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Abstract
Omniscient debuggers make it possible to navigate back-
wards in time within a program execution trace, drastically
improving the task of debugging complex applications. Still,
they are mostly ignored in practice due to the challenges
raised by the potentially huge size of the execution traces.
This paper shows that omniscient debugging can be real-
istically realized through the use of different techniques
addressing efficiency, scalability and usability. We present
TOD, a portable Trace-Oriented Debugger for Java, which
combines an efficient instrumentation for event generation, a
specialized distributed database for scalable storage and ef-
ficient querying, support for partial traces in order to reduce
the trace volume to relevant events, and innovative inter-
face components for interactive trace navigation and analy-
sis in the development environment. Provided a reasonable
infrastructure, the performance of TOD allows a responsive
debugging experience in the face of large programs.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids; D.2.6 [Programming Envi-
ronments]: Integrated environments; D.3.4 [Processors]:
Debuggers; H.2.3 [Languages]: Query languages; H.2.4
[Systems]: Distributed databases; H.2.4 [Systems]: Query
processing

General Terms Algorithms, Design, Performance
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1. Introduction
Debugging software is a major task of the software develop-
ment process, both in terms of time and cost. Unfortunately
debuggers in most development environments only provide
very minimal assistance and debugging remains a tedious
and time-consuming task.

There are two traditional approaches to debugging: log-
based debugging and breakpoint-based debugging. The first
approach consists in inserting logging statements within the
source code, in order to produce an ad-hoc trace during pro-
gram execution. This technique exposes the actual history
of execution but (a) it requires cumbersome and widespread
modifications to the source code, and (b) it does not scale
because manual analysis of huge traces is hard. The second
approach consists in running the program under a dedicated
debugger which allows the programmer to pause the exe-
cution at determined points, inspect memory contents, and
then continue execution step-by-step. Although not subject
to the two issues of log-based debugging, breakpoint-based
debugging is limited: when execution is paused, the infor-
mation about the previous state and activity of the program
is limited to introspection of the current call stack.

Omniscient debuggers, also known as back-in-time or
post-mortem debuggers, overcome all these issues [11, 15,
17]. An omniscient debugger records the events that occur
during the execution of the debugged program, and then lets
the user conveniently navigate through the obtained execu-
tion trace. This approach combines the advantages of log-
based debugging –past activity is never lost– and those of
breakpoint-based debugging –easy navigation, step-by-step
execution, complete stack inspection. An omniscient debug-
ger can simulate step-by-step execution forward and back-
ward, and makes it possible to immediately answer ques-
tions that would otherwise require a significant effort, like
“At what point was variable x assigned value y ?” or “What
was the state of object o when it was passed as an argument
to the method foo ?”.

While the advantages of omniscient debugging over tradi-
tional approaches are incredibly clear, it has had a very lim-
ited impact in production environments, and is still mostly
seen as an unrealistic approach. It is true that omniscient
debugging raises important issues. First, except when us-
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ing specialized hardware probing ports [10], the emission
of events causes a significant overhead to the debugged ap-
plication. Second, as emphasized in [9, 20, 28], for CPU-
intensive applications, the execution trace can rapidly be-
come huge (hundreds of million events), implying that (a)
trace data must be stored very quickly and requires scalable
storage; and (b) the user interface of the debugger must be
responsive enough –this requires fast query execution on
huge traces–, and must assist the user in overcoming the
cognitive burden of dealing with a large amount of informa-
tion in order to rapidly locate the points of interest.

The contribution of this paper is to show that omni-
scient debugging can be realistically realized through the
use of different techniques enhancing efficiency, scalability,
and usability. This claim is validated by TOD1, a portable
Trace-Oriented Debugger for Java integrated into the Eclipse
IDE [5]. TOD features:

• Efficient event generation based on a compact trace
model, a custom binary encoding of events, and a fast,
portable low-level weaver.

• Specialized distributed database engine for scalable
and fast storing and querying of events, which leverages
the highly-constrained nature of execution traces. On a
dedicated 10-node cluster TOD handles a sustained input
rate of approx. 470kEv/s (thousands events per second),
and hundreds of queries per second.

• Support for partial traces by offering static and dy-
namic mechanisms for selective trace generation, and ad-
equate reporting of incomplete information.

• Responsive GUI thanks to efficient query processing;
TOD was used to debug an application as complex as
Eclipse while preserving interactivity.

• Specialized GUI components providing high-level views
on huge event traces for more effective navigation, such
as thread murals.

Section 2 details the features and challenges of omniscient
debugging. Section 3 overviews the architecture of TOD,
the event model, and the GUI components. Section 4 de-
scribes the efficient indexing scheme of TOD for storing
and querying events, and Section 5 shows how it is paral-
lelized. Benchmarks are provided in Section 6. We explain
the advantage of partial traces and how they are dealt with in
Section 7. Related work is discussed in details in Section 8.
Section 9 concludes, and identifies opportunities for further
enhancements in the field.

1 http://reflex.dcc.uchile.cl/TOD for download and small illustra-
tive videos.

2. Challenges of Omniscient Debugging
We now present the main features of an omniscient debugger
compared to traditional debuggers, and outline the scalabil-
ity challenges of omniscient debugging.

2.1 Features of an omniscient debugger
An omniscient debugger (OD) provides four major features:
stepping, state reconstitution, control flow reconstitution,
and root cause finding. The latter is unique to omniscient
debuggers, while others are typical debugger features.

In breakpoint-based debuggers, Stepping consists in exe-
cuting the target program one instruction at a time. There are
two variants of stepping: step over executes behavior2 call
statements without halting inside the called behavior, while
step into halts at the beginning of the called behavior. State
reconstitution consists in letting the programmer inspect ob-
ject state when the target program is halted. Control flow re-
constitution permits to obtain a view on the current call stack
of the program, with bound variables and objects. ODs ex-
tend these three features with complete freedom with respect
to time: stepping can be done both forward and backward in
time, programmers can inspect the state of objects as they
were at any given point in time, and can freely browse the
control flow tree.

Finally, one of the most useful features of ODs is their
ability to find when and in which context a particular field
or variable was given a certain value. Indeed, bugs often
manifest long after their root cause occurs. For instance,
trying to dereference a null reference obtained from a given
field causes a crash, which is the symptom of the bug. The
information the programmer needs is when was the field set
to null. With breakpoint-based debuggers, even if execution
is halted just before the faulty dereference, the root cause of
the bug can be already lost, e.g.because the code that caused
it is not in the call stack anymore.

2.2 Scalability challenges
Underlying the features presented above lies the necessity
to generate and record execution traces. The potentially
huge size of these traces poses several scalability challenges,
which are the main reason for the lack of production-quality
ODs.

• Events must be recorded quickly, preferably in real time,
so that (a) debugging can begin immediately after the
target program terminates or crashes, and (b) runtime
overhead is minimized to preserve overall performance
of the debugged program, and interactivity when needed
(e.g. debugging Eclipse).

• The debugger should cause minimal interference to the
target program in order to not affect its behavior. In par-
ticular, the address space and memory management of the
target process should not be altered.

2 We give methods and constructors the collective name of behaviors.

536



Figure 1. High-level architecture of TOD

• The event storage capacity of an omniscient debugger
must be aligned with the expected number of events in
a useful trace: with GHz CPUs, hundreds of millions
events can be generated in only a few minutes of exe-
cution.

