is no longer a fault but a fea-
ture of ambient systems. This challenges all aspects of software deployment. It
has repercussions on such things as dynamic installations, quality of service and
software reconfigurations. The answer to this problem is “dynamic adaptabil-
ity”: the application should react to changes in the execution context. A very
fundamental problem here is that — during the application adaptation — time
goes by. This means that the environment is changing while the application is
adapting itself. This is a very well-known problem since the advent of radar-
controlled antiaircraft guns in world war two: the fact that the target moves
after having shot has to be taken into account when aiming.

Looking at the architectural considerations of ambient systems, it is proba-
bly worthwhile taking into account IBM’s vision on the Automatic Computing
Blueprint. The main idea is to allow computers to configure themselves and man-
age their own adaptations. Keywords are self-gouvernance, self-configuration,
self-optimization, self-healing, self-protection and self-maintenance. This requires
biologically inspired computing which we will call “systemic programming”. Sys-
temics is the science that studies systems that are too complex to be tackled
through the traditional reductionist approach. It has applications in domains as
diverse as biology, sociology and economy. The main idea of systemic program-
ming is to have a large distributed self-control with a higher goal (i.e. evolve over



138 H. Miigge et al.

time by learning from interactions with the environment). Challenges of systemic
programming include modelling techniques (how do adequate local and globally
emerging control models look like) and decision techniques (e.g., control theory,
markovian decision processes, Al-heuristics). Furthermore, we need languages,
methodologies and tools to program such systems.

The talk then continues by presenting the presenter’s view on how to arrive at
systemic programming. Two models are required: a reflection model and a deci-
sion model. The reflection model is the answer to the need for obtaining a static
and dynamic model of the managed elements. It is used to reify representation
of the managed elements. The presenter’s view is that classical computational
reflection is insufficient to tackle systemic needs. Current models for reflective
computation usually take some metacircular form where the meta level imple-
ments the base level in a causally connected way. The major drawbacks of these
models is that they are based on a strong and strict single threaded coupling
between the base level and the meta level. Furthermore, they cannot tackle dis-
tribution because no global representation of the system can effectively be built.
Finally, they cannot take into account he environment of a computing device
because this is not necessarily causally connected.

The presenter moves on to present a new form of computational reflection, to
wit asynchronous reflection. In this form of reflection, the meta level is no longer
the language processor but takes the form of a general processor that controls
the base level, in a concurrent way. It has many drawbacks over the current
“synchronous” model of reflection: the base level and meta level keep each other
informed about their evolution in terms of notifications and therefore, the meta
level can sense events in the environment.

The second requirement for systemic programming is the presence of a de-
cision model that decided on when the system should adapt itself. In classical
computational reflection it is the task of the base level to decide when to “es-
cape” to the meta level. In the model presented here adaptation is triggered
based on occurrences of events in the environment. The presenter subsequently
moves on to present a number of potential decision policies. They all reflect a
sequence of decisions to take given a certain state of the system.

Software Architectures for Context-Aware Computing: Experience and Emerging
Challenges by William Griswold. The presenter begins the talk by listing a
number of facts. He states that there are many real needs and opportunities, yet
very little progress. It appears as if the evolution is to have ever more nomadic
systems that are increasingly unaware of their environment surrounding them:
“I still can’t find the printer when I need one”. Furthermore, we are connected
with a reasonable sensor platform (85 percent of Europe carries a mobile phone).
Last, he states that mobile phones, as a commodity technology, must be part of
the solution.

Next, a big experiment — called ActiveCampus — was presented. It is an
ambient system on a university campus that gives students and professors an
integrated access to all kinds of material such as librarie, courseware and ad-
ministration. Furthermore, it offers a few innovative services such as place-its



Object Technology for Ambient Intelligence and Pervasive Computing 139

which can be considered as context-aware post-its: they pop up on your mobile
phone whenever you arrive in a certain context. E.g., in a supermarket that has
a good selection of wines, a “buy wine” place-it might pop up. The main goal
of ActiveCampus is to increase social awareness of its users.

