
Resilient Actors: A Runtime Partitioning Model for
Pervasive Computing Services

Engineer Bainomugisha1, Jorge Vallejos1, Éric Tanter2, Elisa Gonzalez Boix1,
Pascal Costanza1, Wolfgang De Meuter1, Theo D’Hondt1

1Programming Technology Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{ebainomu, jvallejo, egonzale, pascal.costanza, wdmeuter, tjdhondt}@vub.ac.be
2PLEIAD Laboratory, Computer Science Department (DCC), University of Chile,

Av. Blanco Encalada 2120, Santiago, Chile
etanter@dcc.uchile.cl

ABSTRACT
In pervasive computing, software applications vanish into
the user’s environment spreading their functionality to com-
puters integrated into everyday devices. With the current
state-of-the-art software tools, these characteristics put a
great burden on programmers who have to enable the appli-
cations to dynamically partition across multiple devices, and
to adapt such partitioning to frequent context changes such
as network failures. This paper explores service partitioning
techniques for development of pervasive computing applica-
tions. We propose a resilient actor model to structurally add
service partitioning property to the pervasive applications.
The service partitioning realised using resilient actor model
happens at runtime, is user guided and the resulting par-
titioned application is retractable, and resilient to network
failures.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
D.3.3 [Language Constructs and Features]: Modules,
packages; Concurrent programming structures

General Terms
Design, Languages, Reliability

Keywords
runtime service partitioning, pervasive computing, resilient
actors, programming language model

1. INTRODUCTION
In pervasive computing, software applications vanish into

the users’ environment, spreading their functionality in com-
puters integrated into everyday devices. Rather than mono-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPS’09, July 13–17, 2009, London, United Kingdom.
Copyright 2009 ACM 978-1-60558-644-1/09/07 ...$5.00.

lithic services, applications in this new paradigm are ex-
pected to offer services that maximise the use of the re-
sources found in the user’s surroundings [18]. Whereas this
scenario is becoming ever more realistic from a hardware
point of view, programming such applications remains no-
toriously difficult – due to the dynamic nature of pervasive
computing environments. A pervasive computing environ-
ment consists of a variable number of stationary and mo-
bile devices that become available or unavailable as the user
moves about [3]. With the current state-of-the-art software
tools, these characteristics put a great burden on program-
mers who have to enable the applications to dynamically
partition across the devices, and to adapt such partitioning
to frequent network disconnections.

This paper explores the use of service partitioning tech-
niques for the development of pervasive computing appli-
cations [20, 8, 19]. Using these techniques, software ap-
plications can be decomposed into parts that can be dis-
tributed to different devices. However, thus far we observe
that in most of the existing approaches the partitioning is a
static operation performed by the programmers and cannot
be changed by the end-user once the application is running.
In this work we argue that partitioning of pervasive com-
puting services should (1) occur at runtime, conducted by –
non-technical – end users, (2) ensure that after the partition-
ing, the application can always come back to a local state,
and (3) enable the partitioned application to be resilient to
network disconnections.

To fulfill these requirements, we propose an actor-based
service partitioning model called the resilient actor model.
In this approach, the functionality of an application is de-
composed into a set of resilient actors which are program
units interconnected through elastic bindings. Partitioning
such an application corresponds to moving the resilient ac-
tors to different devices, while reversing the partitioning is
achieved by pulling back the resilient actors. Our model is
built on top of the actor-based concurrency and distribu-
tion model of the AmbientTalk programming language [21],
which is specially designed for developing pervasive comput-
ing applications. We validate our model by developing an
ambient music player application.

The rest of the paper is structured as follows. Section 2
describes a scenario from which we derive requirements for
partitioning of pervasive services. We present the resilient
actor model in Section 3 and describe its language abstrac-

31

User

Laptop

Cell phone

Hi-Fi
system

Controller Music library Audio

Step 1

User

Laptop

Hi-Fi
system

Controller

Music library

Audio

Step 2

Ambient music player

Ambient music player

User

Laptop

Hi-Fi
system

Controller

Music library

Step 3

Ambient
music player

User

Laptop

Hi-Fi
system

Controller Music library Audio

Step 4

Ambient music player

Audio

Cell phone

Cell phone Cell phone

Figure 1: Scenario: Ambient music player in a pervasive computing environment

tions in Section 4. We discuss the results of our model in
Section 5 and its implementation details in Section 6. We
review the related work in Section 7, and conclude in Sec-
tion 8.

2. PARTITIONING OF PERVASIVE COM-
PUTING SERVICES

In this section, we describe the requirements of service
partitioning in pervasive computing environment. We derive
these requirements from the analysis of a scenario of a music
player application for pervasive computing environments.