• Queries on the execution trace must execute at a speed
compatible with user interaction, e.g. in tenths of seconds
for operations like stepping.

• Information must be presented in a way that addresses the
cognitive burden of navigating through huge event traces,
enabling rapid bug identification.

This work addresses the above issues via optimized event
representations and aggressive indexing, a simple query
model, a distributed database backend, support for partial
traces, and specialized presentation and interaction compo-
nents.

3. Overview of TOD
TOD is a Trace-Oriented Debugger for Java that addresses
the scalability issues identified above. The objective is to ad-
dress these issues in order to obtain an omniscient debugger
that is practically applicable. This section gives an overview
of TOD via its architecture, the event model, and the GUI
components.

3.1 Architecture
TOD is designed around two central ideas: to decouple the
core of the debugger from the target program execution, and
to be portable. It is made up of three components (Fig. 1): the
target Java Virtual Machine (JVM) in which the debugged
program runs and emits events, the debugger core that im-
plements the main functionalities of TOD, and the debug-
ger frontend through which the user interactively queries and
navigates in the execution trace.

The rationale for storing events in a database rather than
in memory as done in other omniscient debuggers [11, 15,
17] is precisely to address some of the challenges discussed
in Sect. 2.2: storing events in the address space of the target
application is not scalable past a few hundred megabytes of
trace data, and interferes with memory management, in par-
ticular with the garbage collector. The increased capture cost
incurred by the use of a database is compensated by a better
scalability and non intrusiveness. As a side effect, the abil-
ity to serialize execution traces allows for post-mortem de-

bugging, which opens interesting perspectives for software
companies willing to offer software with high-quality sup-
port: overlooking the storage cost, a navigatable execution
trace is a far more relevant input for a bug report than an
ad-hoc text description.

During execution, the target application emits events that
are sent to the debugger core, where they are recorded and
indexed in an event database. The way events are emitted
is discussed later. The event database leverages the pecu-
liarities of the event stream and the restricted set of possi-
ble queries to provide both high recording throughput and
good query performance (see Sect. 4 and 5). The debug-
ger core contains another database, the structure database,
which contains static information about the target applica-
tion. In particular it keeps track of the 32-bit integer identi-
fiers that are assigned to structural elements of the target pro-
gram (i.e. classes, methods, and fields). Queries performed
by the user rely on both the event and the structure databases.

3.2 Representation and emission of events
We now introduce the representation of events and event
traces, as well as how events are emitted by a debugged
application in TOD.

Event and trace model. An event is a structure character-
ized by a number of attributes chosen among the set A =
{a0, ..., ak}. We note e.aj the value of attribute aj of event
e. For each j ∈ [0..k], let Dj be the domain of aj , i.e. the
set of all distinct values that can be taken by aj for any event
in the trace. An event trace T = 〈e1, ..., en〉 is an ordered
sequence of n heterogeneous events.

The a0 attribute corresponds to the timestamp of the
event; it is characterized by the fact that (a) all events have
a value for a0, (b) there exists a complete order on D0 and
(c) the events in T are ordered by their value of a0. Table 1
shows which concrete events are captured and what are their
attributes.

Emission of events. The debugger core of TOD captures
events emitted by the target application (Fig. 1). There are
three ways in which events can be emitted: specialized hard-
ware trace ports [10], virtual machine or interpreter instru-
mentation [16], and application code instrumentation [11,
15]. TOD uses the last one: although not as fast as hard-
ware probes and significantly more space-consuming than
VM-level instrumentation in terms of code size, application
instrumentation is also much more portable and easier to im-
plement.

In TOD, the JVM that hosts the target application is set
up to use a JVMTI3 native agent. The agent intercepts class
load events and replaces the original class definitions by in-
strumented versions. Instrumentation itself is performed by
the weaver in the debugger core: the agent sends the original
bytecode to the core, the weaver instruments the class and

3 JVMTI: Java Virtual Machine Tool Interface, part of the Java 5 platform.
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kind ts tid depth pev loc fid bid vid idx val ret tgt exc args

Field write (FW)
√ √ √ √ √ √ √ √ √

Local var. write (VW)
√ √ √ √ √ √ √ √

Array write (AW)
√ √ √ √ √ √ √ √ √

Exception (Ex)
√ √ √ √ √ √ √ √

Behavior call (BC)
√ √ √ √ √ √ √ √ √

Behavior enter (Bn)
√ √ √ √ √ √ √ √ √

Behavior exit (Bx)
√ √ √ √ √ √ √ √ √

Row headers are event kinds and column headers are the possible attributes (ts: timestamp, tid: thread id, depth: call stack depth, pev: pointer to parent event,
loc: source code location, fid: field id, bid: behavior id, vid: local variable id, idx: array index, val: value, ret: return value, tgt: target, exc: exception, args:
arguments).

Table 1. Events and their attributes.

stores structural information in the structure database, and
the modified class is sent back to the target JVM where it is
eventually loaded (Fig. 1). The agent caches instrumented
classes on the hard disk to reduce the number of inter-
process round trips. This is particularly useful for frequently-
used classes such as those in the JDK.

Instrumentation is done using the ASM bytecode manipu-
lation library [3]: event emission code is added before and/or
after specific bytecode patterns in the original code, such as
a field write or a method call. When the instrumented code is
executed, events are constructed along with their attributes,
serialized in a custom binary format, and sent through a
socket to the event database.

Non-ambiguous event timing. Although event timestamps
are obtained through the nanosecond-precision time service
of Java, its potential lack of accuracy makes it is possible
for several events of the same thread to share the same
timestamp value. As this is incompatible with the event
indexing scheme used by TOD (Sect. 4), we shift original
timestamp values a few bits to the left and use the free bits
to differentiate events of the same thread that share the same
timestamp. When comparing the timestamps of events of
different threads, we use the original timestamps to preserve
inter-thread event ordering.

Scoped trace capture. The instrumentation scheme de-
scribed above is selective, that is, it is possible to supply
user-defined filters that limit the number of emitted events.
This feature is described in Section 7.

Object identification. The JVMTI agent of TOD assigns
a unique identifier to each object in the target application;
whenever an event needs to refer to an object it uses this
identifier. Additionally objects whose state cannot be recon-
stituted, like String and Exception, are sent in a serial-
ized form the first time they are referenced. As an excep-
tion to this mechanism objects that represent primitive val-
ues (e.g. Integer, Float, etc.) are passed by value.

3.3 Low-level queries: cursors and counts
All the features presented in Section 2.1 (stepping, state
reconstitution, control flow reconstitution and root cause

The current position of the cursor is depicted by the bold line between
events 4 and 5. Events that match the cursor’s predicate are grayed. Suc-
cessive calls to next() return events 5, 6, 11 and 14; calling posNext(11)
positions the cursor between events 10 and 11; calling posPrev(11) posi-
tions it between events 11 and 12.

Figure 2. Navigation among events matching a cursor pred-
icate.

operation semantics
next()/ Returns the next/previous matching event
prev() and moves the cursor forward/backward.

posNext(t)/ Moves so that the next call to next()/prev()
posPrev(t) returns the first/last event whose timestamp

is greater/lesser than or equal to t.
posNext(ev)/ Moves so that the next call to next()/prev()
posPrev(ev) returns the given event.