The presenter presents his major claims which boil down to the following:

— First, context-aware computing is governed by “the three laws of context-
aware computing”, namely the Ubiquity Law, the Commodity Law and the
Systems Law. These are further explained in detail (see below).

— A number of complex phenomena arise from these laws. One of them is that
failure becomes a normal mode of operation.

— The presenter acknowledges that most academic work acknowledges the same
issues. These issues are not to be dealt with as an afterthought: they actually
shape systems.

The three laws of context-aware computing in detail:

1. The Ubiquity Law: A contezrt-aware system is useful to the degree that a
person can use it everywhere and that everyone can use it. An example of
this law are the omnipresence of the ability to place the place-its described
above. All they need is a phone that is location-aware.

2. The Commoditization Law: The cost pressures of ubiquity lead to com-
moditization, thereby increasing heterogeneity, interoperability, and fragility.
Again the place-its example is taken to explain the law.

3. The Systems Law: Successfully designing a component of a contezxt-aware
system requires understanding key aspects of the whole. As an example used
to explain this, ActiveClass was used. This is a web-enabled “backchannel”
to enable students to anonymously ask questions in class at any time. The
presenter uses the example to show that adding a small feature (or compo-
nent) can destroy the entire idea behind a system.

These three laws engender a number of key consequences and the presenter
has spent a lot of time describing how his projects as UCB have tried to cope
with them. The consequences are:

— Commoditization makes failure a normal mode of operation. The question
then becomes how to design for this and how to make progress given this
fact. Failures cannot be abstracted away. They are manifested in objects and
interfaces. Furthermore, applications should remain useful and profoundly
rich instead of confusing or hobbled.

— The commoditization and the systems law can be tackled somewhat using
object technologies. However, the systems law implies the presence of system-
wide interactions that complicate a design. Issues such as failure interweave
and crosscut other components. Much of failure has to be designed into the
application metaphor. This needs a holistic design. The presenter explains
the usefulness of architecture-governed design patterns, AOP, reflection, pub-
lish/subscribe architectures and remote objects with rollback/replay facili-
ties in this light.



140 H. Miigge et al.

The presenter finishes by stating that Ubiquity + Failure means that it “is
better to operate 20% of the time in 100% of the world rather than 100% of the
time in 20% of the world.”

6 Discussions and Upcoming Issues

Although the workshop schedule was tight, there were vivid discussions among
the 26 participants. We list some of the most prominent open questions here and
hope that they will be addressed in later workshops or joint work.

— Adaptivity and Autonomy: The invited talk by Jacques Malenfant raised
the question whether techniques of autonomous and self-organized systems
should be taken into account. In particular when thinking of unanticipated
situations, emergent behavior becomes an issue. The relation between pro-
gramming techniques for adaptivity on the one side and for autonomous
systems on the other might be fruitful area for further research.

— Dynamically vs. statically typed languages and reflection vs. aspects: On the
language level two competing approaches are status quo: dynamically typed
languages with reflection on the one hand and statically typed languages
enhanced with aspects on the other. The question under which circumstances
which of these alternatives is more adequate is still not fully answered.

— Frameworks, component systems, and programming languages: Another ques-
tion involves the language level as well as the component level: Do we need
Aml-specific languages, or can we cope the requirements on the component or
service level? How do they depend on each other or are open to be combined?

— Systematic comparison of different techniques: A basis for a systematic com-
parison between different programming instruments is missing. A start in
this direction could be to create a concise catalogue of technical require-
ments. An example are typical security and privacy issues and how they can
be achieved using reflection or aspects.

— Context Representation: How should context be represented? In which should
we model is as data and in which as an activity?

— Limits of Ontology-based approaches: In order to allow context-driven adap-
tations to be performed without full anticipation, ontologies will play an
important role (e.g. for detecting adequate services in a given application
situation). It has to be expected that ontology-based work for service selec-
tion will face basically the same problems that were encountered in artificial
intelligence (i.e. you cannot compare mathematic functions).



	Introduction
	Scope of the Workshop
	Goals
	Topics 

	Workshop Organization
	Summary of Contributions
	Summary of Invited Talks
	Discussions and Upcoming Issues