2.1 Scenario: Ambient Music Player
Figure 1 shows an Ambient Music Player (AMP) appli-

cation that runs on devices such as cell phone, laptop, and
Hi-Fi system. The AMP is composed of three services: the
controller service for operating the music player, the music
library service which contains playlists of songs, and the au-
dio service for sound output. Assume that a user starts up
the ambient music player on his cell phone (Figure 1 Step 1
). As the ambient music player launches on the cell phone,
a dialog box pops up notifying the presence of Hi-Fi system
and laptop devices in the surroundings. The user decides to
distribute the music player application by moving the audio
service to the Hi-Fi system for better sound quality, using
the music library service at the laptop, and maintaining the
rest of the music player application (i.e the controller ser-
vice) at the cell phone (Figure 1 Step 2). Furthermore, the
user can decide to move the audio service back to the cell
phone (Figure 1 Step 3). When there is a network discon-
nection between the cell phone and laptop, all the services
come back to the cell phone (Figure 1 Step 4).

2.2 The Need for Resilient Service Partition-
ing

The AMP scenario reveals a number of issues that apply
to applications that run in a pervasive computing environ-

ment. We refer to the action of distributing the music player
application to run on multiple devices as service partitioning.
The fact that the ambient music player runs on the laptop
and the Hi-Fi system does not imply closing the application
at the cell phone and starting up the application again at the
laptop and the Hi-Fi system. This AMP scenario raises the
following requirements for service partitioning in pervasive
computing environment:

2.2.1 Runtime Service Partitioning
Traditionally, service partitioning is achieved statically,

which requires knowing the devices at which application par-
titions will run at the development time. In a pervasive set-
ting, this is impractical as users can decide to move services
between devices as they become available or unavailable dur-
ing the application execution. Therefore, there is the need
for service partitioning at runtime. For instance, in the AMP
scenario, the music player application initially running only
at the cell phone device is partitioned at runtime to the cell
phone, laptop, and Hi-Fi system devices (Figure 1 Step 2)
when they become available.

2.2.2 Retractable Service Partitioning
Service partitioning should be retractable so that the avail-

ability of services is not affected as users move about. A
partitioned application should be able to return to its local
state. For instance in the AMP scenario, the user moves the
audio service from the Hi-Fi system back to the cell phone
(Figure 1 Step 3).

2.2.3 Service Partitioning Resilient to Network Fail-
ures

Pervasive environments are characterized by frequent net-
work disconnections due to the volatile connections that in-
terconnect the devices [13]. Therefore, a partitioned appli-
cation running in such environment should be able to deal
with network disconnections. For example, in the AMP sce-
nario, a network disconnection may occur when the music

32

library service is running on the laptop while the rest of
the ambient music player is on the cell phone. In the face
of such network disconnection, all the ambient music player
services come back to the original device (i.e the cell phone)
(Figure 1 Step 4).

To the best of our knowledge, no single existing approach
for service partitioning addresses all the three requirements
identified in this section. We observe that new trends of
software applications such as [22] provide support (to some
extent) of running amongst multiple devices. However, our
main focus is to provide a programming language model for
service partitioning that can be applied to any kind of appli-
cation. We further discuss the related work in Section 7. In
the following section, we introduce our resilient actor model
for addressing these requirements.

3. THE RESILIENT ACTOR MODEL
In this work, we propose a programming language model

for service partitioning, called the resilient actor model. It
is built on top of the concurrency and distribution model
of the AmbientTalk [21] programming language, which is an
extension of the actor model [1], specially designed for perva-
sive computing environments. Originally, actors are defined
as program units that encapsulate behaviour and communi-
cate via asynchronous message passing. AmbientTalk model
extends this definition by enabling the actor’s behaviour to
be represented as a container of objects which can be di-
rectly referenced from outside the actor. These references
are specially provided with support for handling network
failures. In the resilient actor model, we extend the Ambi-
entTalk actors and references to provide support for service
partitioning.

In the remainder of this section we introduce the main
concepts of the resilient actor model, illustrate them using
concrete AMP scenario, and further explain the model using
definitions.

Resilient actor It is a program entity that encapsulates
a set of objects and defines elastic bindings to other
resilient actors. A resilient actor serves as a unit of
service partitioning and represents an application func-
tionality.

Elastic binding It is a unidirectional reference that inter-
connects two resilient actors. Each elastic binding sup-
ports two partitioning operations: stretch and retract.
The stretch operation allows actors to be distributed to
different devices. The retract operation is the “undo”
to the stretch operation, i.e. it reverses the service par-
titioning caused by the stretching of an elastic bind-
ing. We propose two forms of retract: (1) manual
retract which is initiated by the application end-user,
and (2) automatic retract which is initiated by a net-
work disconnection. An elastic binding maintains a
history stack of the actor’s previous states that we use
to achieve retraction. The stretch and retract are high-
level partitioning operations that are defined with dif-
ferent distribution and mobility techniques. We have
designed these different techniques as resilience strate-
gies.