Table 2. Cursor operations.

finding) can be expressed in terms of two low-level queries:
cursors and counts, which we introduce below. Both are
based on filtering events in the trace according to some
conditions on their attributes. Conditions can be any boolean
combination of simple predicates of the form attribute =
value, where value is a constant. For instance (kind =
FW ∨ kind = BC) ∧ target = obj145. If Q is such a
condition and e is an event, we define the predicate function
Q(e) whose value is true iff e verifies condition Q.

Cursors. We define cursor(Q) as an iterator over events
that match condition Q (Fig. 2). Cursors have a current
position that is situated between two consecutive events (or
at the beginning or end of the trace). A cursor supports a
number of navigation operations, as shown in Table 2.

Counts. Given a time interval [t1, t2] divided in s slices of
length δt = (t2 − t1)/s each, and a condition Q on event
attributes, a count query returns an array of s integers such
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that s[i] = |{e ∈ T : within(e, t1 + i · δt) ∧Q(e)}| where
within(e, t) ⇔ e.ts ≥ t ∧ e.ts < t + δt. Each slot of the
array contains the number of events matching Q that occur
during the corresponding time slice.

3.4 High-level queries
We now explain how cursors and counts are algorithmically
combined to implement the high-level features described
in Sect. 2.1. Section 4 discusses the aggressive database
optimization enabled by using only filtering-based queries.

Stepping. We define stepper as an object that has a cur-
rent event ev and supports forward and backward step into
and step over operations. For instance, forward step into is
defined as follows:

c← cursor(thread = ev.thread)
c.posPrev(ev); ev ← c.next()

Forward step over changes the cursor condition to: thread =
ev.thread∧ depth = ev.depth. Backward stepping is sym-
metric to forward stepping.

State reconstitution. The value v of a field f of a particular
object o at time t can be retrieved as follows:

c← cursor(kind = FW ∧ fid = f ∧ target = o)
c.posPrev(t); v ← c.prev().val

The state of an object can be retrieved by performing the
same operation for each field. Stack frames are reconstituted
in a similar way, using variable write events instead of field
write events.

Control flow reconstitution. Events that occurred in the
top-level control flow of a given method call event e are
retrieved as follows:

c← cursor(thread = e.thread∧depth = e.depth+1)
c.posPrev(e.ts); cflow = 〈〉
repeat

ev = c.next(); cflow ← cflow ∪ 〈ev〉
until ev.kind = BEx

Root cause finder. Determining how a field has been as-
signed an undesired value is as direct as the state reconstruc-
tion query above: instead of obtaining the value of the field
write event that assigned the value to the field, the event it-
self is made current, giving access to the context at that time.
Backward-in-time exploration of the cause can go on like
this, up to the root cause.

3.5 User interface components
The frontend of TOD can be used standalone or as a plu-
gin for the Eclipse Java IDE (Fig. 3). The user navigates be-
tween different views using widely-understood web browser
metaphors (hyperlinks, back button). The available views
are: object inspector, control flow, and murals. The object
inspector view shows reconstitutions of objects, and allows
root cause finding for field values through a convenient why?
link next to each field. The control flow view shows a recon-

stitution of the control flow and allows stepping operations
as well as root cause finding for local variable values.

Murals. High-level overviews are useful for spotting ab-
normal behavior patterns. However representing a huge
number of events in a limited number of pixels is difficult.
Jerding and Stasko introduced the information mural [12]
as a “reduced representation of an entire information space
that fits entirely within a display window”. TOD features
event murals, which are graphs that show the evolution of
event density, or number of events per unit of time, in a
given period:

• Thread murals show the event density of each thread for
the whole execution of the target application (Fig. 4).

• Object activity murals show the density of calls to meth-
ods of a particular object.

• Method murals show the density of calls to a particular
method on any object.

In all cases densities are obtained through counts (Sect. 3.3),
where the length of the time slices corresponds to the space
occupied by a single pixel bar in the mural. The user can
zoom and pan the murals; when the zoom level permits to
distinguish individual events the user can select an event
and see its context in a stepper view. Thread murals have
a variety of applications, e.g. to understand the interplay
between threads, or spotting dead- and livelocks.

4. High-Speed Database Backend
We now describe and analyze the database backend of TOD,
which allows for efficient query execution while being fast
enough to allow a high recording throughput. Section 5
shows how our solution is amenable to parallelization, and
Section 6 reports on actual performance measurements.

The need to develop a specialized database backend for
TOD was motivated by the poor performance of widely-used
database management systems for our purposes: for instance
Postgres and Oracle only support storing events at a rate of
50 and 500 events per second respectively, while we rather
aim at rates in the order of hundreds of thousands events
per second [22]. Our high-throughput specialized database
backend leverages the following specificities of the event
stream of an execution trace: (a) the event stream is read-
only, (b) events arrive ordered by timestamp4 and (c) queries
are limited to filtering.

Sect. 4.1 describes the indexing scheme used by the
database. Sections 4.2, 4.3 and 4.4 analyze the cost of exe-
cuting the queries described in Sect. 3.3. Finally Sect. 4.5 an-
alyzes the recording throughput that can be achieved by the

4 Events of different threads might arrive out of order because of the way
serialized events are buffered; as reordering them is cheap (only the last few
events must be considered) we assume events have been reordered before
they reach the backend.
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Button (A) launches the program with trace recording. The user navigates in the control flow (B) using stepping buttons (C), or by clicking on an event. The
line corresponding to the current event is highlighted in the source window (D). The state of the stack frames and current object is shown in window (E). The
user can jump to the instruction that set a variable or field to its current value by clicking the why? link next to it.

Figure 3. Stepping with TOD in Eclipse.

The graphs shows the density of events of each thread along a time axis.

Figure 4. Thread murals.

system and presents an important trade-off between memory
requirements and efficiency.

4.1 Aggressive indexing of events
In most database management systems the indexing scheme
consists in maintaining one index on attribute value for se-
lected attributes. Such an index permits to quickly retrieve
the records that have a specific value for the indexed at-
tribute. TOD adopts a more aggressive indexing scheme in
which there is a separate index on timestamp for each dis-
tinct value of each attribute. This enables a highly-efficient
processing of the cursors and counts queries defined in
Sect. 3.3, and at the same time permits to sustain a high
recording throughput.

Using the notation defined in Section 3.2 we define the in-
dex set of trace T on attribute aj as, in a first approximation,
a function ISj : Dj 7→ N∗ for j ∈ [1..k] so that ISj maps
any possible value v of aj to an index, which is a sequence
of event pointers. A pointer i appears in index ISj(v) if and

only if ei.aj = v, where ei is the ith event of T . Those in-
dexes can be used directly to retrieve all events that match a
simple query of the form aj = v; compound conditions are
discussed in Sect. 4.2.

However, TOD queries consist not only in finding match-
ing events, but also in finding matching events that occurred
at, after or before a particular point in time. Therefore
indexes contain timestamps in addition to event pointers.
Hence in a second approximation, an index ISj(v) is a se-
quence of (ts, i) entries, ordered by their value of ts. In
such an index an event near a particular timestamp can be
retrieved using a binary search.

It is nevertheless much more efficient to use a B+Tree
structure (Fig. 5). Refining the above definition, the index
ISj(v) becomes a hierarchical index comprising several lev-
els. The index sequence described above constitutes level 0.
The (ts, i) entries of that level-0 index are stored on the hard
disk in small pages, where each page contains a number of
entries pertaining to the same index. When such a page is
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Figure 5. B+Tree index.

full, an entry of the form (ts, pid) is created in the level-1
index: ts is taken from the first (ts, i) entry of the recently-
filled page, and pid is a pointer to that page. Level-1 en-
tries are in turn accumulated in pages; when a level-1 page
is filled, a level-2 entry is created, and so on. The top level al-
ways contains a single page, called the root page. The num-
ber of levels above level 0 of an index is called the height of
the index. In such a structure the number of page accesses
necessary to retrieve an event near a given timestamp is at
most the height of the index.

Storage requirements Experiments show that the average
size of an event is ‖e‖ = 38 bytes. The size of a level-0
entry is ‖(ts, i)‖ = 16 bytes (two 64-bits integers). The size
of upper-level entries is ‖(ts, pid)‖ = 12 bytes (pid is only
32 bits). The experimentally-determined optimal page size
is P = 4096 bytes, therefore level-0 index pages contain
256 entries, upper-level index pages contain 341 entries and
event pages contain 108 events in average. The height h of
indexes is logarithmic with respect to the number of entries
and in practice never exceeds 5 (an index of height 5 allows
for 3415 ≈ 4 · 1012 entries).

The amount of index data generated for each event is
actually greater than the event itself. In our experiments we
found that in average an event plus the associated index
data occupies 190 bytes of storage, although the event itself
occupies only 38 bytes.

4.2 Cost of event retrieval
We now present the algorithms that permit to retrieve events
matching an arbitrary predicate in linear time with respect
to the size of the involved indexes. The algorithms are for
timestamp-order retrieval; reverse-timestamp retrieval has
the same cost.

Single-term conditions. For a simple condition of the form
aj = C where C is a constant, we can retrieve matching
events ordered by timestamp simply by obtaining the (ts, i)
entries from Ij(C). If the actual event is needed (i.e. for cur-
sors), it is directly retrieved from the trace as ei; otherwise
(i.e. for counts) the event does not need to be accessed. In
any case, all entries can be retrieved in linear time, as the
index is simply scanned once.

Conjunctive conditions. For a boolean conjunction of sim-
ple conditions of the form aj1 = C1 ∧ . . . ∧ ajm = Cm, we

Algorithm 1 MERGE-JOIN
merge-join(S, j1,. . . ,jm,C1,. . . ,Cm):

result← ∅
for l = 1 to m do

index[l]← Ijl
(Cl), pos[l]← 1

while there are more elements do
match← true, refI ← −1
minL← −1, minTS ← +∞
for l = 1 to m do

(curTS, curI)← index[l][pos[l]]
if refI = −1 then

refI ← curI
else if curI 6= refI then

match← false
if curTS < minTS then

minTS ← curTS, minL← l
if match then

result← result ∪ {srefI}
pos[minL]← pos[minL] + 1

use a variant of the sort merge join algorithm [1], widely-
used in database management systems, to identify matching
events without accessing them (Algorithm 1): we obtain the
Ijl

(Cl) for every simple condition, and for each we maintain
a pointer to a current (tsl, il) entry. Then we loop: at every
step we check if all of the il are equal, in which case we
add any of the current entries to the result: the fact that they
all point to the same event means that the event matches all
conditions. Then we advance the pointer of the index whose
current entry has the minimum value of ts. As each index is
scanned only once and there is no nested loop, merge join
runs in linear time with respect to the sum of the sizes of the
considered indexes.

Generic boolean conditions. The above can be general-
ized to any compound boolean condition, by performing a
merge join for each conjunction and a regular merge (the
merging step of merge sort) for each disjunction. The cost
thus remains linear with respect to the sum of the sizes of
the considered indexes. Because both merge join and regular
merge are stream operators (i.e. they produce an output tuple
as soon as they have received enough input tuples, without
needing past or future input tuples), it is possible to pipeline
them so that no intermediate results have to be stored.

4.3 Cost of cursors
Cursors support retrieving matching events in forward or
backward timestamp order, and absolute positioning by
timestamp. Given a compound filtering condition, one in-
dex is used for each simple condition component. A pointer
to a current entry is associated to each index and the merg-
ing algorithms described above are applied, incrementing
or decrementing the pointer of each index as dictated by
the desired retrieval order. The cost of retrieving succes-
sive matching events is extremely variable depending on the
number of components of the condition and the density of
matching events.

541



Algorithm 2 FIND-POSITION

find-position(I = Ij(v), t):
page← root(I)
level← height(I)
while level > 0 do

(ts, pid) = binarySearch(page, t)
page← getPage(I, pid)
level← level − 1

(ts, i) = binarySearch(page, t)
return i

For absolute positioning, we reposition the pointer of
each index so that the next timestamp of the entry is im-
mediately before or after the specified timestamp. This is
achieved by performing a binary search of the given times-
tamp at each level of the index, starting by the root (Algo-
rithm 2). The number of page accesses needed by this oper-
ation is at most equal to the height of the index, and can be
less if some pages are found in the page buffer.

4.4 Cost of counts
The counts queries retrieve the number of matching events
in every time slice of length δt of a given interval. There are
two ways these counts can be obtained.

Merge counts. The simplest way is to use the merging al-
gorithms described previously: whenever a (ts, i) index en-
try corresponding to a matching event is found, the count of
the time slice containing ts is incremented, without needing
to fetch the actual event. This method works for arbitrary
compound conditions but can be very costly if counts are
required over a large interval.

Fast counts. In some cases we can leverage our hierarchi-
cal index structure to obtain counts at a much lower cost. Al-
though this optimization applies only to simple conditions, it
is useful e.g. to compute thread murals of the whole execu-
tion trace. Its scope can be extended if indexes of compound
conditions are materialized (i.e. a new index is generated
that references events that match the compound condition),
a topic we do not address here.

The number of time slices requested in a counting query
usually does not depend on the size of the interval but rather
on the number of pixels of the debugger frontend window
(Sect. 3.4). Therefore when counts are requested over a large
interval, each time slice is also large. Because a higher-
level index entry is created when a lower-level page is full
(Sect. 4.1), we can know the number n of level-0 entries that
are between two level-l entries for l > 0:

n =
‖(ts, i)‖

P
·
(
‖(ts, pid)‖

P

)l−1

Given two consecutive level-l entries (ts1, pid1) and (ts2, pid2)
of index Ij(C) we know that n events matching aj = C oc-
curred between ts1 and ts2. This information can then be
used to provide average counts at a reduced cost. The in-
dex levels to use are determined by the ratio between the

requested time slice length δt and the interval ts2 − ts1

between successive entries in each level. Note that various
levels can be used during the execution of the same request,
taking into account variations in the distribution of matching
events: if the time between successive entries in level l is
larger than δt we drill down into level l − 1, and conversely
we roll up to level l + 1 if the time interval is too short.

4.5 Cost of indexing
The above sections show that the indexing scheme of the
database allows for efficient query execution. It remains to
show that indexes can be created efficiently so as to allow a
high recording throughput. This section shows that this can
be achieved by carefully tuning memory requirements.