Resilience strategy Resilience strategies specify different
definitions of stretch and retract operations. A re-
silience strategy is applied to an elastic binding to spec-

Keyboard Speaker

Stretch

Music library

Ambient music player

Controller

Audio

RebindMove
Copy

Resilient actors Elastic bindings

Local resources

Figure 2: Ambient music player application con-
structed using resilient actors interconnected by
elastic bindings

ify the mobility policy for the resilient actor. Thus far,
we provide four resilience strategies: (1) move which
moves an actor to a new location, (2) copy which cre-
ates a copy of the actor and moves it to a new loca-
tion, (3) rebind that changes elastic binding to ref-
erence a different actor providing the same service,
and (4) standstill which makes an elastic binding to
always reference the same actor during service parti-
tioning. Retract operation under all these strategies,
undoes the partitioning caused by the stretch opera-
tion. Resilience strategies are specified on both the
elastic binding and the resilient actor. We further ex-
plain the stretch and retract operations under each
strategy in Section 3.3.

3.1 Resilient Decomposition of Services
Figure 2 depicts the AMP application introduced in Sec-

tion 2.2 built using the resilient actor model. AMP services
(controller, music library, and audio) are built as resilient
actors interconnected by elastic bindings. Each service has
a resilience strategy that specifies how it is distributed (i.e.
move for the controller service, copy for the music library,
rebind for the audio service). Assume that the application
is initially running on one device. When a new device is dis-
covered providing a better sound service, the user can simply
move the audio service to the remote device. Internally, this
partitioning is realised by applying the stretch operation on
the audio service as illustrated in the Figure 2. Since this
audio service is specified with the rebind strategy, then the
stretch operation changes the elastic binding to reference the
remote audio service. When the user wants to resume using
the audio service at the original device, then a retract op-
eration is initiated. The topmost (root) service represents a
point of retraction where all AMP services will be retracted
to, in case of a network disconnection.

We further explain the implementation of AMP applica-
tion using our language abstractions in Section 4. In the re-
mainder of this section we describe the resilient actor model
definitions using equations.

3.2 Resilient Actor Model Definition
The following equation presents the definition of an actor

that we use to explain our model:

a
4
= ({oi}n, {bj}m) (1)

An actor a encloses a set of objects {oi}n and a number

33

of bindings {bj}m to other actors. We call the actor that
contains the binding, the source actor s, and the referenced
actor, the target actor t. The following equation shows the
definition of a binding in terms of these two actors:

b
4
= (s, t) (2)

To support service partitioning, we extend the actor def-
inition of Equation (1) to contain elastic bindings {ebk}p
to other actors and a resilience strategy st that defines the
mobility policy of the actor. The equation below shows the
definition of a resilient actor in our model:

a
4
= ({oi}n, {bj}m, {ebk}p, st) (3)

Each elastic binding eb has a resilience strategy st and
a history stack h that stores the previous actor states and
locations. The history stack is used to achieve retraction.
The equation below shows the definition of an elastic binding
between source s and target t actors at locations i and j,
respectively.

eb
4
= (sli , tlj , st, h) where i, j = (1, 2, ..n) (4)

An elastic binding eb supports two partitioning opera-
tions: stretch and retract. The stretch operation can be
applied to an elastic binding eb to move the target resilient
actor to a desired location li as follows:

stretch(eb, li) (5)

A stretched elastic binding can be restored to its previous
state by applying a retraction operation as shown in the
equations below:

retract(eb) (6)

In the remainder of this section, we discuss stretch and
retract operations under each resilience strategy.

3.3 Resilience Strategies
The stretch and retract operations are only high-level par-

titioning abstractions that have several implementations. We
provide a number of resilience strategies that specify differ-
ent behaviour for these partitioning operations. This section
explains the four resilience strategies identified so far. For
each resilience strategy we present the equation that corre-
sponds to the stretch operation. The equation of the retract
operation has similar semantics for all the strategies, and as
such, it is described at the end of this section.

Move strategy.
The move strategy defines the stretch operation as moving

the target actor to a new location. Existing references to the
target actor are updated so that they point to the actor at
the new location. A copy of the target actor is kept at the
original location in order to achieve automatic retraction.
The equation below illustrates the stretch operation under
this strategy.

eb = (sl1 , tl1 , st, h) st = move

stretch(eb, l2)→ (sl1 , tl2 , st, (tl1 .h))
(7)

We assume that the source and target actors are initially
at the same location l1. The operation stretch(eb, l2) moves

the target actor t from location l1 to location l2. The cur-
rent state of the target actor and its location are stored on
a history stack h, that we use to achieve retraction. Fig-
ure 3 illustrates the stretch and retract operations under
this strategy.

Applying retract

Applying stretch

s
t

s
t

l1 l2 l1 l2

eb eb

t

Figure 3: Before and after partitioning under the
move strategy

Copy strategy.
The copy strategy specifies the stretch operation as creat-

ing a copy of the target actor and then moving it to a new
location. Unlike the move strategy, under the copy strategy
the original target actor is maintained at its location and
can still be referenced by other elastic bindings. We further
explain the stretch operation under this strategy using the
following equation:

eb = (sl1 , tl1 , st, h) st = copy

stretch(eb, l2)→ (sl1 , t′l2 , st, (tl1 .h))
(8)

In this case, a copy of the target actor t′ is moved from
location, l1 to location l2. These actions are depicted in the
Figure 4.

Applying retract

Applying stretch

s
t

s
l1 l2 l1 l2

eb eb

t t'

Figure 4: Before and after partitioning under the
copy strategy

Rebind strategy.
The rebind strategy specifies stretch operation as binding

to the target actor at a remote location that provides the
same service1. We use the following equation to illustrate
the stretch operation under this strategy.

eb = (sl1 , tl1 , st, h) st = rebind

stretch(eb, l2)→ (sl1 , t∗l2 , st, (tl1 .h))
(9)

Applying a stretch operation on eb, changes the binding
from the target actor t at location l1 to a different target
actor t∗ at location l2. We further illustrate the this in the
Figure 5.

1Our model relies on peer-to-peer publish/subscribe discov-
ery mechanism to locate available services. We refer the
reader to the dedicated literature [5] for further details

34

Applying retract

Applying stretch

s
t

s
l1 l2 l1 l2

eb eb

t t*t*

Figure 5: Before and after partitioning under the
rebind strategy

Standstill strategy.
The standstill strategy specifies the stretch operation as

always binding to the same target actor at one location.
The standstill strategy may be useful to specify actors that
represent services that must always be stationary at one de-
vice. We consider this strategy as the default for actors. We
further illustrate the stretch operation under this strategy
using the equation below.

eb = (sl1 , tl1 , st, h) st = standstill

stretch(eb, l2)→ (sl1 , tl1 , st, (tl1 .h))
(10)

In this case, the target actor t remains at location l1. We
further illustrate stretch operation under this strategy in the
Figure 6.

Applying retract

Applying stretch

s
t

s
l1 l2 l1 l2

eb
t

eb

Figure 6: Before and after partitioning under the
standstill strategy

In all strategies, the retract operation restores a stretched
elastic binding to reference the previous target actor. We
illustrate this in the equation below:

eb = (sl1 , tlj , st, (tl1 .h))

retract(eb)→ (sl1 , tl1 , st, h)
(11)

Applying retract operation restores the elastic binding from
the target actor t at location j to the previous target actor
tl1 . For the copy, rebind and standstill strategies the tar-
get actor still exists at its previous location which can be
bound to either by manual or automatic retraction. In the
case of move strategy retraction involves moving the origi-
nal target actor back to its first location and restoring the
binding. However, moving back the original target actor is
not possible in case of a network disconnection. Therefore,
automatic retraction under the move strategy rebinds to the
copy of target actor kept at the previous location.

3.4 Propagation and Resolution of Strategies
A source actor holds elastic bindings to target actors which

in turn may hold elastic bindings to other actors and so on.
This implies that a partitioning operation should be trans-
mitted through all elastic bindings to other referenced ac-
tors and so on. We propose a propagation mechanism that

enables stretch and retract operations to proceed from one
actor to another via elastic binding.

Since we allow specification of a resilience strategy at elas-
tic binding and resilient actor, strategy conflicts may arise.
Strategy conflicts arise in case the elastic binding specifies
a different resilience strategy from that of the resilient ac-
tor being referenced. In case of strategy conflicts, a single
resilience strategy should be decided. We propose a conflict
resolution mechanism which is based on case-by-case match-
ing of the resilience strategies defined at elastic binding and
resilient actor. Specifying an elastic binding with standstill
or rebind strategy, the final strategy will always be rebind
strategy, otherwise the resilience strategy defined on the re-
silient actor is considered. We allow specification of different
resilience strategies mainly because different services may be
implemented by different programmers.

In the following section, we demonstrate the resilient ac-
tor model language support that we provide for service par-
titioning by implementing the AMP application introduced
in Section 2.2.

4. RESILIENT ACTORS IN AMBIENTTALK
In this section we demonstrate how the AMP application

is implemented using our resilient actor model. We imple-
ment the resilient actor model using AmbientTalk [21], an
actor language specially designed for pervasive computing
environments. We extend AmbientTalk with two language
constructs: actor:resilientAs: and bindTo:resilientAs:

for defining a resilient actor and an elastic binding, respec-
tively. We further provide two methods stretch: and re-

tract: to support stretch and retract partitioning oper-
ations, respectively. We illustrate the usage of these lan-
guage constructs by implementing the AMP application in-
troduced in Section 2.