For each event that enters the database there are at most
k = |A| − 1 indexes to update (as there is no separate
index on a0). Experiments indicate that on average k =
10. Given that events arrive in order with respect to a0,
it is not necessary to use the costly B+Tree insert method
for updating an index. Instead, the much cheaper bulk load
method is used, which consists in appending an entry at the
end of the current level-0 page, and at the end of higher-
level pages whenever a lower-level page is filled. The I/O
and memory costs of this operation are as follows:

• If the current page of each level of the index can be kept
in memory, an I/O cost is incurred only when a page is
filled. The average number of page accesses per incoming
event is:

‖e‖+ k · (‖(ts, i)‖+ A)
P

' 0.05

where A is the contribution of level 1 and above:

A =
‖(ts, i)‖

P
· ‖(ts, pid)‖ ·

h−1∑
i=0

(
‖(ts, pid)‖

P

)i

• If only the current level-0 page of the index can be kept
in memory, when a page is filled it must be written, the
current level-1 page read, updated and written back to
disk. The contribution of higher levels become:

A =
‖(ts, i)‖

P
· 2P ·

h−1∑
i=0

(
‖(ts, pid)‖

P

)i

The average number of page access per incoming event
is then 0.13.

• If no index page can be kept in memory, every update
implies the three operations above, giving 2 · k = 20
accesses per event.

In order to achieve a high recording throughput it is there-
fore crucial to minimize the number of page accesses per in-
coming event: at least one page per index should be kept in
memory so as to avoid the last situation, which is 150 times
more costly than the second situation above.
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Figure 6. Number of indexes for each index set in an
Eclipse execution trace.

Memory requirements The memory requirements of the
system depend on the number of indexes to maintain, which
in turn depends on the size of the domain of each attribute.
Figure 6 shows the domain size of each attribute as observed
with a large execution trace of an Eclipse session (720 mil-
lions events). The domain of object ids largely dominates
all other domains, reaching almost 10 millions distinct val-
ues. Maintaining the corresponding indexes would require
P · 107 = 40GB of buffer space, which is not a reasonable
figure. A solution to this problem is to split the index sets of
large attributes, as explained below.

Index set splitting As maintaining millions of indexes is
not practically feasible, we devised a strategy that permits
to trade memory requirements for recording throughput and
querying efficiency: attributes with large domains are split
into components that are indexed separately.

Let aj be an attribute and d = |Dj | the number of distinct
values it can take (hence d is also the number of indexes in
the corresponding index set). Assuming that all the distinct
values are the first d positive integers –which is always the
case in practice–, any value v of Dj can be represented in
binary by n = log2(d) bits. Such a value can be split into
N components of n/N bits each, and instead of having a
single index set on attribute aj there are now N index sets,
one for each component. The number of indexes to maintain
becomes N ·2n/N = N · N

√
d instead of d, yielding a dramatic

reduction of memory requirements, even for N as low as
2. For instance with d = 107, corresponding to the size of
the object id domain, the memory requirements using index
set splitting with N = 2 would be reduced from 40GB to
25MB.

Index set splitting therefore implies huge reduction of
memory requirements. Let us now assess the impact of this
technique on efficiency. For recording, the number of index
updates is multiplied at most by N . Given that not all events
have values for split attributes, the actual slowdown is lower.

For querying, boolean expressions involving split indexes
are replaced by a conjunction of N conditions, one for each

Index set Entries Query
splitting Number of indexes per index cost

No d B/d B/d
N
√

d B/ N
√

d

Yes
...

...
... N ·B

N√
d

N
√

d B/ N
√

d

Effect of index set splitting on the number of indexes, number of entries per
index, and query cost. N is the number of split components and B is the
total number of entries in the index set.

Table 3. Index set splitting.

value component. As shown in Sect. 4.2, the efficiency of
queries is proportional to the size of the involved indexes.
Table 3 summarizes the slowdown incurred by splitting an
index set containing d indexes and totalling B entries. Each
index in the set contains on average B/d entries, thus the
cost of a query on one of those indexes is proportional to
B/d. If the index set is split the number of indexes per index
set becomes d′ = N

√
d and there are on average B/d′ en-

tries per index. The cost of the query becomes proportional
to N ·B/d′, yielding a slowdown of N · d/d′ = N · d1− 1

N .
For instance, with d = 107 and N = 2, the slowdown would
be approx. 6, 300. Although this might seem prohibitive, it
is important to note that the index sets that are subject to
splitting have domains orders of magnitude larger than other
index sets (Fig. 6), thus each individual index is small com-
pared to the indexes of non-split index sets. As in practice
most queries are compound and involve both split and non-
split index sets, the contribution of split index sets to the total
cost of the query is reasonable.

To illustrate this, let us consider the state reconstitution
query of Sect. 3.4, which is based on a conjunction of con-
ditions on the field id and object id attributes5. In the Eclipse
trace previously mentioned there are about 10, 000 distinct
field id values and 10, 000, 000 distinct object id values
(Fig. 6). With a trace containing B events, assuming a uni-
form distribution of field id and object id values, and as-
suming that every event has a value for both attributes, each
index on field id would contain B/104 entries; each index
on object id would contain B/107 entries without index set
splitting, and approx. B/

√
107 = B/3, 160 with index set

splitting and N = 2. Therefore the actual slowdown of index
set splitting for the compound query is:

cost with splitting

cost without splitting
=

1/104 + 2/3160
1/104 + 1/107

≈ 7

Despite this slowdown, state reconstitution queries ex-
ecute fast enough to be used interactively in the debugger
frontend, as will be shown in Sect. 6.2.

5 The kind = FW part of the query is omitted in practice because only
Field Write events have a value for the field id attribute.
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Figure 7. Architecture of the distributed database backend.

5. Scaling Up with a Debugging Cluster
The efficient indexing and retrieval techniques used in the
event database of TOD can benefit from parallelization.
This section shows how TOD supports a distributed database
backend, allowing its efficiency to increase linearly in terms
of the number of nodes, within certain limits.

5.1 Distributed Architecture
The architecture of the distributed backend of TOD consists
of three layers (Fig. 7):

• A dispatcher that receives the events from the target
program and distributes them to a number of database
nodes. The dispatcher maintains a local sending queue
for each connected database node. A receiving thread
reads each incoming event and forwards it to the smallest
queue, so as to achieve proper load balancing between
database nodes.

• A number of database nodes, each of which receives a
subset of all generated events. They are individually able
to index events and process queries in the same way as
the non-distributed backend described in Section 4. No
change to the indexing structure is necessary.

• A query aggregator that receives queries from the debug-
ger frontend, passes them to each database node and ag-
gregates the results before returning them to the frontend.

Note that neither the structure database nor the weaver men-
tioned in 3.1 need to be parallelized as their processing and
storage requirements are modest.

5.2 Scalability
Parallelization Both event recording and query process-
ing are embarrassingly parallel problems, that is to say, their
parallelization is straightforward because no special coordi-
nation is required between the parallel tasks. In particular,
queries do not need to perform any kind of joins between
events. All database nodes can perform the same query in-
dependently and then send their results to the aggregator,
which is able to merge them efficiently.

Furthermore, cursors and counts have very light process-
ing and bandwidth requirements on the aggregator, enabling
excellent scalability properties:

Parallel cursors. When the aggregator receives a cursor
query with filtering condition Q it requests a similar
cursor to each database node and returns an aggregat-
ing cursor to the client. In the same way regular cursors
merge entries from various indexes, the aggregating cur-
sor merges events from each of its base cursors using the
regular merge algorithm from merge sort.

Parallel counts. The aggregator obtains partial count results
from each node and simply returns a new counts array
where the value of each slot is the sum of the values of
the corresponding slot in each partial result array.