4.1 Implementation of an Ambient Music Player
Each AMP service is implemented as a resilient actor. The

code snippet below shows the implementation of the music
library service.

def musicLibrary := actor : {
def myLib := Vector .new () ;
def song := object : {

def t i t l e ;
def a r t i s t ;
def i n i t (aTi t l e , anArt i s t) {

t i t l e := a T i t l e ;
a r t i s t := anArt i s t ;

}
} ;

def addSong (t i t l e , a r t i s t){
myLib . add (song .new(t i t l e , a r t i s t)) ;

} ;
def de le teSong (t i t l e){

myLib . remove (t i t l e) ;
} ;
def ge tP layL i s t (){

myLib . toArray () ;
}

} resil ientAs : [copy] ;

The actor:resilientAs: construct above creates a re-
silient actor which is bound to the musicLibrary variable

35

Frame 1: Before partitioning

Controller

Music library

Audio

Keyboard Speaker

Stretch: HiFiSystem

Stretch: Laptop

Ambient
music player

Cell phone Laptop Hi-Fi system

Copy

Move Rebind

Frame 2: After partitioning

Controller

Music library

Audio

Keyboard Speaker

Ambient
music player

Cell phone

Copy of
 music library

Keyboard Speaker Speaker

Hi-Fi system's
local resources

A different
audio service
resilient actor

Cell phone's
local resources

Laptop's
local resources

Figure 7: Partitioning of the Ambient Music Player Application

defined using the def keyword. The variable myLib repre-
sents the playlist of songs. The construct object: creates
an object with two fields title and artist that is bound
to the variable song. The init method plays the role of a
constructor for creating an object from an existing one. The
methods addSong and deleteSong add to, and remove songs
from the playlist, respectively. The method getPlayList is
responsible for retrieving a playlist from the music library
as a table of songs. The argument to the resilientAs: is
a table of resilience strategies that are specified for the mu-

sicPlayerLibrary resilient actor. In this case, copy strat-
egy which implies that when the music player application
is partitioned, the destination device will receive the copy
of original music library. In case more than one strategy is
specified, the resolution mechanism described in Section 3.4
is used at runtime to determine the final strategy.

We implement the audio service as follows

def audio := actor : {
def theSpeaker := / . at . d ev i c e s . speaker ;
def play (audioContent) {

theSpeaker <− rece iveSound (audioContent) ;
} ;
def stop () {

theSpeaker <− muteSound () ;
} ;
} resil ientAs : [move] ;

The actor:resilientAs: construct above creates a re-
silient actor which is bound to the audio variable. The vari-
able theSpeaker holds a reference to the actor representing
the speaker local resource. The play method sends the au-
dio data to the theSpeaker. The expression theSpeaker <-

receiveSound(audioContent) sends message receiveSound
asynchronously2 to the object theSpeaker. The stop method
sends the muteSound message to the theSpeaker object. The
argument to the resilientAs: specifies the resilience strat-
egy applied to the audio resilient actor as move. This implies
that the user can use any available sound device by moving
the audio service from the current device.

The code fragment below demonstrates how the controller
service is implemented.

2AmbientTalk makes a distinction between sequential mes-
sage sends (expressed as o.m()) and asynchronous message
sends (expressed as o <- m()) [21]

def c o n t r o l l e r := actor : {
def theKeyboard := / . at . d e v i c e s . keyboard ;
def getInput () {

theKeyboard <− input () ;
} ;
def showcontro l s () {

// code f o r c o n t r o l l e r GUI
} ;
} resil ientAs : [move] ;

The actor:resilientAs: construct above creates a re-
silient actor which is bound to the controller variable. The
variable theKeyboard holds a reference to the actor repre-
senting the keyboard local resource. The getInput method
accepts user input from the keyboard. The showControls

method displays the control menu for managing the mu-
sic player application. The argument to the resilientAs:

specifies the resilience strategy applied to that controller re-
silient actor as move. This implies that the user can manage
the music player application from any device by moving the
controller service to the preferred device.

The code fragment below shows the implementation of the
ambient music player service.

def ambientMusicPlayer :=actor :{
| c o n t r o l l e r , audio , musicLibrary |
def t h e C o n t r o l l e r := bindTo : c o n t r o l l e r

resil ientAs : [move] ;
def theAudio := bindTo : audio

resil ientAs : [r eb ind (aud ioSe rv i c e)] ;
def theMusicLib := bindTo : musicLibrary

resil ientAs : [copy] ;
def play () {

theAudio <− play (nextSong) ;
} ;
def stop () {

theAudio <− stop () ;
} ;

} resil ientAs : [s t a n d s t i l l] ;

The actor:resilientAs: construct above creates a re-
silient actor which is bound to the ambientMusicPlayer

variable that represents ambient music player application
as a whole. The play and stop method are responsible for
forwarding the play and stop messages to the audio resilient
actor. In the actor:resilientAs: construct, the argument

36

to the resilientAs: specifies the resilience strategy to be
applied to the music library resilient actor as standstill.
This implies that as the user moves about, all services cur-
rently running at different devices always come back to the
device on which the application was started in case of a net-
work failure.

The bindTo:resilientAs: construct defines an elastic
binding between two resilient actors. The theController

represents the elastic binding to the controller resilient
actor with the move strategy. The theMusicLib is an elastic
binding to the musicLibrary service with the rebind strat-
egy. In this case there is a conflict of strategies because
theMusicLib elastic binding specifies rebind as a strategy
while the audio resilient actor is defined with a move strat-
egy. The final resolved strategy applied to the audio resilient
actor is rebind based on the resolution mechanism explained
in Section 3.4. The rebind strategy implies that when a dif-
ferent device is discovered providing a sound service, then
the user can simply use the audio service at the remote loca-
tion without moving the audio service at the current device.

Having discussed the implementation of different services
of the application, we now explain how service partitioning
occurs. Figure 7 Frame 1 depicts the ambient music player
developed using our language constructs. Assume that the
user enters a room that has a Hi-Fi system and decides to
move the audio service from the cell phone to Hi-Fi sys-
tem. While the user interacts with the GUI of the music
player to perform this action3, internally the actor repre-
senting such service receives the stretch message as follows:

audio <− stretch : Hi−FiSystem ;

In the above code snippet, Hi-FiSystem is the reference to
the actor representing the Hi-Fi system. Other music player
services can be moved to a desired location by sending the
stretch message. For example, Figure 7 Frame 2 shows the
partitioned ambient music player application with music li-
brary at the laptop, audio service at the Hi-Fi system, and
controller service at the cell phone. Note that the controller
service is specified with a move strategy, and therefore the
user can also move this service to any device in the sur-
roundings. Applying a retract operation restores a service
to its original location. For instance, the audio service can
be retracted to the cell phone device by sending a retract
message as follows:

audio <− retract ;

5. DISCUSSION
In the previous section we demonstrated the resilient ac-

tor model language abstractions in action. In this section
we discuss our resilient actor model solution in light of the
requirements of service partitioning for pervasive computing
environments identified in Section 2.2.

Runtime service partitioning Implementing each service
as a resilient actor yields the application that is com-
posed of interconnected resilient actors that can be

3The discussion of the GUI implementation details is out of
scope of this paper.

Proxy object

Strategy object

Object A Object B

Resilient actor 1 Resilient actor 2

Object reference Conceptual elastic binding

Figure 8: The Elastic Binding Implementation as a
Proxy Object

distributed at runtime to different devices. The deci-
sion of which application services run on what device
depends on the preference of the end-user.

Retractable service partitioning Because the application
services are interconnected through elastic bindings, it
is possible to move back a service to its original lo-
cation even after the application is partitioned across
multiple devices.

Service partitioning resilient to network failures The
partitioned application distributed amongst multiple
devices is resilient to network disconnections. In case
of a network disconnection, an automatic retraction
is initiated that moves the services to the available
latest previous devices. This characteristic is particu-
larly important in that the partitioned application is
not immediately affected by the network failures.

The music player application is a simple experimentation
example, however it demonstrates important issues that ap-
ply to any other application providing support for runtime
service partitioning. Implementing runtime partitioning of
pervasive services using traditional languages like Java re-
quires the programmer to directly deal with low-level im-
plementation details such as service discovery, socket-based
communication, and serialization. The highly dynamic na-
ture of pervasive environments (e.g. frequent network fail-
ures) makes these issues even more complex as they need to
be tackled in combination with network reconfiguration (to
manage references to services) and exception handling mech-
anisms (to deal with network failures). Whereas previous
approaches such as automatic application partitioning [20,
19] and object migration [7, 15, 4] attempt to provide ab-
stractions for dealing with these problems, none of these
approaches addressees network failure handling. We further
compare our work with the previous approaches to service
partitioning in Section 7.

6. IMPLEMENTATION
Resilient actors have been implemented reflectively on top

of the AmbientTalk language. We override the default Meta-
Object Protocol [9] to intercept all asynchronous messages
received by a resilient actor. We extend AmbientTalk ac-
tors with resilience strategies which have been implemented
as objects. An elastic binding has been implemented as an
extension to AmbientTalk’s object reference. We implement
an elastic binding as a proxy object whose behavior is rep-
resented by an object with a resilience strategy as its meta-
level entity (Figure 8).