Scalability limits The throughput of this architecture is
theoretically linear in terms of the number of database nodes.
However the scalability is in practice limited by one of these
factors: the dispatcher (resp. aggregator) can act as a bottle-
neck for recording throughput (resp. query processing), or
the network link bandwidth can be saturated. In our current
implementation, the actual bottleneck is the dispatcher, as
reported in details in the following benchmarks.

6. Benchmarks
This section reports on a first set of benchmarks evaluating
different aspects of TOD. In particular, we first measure the
overhead imposed on a running application debugged with
TOD, and then report on the efficiency and scalability of
the distributed database backend, both in terms of recording
throughput and query evaluation.

6.1 Trace capture overhead
Capturing the execution trace of a debugged program causes
a significant runtime overhead. We measured it in two dif-
ferent scenarios:

• A fully-instrumented, CPU-intensive toy program de-
signed to represent a worst-case situation, in which the
debugged applications emits events at a rate as high as
the CPU can handle;

• An interactive Eclipse session reflecting a real-world sit-
uation, in which the JDK classes are not instrumented
(partial traces are further discussed in Sect. 7), and in
which the interaction between the user and the debugged
application entails that the event emission rate is less sus-
tained in time than in the worst case above.

In these experiments only the event emission overhead
caused by TOD is measured, not its database performance.
Therefore events are simply written to disk, without any in-
dexing. Both benchmarks were conducted on a Pentium M
2GHz notebook with 1GB of RAM running Linux kernel
2.6.17 and the Sun 1.5.0 08 JVM.
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Setup RAM time emit. rec. rate ovh.
None 16 1.53 - - - 1
ODB1 500 179 110m 5m 614 116
ODB2 64 188 110m 530k 585 122
TOD 16 173 90m 90m 520 113

The RAM column is the JVM heap size in MB. The time column is
the execution time in seconds. The emit. and rec. columns indicate the
number of events emitted, and recorded (available to the debugger). The
rate column is the recording throughput, in kEv/s. The ovh. column is the
overhead compared to the standalone execution.

Table 4. Overhead of event emission.

Worst-case scenario We use a CPU-intensive program that
creates 100 Object instances and then iterates 10 million
times in a loop taking one of these objects at random and
passing it to a method that performs a simple arithmetic
operation on its hash code. The program does not call any
non-instrumented method. Therefore, every execution step
emit events, so the event emission rate is bounded only by
the CPU speed.

We compare the execution time of this program running
(a) standalone, (b) with TOD and (c) with the ODB [15] om-
niscient debugger for Java. Results are presented in Table 4.
With ODB, events are stored in the JVM heap of the target
program; old events are discarded when the heap is full. We
therefore conducted two ODB tests, varying the JVM heap
size: with 500MB of heap we were able to record 5 million
events out of the 110 million emitted during program execu-
tion, while with 64MB we could record only 500,000 events.
On the other hand with TOD we were able to record all emit-
ted events6 without interfering with the JVM heap. In spite
of the heavier processing in the case of TOD –where events
are serialized and written to disk rather than simply kept in
RAM– the overhead imposed on the application execution
time is similar in TOD and ODB: around 115 times the cost
of standalone execution. The execution trace generated by
TOD weighs in at 3.6GB.

Eclipse session This experiment consists in performing a
sequence of actions in the Eclipse IDE, with and without
trace capture. Note that only the classes of the Eclipse IDE
are instrumented, not those of the JDK (Sect. 7).

The actions performed are: creation of a new project,
creation of a few classes, edition of their source code using
auto-completion and other productivity features, execution
of a rename refactoring, and step-by-step execution of the
created program under the Eclipse integrated debugger.
The following quantitative observations can be made:

• The Eclipse session is 10 times slower with trace capture
enabled: it takes 244s (4 min.) without trace capture and
2324s (38 min.) with trace capture.

6 The different numbers of emitted events between TOD and ODB are
apparently due to differences in the trace model.

• The recorded execution trace comprises around 720 mil-
lion events and weighs in at 33GB. The average event
emission rate is 313kEv/s, 40% less than the worst-case
scenario presented above.

On the qualitative side, this experiment shows that:

• The start-up time of Eclipse is greatly augmented when
trace capture is enabled, due to the loading of instru-
mented classes (which are roughly 3 times bigger than
non-instrumented classes).

• The Java source editor remains interactive for typing,
although there is a noticeable slowdown.

• Some operations, such as invoking auto-completion, gen-
erating constructors or getters, or stepping with the de-
bugger, are significantly slower with trace capture, but at
a tolerable level.

Even though using TOD implies a perceptible slowdown
of the debugged program, we believe that the benefits of
omniscient debugging in quickly pinpointing hard-to-find
bugs far outweigh this inconvenience.

6.2 Database performance
To evaluate the performance of the distributed database of
TOD we conducted measurements of recording throughput
and query performance against the captured Eclipse trace of
Sect. 6.1. Recall that the database performance is crucial to
the debugging experience: (a) trace recording should ideally
be in real time so that it is possible to start a debugging
session as soon as the debugged program terminates (or
reaches some determined state), and (b) the database must
process queries in times compatible with human interaction
so that the navigation interface is responsive.

Cluster setup. The TOD distributed trace database was de-
ployed for these experiments on a dedicated cluster consist-
ing of 10 database nodes (3GHz Intel Pentium 4 with Hyper-
Threading disabled, 1GB of RAM, Sun JDK 1.5.0 08) and
one dispatcher node (2.13GHz Intel Core2, 2GB of RAM,
Sun JDK 1.6.0). The nodes are connected through a Giga-
bit Ethernet switch, but only the dispatcher node has a Gi-
gabit link; the database nodes have a 100Mbit/s link. Each
database node has a partition with 38GB of free space on a
80GB 7200RPM SATA hard drive.

Recording. The first experiment consists in determining
the maximum throughput achievable by the dispatcher, with
event storage and indexing disabled in the database nodes.
As shown in Fig. 8, in the setup with only one database node,
the recording throughput is limited to 250kEv/s, which cor-
responds to the limitation imposed by the 100Mbit/s network
link. With more than one node, the dispatcher is able to han-
dle up to 470kEv/s, regardless of the number of nodes. This
represents around 20MB/s of outgoing network traffic on the
dispatcher, which is lower than what is achievable with a Gi-
gabit link: surprisingly the bottleneck of the dispatcher is the
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Figure 8. Dispatcher throughput.

CPU. Profiling shows that most of the time is spent copying
buffers in methods of the java.io framework. We assume
that this issue would disappear in an optimized C version of
the dispatcher.

Fig. 9 shows the evolution of recording throughput as
events are added to the database. In average, a single database
node is able to handle around 54kEv/s, and with 10 nodes
we reach the dispatcher limit with 470kEv/s. The through-
put of 54kEv/s of a single node translates to around 10MB/s
of disk writes. This is lower than the maximum throughput
of the disks that were used (around 40MB/s), and again the
bottleneck is the CPU: most of the time is spent in methods
of DataInputStream marshalling and unmarshalling prim-
itive values. Note that with less than 4 nodes it is impossible
to record the whole trace due to disk space constraints; there-
fore the following benchmarks consider scalability starting
at 4 nodes.

Stepping queries. Figure 10 shows the efficiency of the
step into and step over queries (Sect. 3.4). These results
are obtained by starting a stepper at a random timestamp
on each of the 350 threads of the recorded Eclipse session
and performing 100 step operations. It is clear that step into
queries are faster than step over queries, due to the fact that
the former translate to a cursor query on thread id while the
latter additionally use the call stack depth. The efficiency
of both step queries surprisingly decreases as more database
nodes are used; we are currently investigating this issue more
thoroughly. In any case, step queries are fast enough to be
used interactively, since they execute in less than a hundred
milliseconds in the worst case.

Object reconstitution queries. The efficiency of object re-
constitution queries is measured as the time taken to recon-
stitute the state of random objects of the Eclipse execution
trace at different points in time. Figure 11 shows that these
queries scale well with the number of nodes. On average, in-
dividual field values are retrieved in 120ms to 350ms. The
time to reconstitute a full object is directly proportional to

nodes merge (ms) fast (ms) speedup dist. (%)
1 7444 233 31.9x 1.54
2 4062 222 18.3x 1.11
8 1206 120 10.1x 0.18

10 1114 117 9.5x 0.21

The merge and fast columns indicate the average query execution time
using two counting methods. The speedup column indicates how much
faster is the fast method. The dist. column is the distortion of the fast
method compared to the exact merge method.

Table 5. Comparison of merge and fast count queries.

the number of its fields, thus the time to reconstitute an ob-
ject of 7 fields (an average number) is comprised between
0.8s and 2.4s. Note that the object inspector window of TOD
updates asynchronously, so that the user is not blocked until
the state of the current object is fully reconstituted.

Count queries. We measured the execution speed of count
queries and compared the two counting methods described
in Sect. 4.4: merge counts and fast counts. We requested
the event counts for each of the 350 threads of the Eclipse
execution trace, on the entire time span of the trace and
divided in n = 1, 000 subintervals.

A comparison of the two count techniques is shown in
Table 5. Fast counts perform 10 to 30 time faster than merge
counts while providing a very precise approximation, with a
distortion7 below 2%. Figure 12 shows that merge counts
scale very well but fast counts less so, because as each
node records less events, the fast count algorithm must more
frequently resort to lower-level indexes.

6.3 Summary
Figure 13 summarizes our experimental results regarding
trace capture and recording: the rate of event emission
varies from 313kEv/s for a partially-instrumented interac-
tive Eclipse session to 520kEv/s for a fully-instrumented
CPU-intensive program; the recording throughput boasts a
perfect scalability up to 8 nodes, and reaches 470kEv/s with
10 database nodes, where it is limited by the dispatcher bot-
tleneck. It is therefore possible to record execution traces
almost in real time. Count queries display good scalability,
while step queries scale poorly. Still, the database is able
to execute queries at a speed compatible with interactive
navigation.

As a bottom line, although the results presented in this
section could with no doubt be further enhanced through
various optimizations, they already represent a consequent
improvement over other existing implementations of omni-
scient debuggers. TOD is practically usable today, even on
large traces produced by complex applications.

7 Calculated as: (
Pn

i=1 |merge[i]− fast[i]|)/
Pn

i=1 merge[i]
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Figure 13. Experimental results for trace emission, dis-
patching, and recording.

7. Working with Partial Traces
Although TOD is designed to support huge execution traces,
it is not always practical to record each and every event: the
runtime overhead of event capture is important (Sect. 6.1),
and so is the storage requirement. The idea of partial traces
is to leverage the fact that during the development of a piece
of software, some components are trusted, i.e. mature and
well-tested, and it may not be necessary to generate and
store events for the inner activities of these components.
This section shows how scoped trace capture can facilitate
debugging and how TOD makes it possible to work with
partial traces.

7.1 Motivating example: debugging the TOD Eclipse
plugin

Let us consider as an example the debugging of the TOD
Eclipse plugin itself. This example is fairly representative
of component development for existing, trusted, frameworks
or plugin architectures. Here, we might be interested in two
types of bugs: those that are internal to the plugin and those
that relate to the interaction between the plugin and the plat-
form. In the first case, we do not need to capture events that
occur within the Eclipse platform because it is considered
trusted. In the second case, we have to record events that oc-
cur within the platform, but not necessarily all of them: it
might be enough to record events of the Java tooling (JDT),
or only of some part of it, for instance the UI.

Figure 14 shows the impact of different trace scoping
strategies on both the number of emitted events and the
runtime overhead of trace capture, during different phases of
the execution of the TOD plugin. In this small experiment we
see that by appropriately scoping the trace capture, there are
up to five orders of magnitude of difference in the number
of emitted events (Fig. 14a), and that the gains in runtime
overhead can be up to 20 times (Fig. 14b).

7.2 Dealing with missing information
Working with partial traces greatly enhances the applicabil-
ity of TOD, but it implies that some information is lacking
to reconstruct the whole history of the debugged program.
It is therefore important that TOD systematically reports
on missing information so that the user can soundly reason
about the presented information. Missing information mani-
fests in control flow and state reconstitution.
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The measures are taken after the following execution phases are passed: the
IDE starts up; the TOD launch configuration dialog is opened; the target
program is run; the control flow view is opened; events are navigated step
by step; and the IDE exits.

Figure 14. Emitted events and runtime overhead using
scoped capture.

Control flow reconstitution. When non-instrumented code
is called from instrumented code, and in turn calls instru-
mented code, some control flow information is lost. Such
a case is illustrated in Fig. 15. The code in Fig. 15a calls
a non-instrumented JDK method (Collections.sort)
from an instrumented one (the main method). The sort
method in turn calls the instrumented Comp.compare
method, but indirectly (through the sort and mergeSort
methods of Arrays). In Fig. 15b the small dots indi-
cate that control flow information is missing. In the ab-
sence of such an indication the user might think that
Comp.compare was called directly and was the only
method called by sort, which is not the case.

State reconstitution. If a class has a non-private field that
is written to by non-instrumented code, the value of this

public class Comp

implements Comparator<String> {
public int compare(String s1, String s2) {
return s1.compareToIgnoreCase(s2);

}
public static void main(String[] args) {
List l = new ArrayList();

l.add("A"); l.add("B");

Collections.sort(l, new Comp());

}}

(a) Code excerpt

(b) Control flow view

Figure 15. Materialization of incomplete control flow infor-
mation.

field at a given point in time cannot be determined accu-
rately. TOD represents these fields in a distinctive color
in the corresponding views. Again, without such a warn-
ing the user might not be able to reason accurately about
the program.

7.3 Specifying partial traces
Partial traces are supported by means of mechanisms simi-
lar to those of partial behavioral reflection [27]: both spatial
and temporal selection of event generation. For spatial scop-
ing, TOD supports class selectors, which are predicates on
classes that should generate events (e.g. classes of a certain
set of packages).8 For temporal scoping, TOD supports dy-
namic activation of event generation, either globally or per
thread, through a simple API. This is particularly useful in
situations where a bug occurs after a long running time, or
under specific dynamic conditions (which may for instance
be related to control or data flow properties).

Implementation In our current prototype event emission
code is woven with the original application code at load
time. As a consequence, the spatial scope of event emission
is fixed for the whole debugging session.9 Temporal scoping
is achieved by a flag check in event emission code, so there
is still very light runtime overhead when event emission is
disabled at runtime, compared to non-instrumented code.