37

6.1 Resilience Strategy Object
A resilience strategy has been implemented as an object

with two methods: stretch and retract. We consider the
copy strategy to describe the implementation details of the
resilience strategies. The code snippet below shows the im-
plementation of the copy strategy:

def copyStrategy := object : {
def i s S t r e t c h e d ;
def proxyServ ice ;
def prevSe rv i c e ;

def i n i t (){
i s S t r e t c h e d := fa l se ;
p r evSe rv i c e := ni l ;
p roxyServ ice := ni l ;

} ;
def stretch : l o c a t i o n {

i s S t r e t c h e d := true ;
when : l o c a t i o n disconnected : {

retract () ;
} ;

} ;
def retract () {

i f : (i s S t r e t c h e d) then : {
i s S t r e t c h e d := fa l se ;
p roxyServ ice := prevSe rv i c e ;
}

} ;
def ge tSta t e (){

proxyServ ice . s t a t e () ;
} ;

def s e t S t a t e (newState){
apply (proxySevice , newState) ;

} ;
}

The variable isStretched is set to true or false depending
on whether the stretch message has be received or not. The
variable proxyService holds a reference to the object rep-
resenting the current state of the actor. The variable pre-

vService holds the state of the original resilient actor when
the stretch message is received by the actor. The stretch:

method implements the stretch partitioning operation. The
argument to the stretch method is the desired location to
which a resilient actor can be distributed.

In order to deal with network disconnections, we make
use of the AmbientTalk’s network failure handling mecha-
nism with the when:disconnected: {...} construct. This
construct places an observer on a remote reference which is
triggered when a network disconnection occurs. The execu-
tion of the block closure under when:disconnected: con-
struct sends a retract message to perform the retraction
operation. We refer to this kind of retraction as automatic
retraction. The retract method implements the retraction
partitioning operation. The getState and setState meth-
ods are for changing and retrieving the current state of the
actor, respectively.

6.2 Extensible Implementation
As explained above, a resilience strategy is implemented as

an object which can be extended by the programmer to cre-
ate custom strategies. To implement a new resilient strategy,
a programmer basically defines an object with two methods
stretch: and retract. In the remainder of this section, we

explain a resilience strategy which extends the copy strategy
with custom semantics.

6.2.1 Towards Proactive Replication
The basic implementation of the copy strategy explained

in Section 6.1 does not provide support for replication of the
resilient actor state. This implementation may be extended
such that the original resilient actor state is updated period-
ically with new state of its copy. In the code snippet below,
we show our initial implementation towards proactive state
replication for the copy strategy:

def copyStrategyExtens ion := extend :
copyStrategy with : {

def time := 10 ;
def stretch : l o c a t i o n {
superˆ stretch : l o c a t i o n ;
whenever : seconds (time) elapsed : {
when : proxyServ ice<− ge tSta t e ()

becomes : { | mostRecentServ iceState |
s e t S t a t e (mostRecentServ iceState) ;

} ;
} ;

} ;
} ;

The expression extend:with: creates an object whose
parent is copyStrategy and is bound to the variable copy-

StrategyExension. In the above example we override the
default stretch: method with support to update the state
of original resilient actor with the most recent state of the
moved a copy resilient actor. The expression super^stretch:

delegates the message stretch: the copyStrategy object.
The block of code specified in whenever:elapsed construct
will be executed after every 10 seconds to update the state
of the original resilient actor. The when:becomes construct
is used to obtain a return value from an asynchronous mes-
sage send. The becomes: block of code is executed when
the return value is resolved.

We also implement another extension of the default auto-
matic retraction of the rebind strategy with the support to
grant the use of a service for a certain period of time. For
space reasons, we refer to [2] for more details.

7. RELATED WORK
The idea of service partitioning has been advocated as

a mechanism for distributing a software application across
available computing resources [10, 14, 17]. However, to the
best of our knowledge no existing approach addresses all the
requirements of service partitioning in a pervasive environ-
ment identified in Section 2.2. In this section, we discuss
the closely related existing approaches for service partition-
ing. First, we discuss automatic service partitioning ap-
proaches based on objects (J-Orchestra [20], Addistant [19],
JavaParty [15], and Doorastha [4]). Second we explore the
service partitioning approaches based on agents and compo-
nents (AdJava [7], Coign [8], and Hydra [17]).

7.1 Object-oriented Service Partitioning
J-Orchestra [20] is a system for transforming a centralized

Java program into a distributed one. Service partitioning is
achieved automatically by taking in as input a Java appli-
cation in byte code format and a policy file with location

38

information on which the partitions of the application will
execute. J-Orchestra has been used to automatically parti-
tion realistic pervasive computing systems such as Kimura
system [12, 23], but a number of drawbacks limit its ap-
plicability to pervasive applications [11]. First, J-orchestra
achieves service partitioning at compile time and the loca-
tion of services can not be changed once the application is
started. Second, the resulting partitioned application is not
resilient to network failures.

JavaParty [15] is a system that transforms a centralized
Java program into a distributed JavaParty program that
can be spread across a distributed environment. JavaParty
achieves service partitioning through a runtime system that
migrates objects from host to host based on load-balancing
and network partitioning algorithms [6]. The programmer
identifies potential distributable instances using the annota-
tion remote. Unlike J-Orchestra, JavaParty does not involve
rewriting of the Java program. The automatic distribution
of objects achieved in JavaParty implies runtime service par-
titioning but no support for user controlled service partition-
ing. Rather, the runtime system migrates objects transpar-
ently based on the load balancing techniques. In addition,
JavaParty does not support retractable service partitioning
and no support for handling network failures.