8 It would be possible to refine spatial scoping using operation selec-
tors [27], enabling expression-level selection to further reduce the size of
the execution trace. This feature has not yet been integrated in TOD.
9 Although recent JVMs allow classes to be modified at runtime, we do not
yet use this feature.
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8. Related work
The work on TOD relates to different areas. Omniscient de-
bugging of course, but execution trace recording is also used
in a broader range of program understanding approaches,
in particular query-based debugging and profiling. Tech-
niques improving the efficiency of program understanding
have been proposed in several areas like profiling and de-
bugging of distributed application. We also discuss how our
work on the database of TOD relates to general database
techniques.

Omniscient debugging. Three proposals of omniscient de-
buggers are related to TOD. ZStep 95 is a reversible stepper
for Lisp. In addition to the standard features of omniscient
debuggers, ZStep 95 provides animated views of data struc-
tures of the debugged program. It provides excellent solu-
tions to the cognitive issues of debugging but does not ad-
dress performance and scalability. More recently, Bil Lewis
proposed an omniscient debugger for Java, ODB [15], and
Hofer et al. implemented a similar system for Smalltalk,
called Unstuck [11]. The work on TOD was actually inspired
by the omniscient debugger of Bil Lewis. It has the ability
to not only navigate the execution history but also to restore
the state of the program as it was at any given point in time,
so that its execution can be resumed at that point. Events are
stored in the target program’s address space, which has seri-
ous limitations in terms of scalability and potential influence
of the debugger on the behavior of the debugged application.
For scalability, ODB makes it possible to set a fixed limit on
the number of events that can be kept in the execution trace;
older events are discarded. TOD provides much better scala-
bility, as demonstrated in this paper. Furthermore, both ODB
and Unstuck lack the high-level overviews that are provided
by TOD in murals.

CodeGuide [21] is a commercial development envi-
ronment for Java that features a back-in-time debugger.
Breakpoint-based debugging can be combined with trace-
based, bi-directional stepping. The trace is however limited
to the last few thousands events, and the important feature
of root cause finding is not available. High-level overviews
are also not provided.

Query-based debugging. Query-based debugging consists
in identifying events that match a query expressed in a high-
level language. Queries can be formulated a priori (be-
fore running the program) or a posteriori (after the pro-
gram has been executed). In Hy+ [4] a-posteriori queries
are expressed in a graphical language and deal with dis-
tributed computations. PQL [19] provides a very high-level
and powerful a-priori query model. Whyline [13] guides
the programmer by proposing a set of possible a-posteriori
queries. The TQuel language allows programmers to express
a-priori queries declaratively, providing explicit support for
temporal queries [25]. LeDoux and Parker [14] formulate
a-posteriori Prolog queries on the execution of concurrent

Ada programs. Opium [7] uses Prolog queries to debug Pro-
log programs and seamlessly supports breakpoint-based de-
bugging and trace-based debugging. Coca [6] uses a-priori
Prolog queries to debug C programs. In an upside down ap-
proach the Mercury Declarative Debugger [18] asks the user
questions about the correctness of computations performed
by the program so as to quickly locate incorrect ones.

The limited class of queries supported by TOD is suf-
ficient for the features of omniscient debugging, but scal-
ability and efficiency come at the expense of a much less
expressive query model than those provided in the above ap-
proaches. Although in TOD basic queries can be combined
algorithmically, queries that relate several events cannot be
executed efficiently.

Trace reduction. One of the priorities of profiling is to re-
duce the performance impact of the tool on the target ap-
plication. One technique consists in reducing the trace via
clustering [20, 28], which also reduces the overhead of cap-
ture, although at the price of a loss in precision. Debug-
ging distributed applications benefits from high-level trace
recording, as only message sends between nodes need be
recorded [20, 4]: useful views of the computations can be
provided with much less information than that used in om-
niscient debugging. Opium [7] lets the user specify pre-
filtering predicates, that by filtering out uninteresting events
permit to reduce the number of context switches between the
debugged process and the debugger. Mercury [18] by default
only records events up to a certain call depth; if more detail
is needed relevant goals are automatically re-executed.

With TOD we took the opposite approach, providing
a scalable event database that copes with huge execution
traces. However TOD also provides a mean for reducing the
size of the execution traces by letting the user select which
parts of the program emit events.

Replay-based debugging. Back-in-time debugging can be
achieved by replaying the debugged program until some de-
termined point before the current execution point. Igor [8]
and Bdb [2] make use of periodic state saving, or check-
points, to reduce the time needed to reach a particular past
execution point: execution is resumed at the last checkpoint
preceding the desired execution point. The main advantage
of replay-based debugging compared to trace capture is the
lower runtime overhead (around 2x for Bdb and 4x for Igor,
versus a maximum of 115x for TOD). However, backward
debugging moves can be slow, especially when going far
away from the current execution point. Furthermore, if the
execution point is moved backwards, moving it again for-
wards means re-executing the program, which is not practi-
cal for long-running programs. With TOD the entire history
of the program is available and freely navigatable.

A crucial issue of replay-based debugging is that of deter-
ministic replay: system calls that rely on external resources
such as network connections might return different results
at different times. Bdb [2] and Jockey [23] address this by
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recording the results of non-deterministic system calls and
reinjecting them into the program when it is replayed. How-
ever this is a brittle solution as many system calls must be
handled in different ways.

Database techniques. Finally, the importance of physical
data layout in the efficiency of several relational data index-
ing techniques has been shown in [1]. Seshadri et al. [24]
present query plan optimization techniques for sequential
databases, a superset of execution trace databases like ours.
Stonebraker et al. [26] make a strong point in favor of spe-
cialized database management systems for specific applica-
tions. Our work on TOD applies classical indexing and pag-
ing techniques in a domain-specific manner, leveraging the
very specificities of execution traces.

9. Conclusion
Assuming the great potential of omniscient debuggers in al-
leviating one of the most tedious and costly part of software
development, this work shows that it is realistic to provide
omniscient debuggers in modern development environments
if appropriate measures are taken to address the associated
efficiency, scalability, and usability issues.

We have presented TOD, a Trace-Oriented Debugger for
Java, which contributes to the scalability of omniscient de-
bugging at three levels: (a) at the trace generation level, by
relying on an efficient ad-hoc weaver providing selective
emission of events encoded in a concise binary format; (b) at
the storage and query level, by proposing a specialized dis-
tributed database with an optimized indexing scheme; and
(c) at the user interface level, by providing specialized inter-
face components, in particular murals, which ease the inter-
active analysis of huge event traces, and visual feedback sup-
porting the use of partial traces. The scalability of TOD has
been shown by giving both a complexity analysis of the in-
dexing and querying algorithms, and by reporting on bench-
marks of the actual prototype.

There are several promising directions for experimenting
with other techniques enhancing the applicability of omni-
scient debuggers. Full-scale experiments of using TOD in
large real-world development projects would be invaluable
for empirically assessing the benefits of omniscient debug-
ging. At the database level, indexes for frequently-used com-
pound conditions could be materialized so as to improve
query efficiency, and the overhead caused by event emission
could be strongly reduced by not reifying redundant infor-
mation. For dealing with partial traces, it would be interest-
ing to leverage the hot swap feature of modern JVMs for
adding or removing instrumentation at runtime. It would also
be worthy to refine spatial scoping to the expression level,
and to explore the use of static analysis to reduce even more
the set of generated events. Finally, specific behavior simu-
lations could be provided for trusted and widely-used classes
(e.g. ArrayList), so that their state could be reconstituted
without needing to fully instrument their internals.
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