Addistant [19] is a system for adapting a software appli-
cation built to run on a single host for execution on multiple
hosts in a distributed setting. More concretely, given a Java
byte code, Addistant transforms it such that it can be ex-
ecuted on different Java Virtual Machines (JVMs). Like J-
Orchestra, Addistant achieves service partitioning by trans-
lating a Java byte code based on the policy file provided
by the programmer. The service partitioning achieved by
Addistant happens at compile time and can not be dynam-
ically changed at runtime. It does not provide support for
retractable partitioning nor network failure handling.

Doorastha [4] is a system for adapting a centralized Java
program for execution in a distributed environment. Doorastha
achieves automatic service partitioning by use of code trans-
formations and an additional runtime system on top of the
Java Remote Method Invocation (Java RMI). The runtime
system is responsible for object migration at runtime. The
Doorastha system allows the programmer to annotate a Java
program to turn it into a distributed one. Like JavaParty,
service partitioning in Doorastha is realized through a run-
time system that transparently migrates objects at runtime
but no support is provided for user controlled object migra-
tion. In addition, Doorastha does not support retractable
service partitioning and no mechanisms for handling network
failures.

7.2 Component-oriented and Agent-oriented
Service Partitioning

Coign [8] is an automatic partitioning system for applica-
tions built with Microsoft’s Component Object Model (COM)
components. The automatic service partitioning realised in
Coign system is dependent on the minimal communication
time between components. This service partitioning hap-
pens at compile time and cannot be altered at runtime.
Moreover, the lift-to-front minimum-cut graph cutting al-
gorithm [16] used by Coign can only produce two partitions
of the application. This is impractical in a pervasive com-
puting environment where multiple computing devices are
available. Like J-Orchestra and Addistant, Coign does not

provide support for retractable service partitioning nor net-
work failure handling.

AdJava [7] is an automatic service partitioning tool that
distributes an application across available resources in the
network. AdJava is implemented as an agent-oriented sys-
tem where the Java program is pre-processed to transform
local objects into remote objects and the resulting code is
compiled by the “regular” Java compiler. The programmer
puts annotations into the program code to indicate the ob-
jects that can be distributed and a list of remote hosts on
which agents are running and where objects are distributed.
Like JavaParty, AdJava achieves runtime service partition-
ing based on load balancing technique but no support for
user controlled service partitioning. AdJava does not pro-
vide support for retraction and no mechanisms for handling
network failures.

Hydra [17] is a framework designed for pervasive comput-
ing environment for building applications that can be dy-
namically deployed at a computing device during execution
of the application. Hydra achieves runtime service parti-
tioning by building applications as mobile agents based on
software components that can move from host to host. Since
the components can be moved from host to host at runtime,
some form of retraction can be realized. Hydra’s main focus
is on runtime partitioning of pervasive services. However,
Hydra does not provide mechanisms for dealing with net-
work disconnections.

Our evaluation of closely related approaches reveals that
no single approach addresses all the three service partition-
ing requirements identified in Section 2.2 . For example,
JavaParty [15] and AdJava [7] attempt to achieve runtime
service partitioning through a runtime system that performs
automatic object distribution. However, their service parti-
tioning is controlled by the load-balancing techniques and no
mechanisms for user controlled service partitioning is sup-
ported. J-Orchestra [20], Addistant [19], and Coign [8] sys-
tems achieve the service partitioning at compile time and
can not be changed at runtime. Of all these approaches,
Hydra [17] is only the system that was designed for perva-
sive computing environments with main focus on supporting
runtime service partitioning. Although these approaches ad-
dress some issues of services partitioning, none of these sys-
tems provides support for handling network failures.

8. CONCLUSIONS AND FUTURE WORK
This paper discusses service partitioning in the domain

of pervasive computing. We have identified requirements
for service partitioning in a pervasive computing environ-
ment: (1) Runtime service partitioning, (2) Retractable ser-
vice partitioning, and (3) Service partitioning that is re-
silient to network failures. We subsequently propose a re-
silient actor model that addresses these requirements. Using
our resilient actor model application services are represented
as resilient actors interconnected by elastic bindings. These
elastic bindings support stretch and retract operations for
service partitioning and retraction respectively. We have
discussed a set of resilient strategies (copy, move, rebind
and standstill) that can be applied to the resilient actors to
specify the mobility policies of application services. We have
described an extensible implementation of the resilient actor
model which can be customised to provide different imple-
mentations of the stretch and retract operations. We have
evaluated the resilient actor model by applying it to the

39

construction of an ambient music player application. The
resulting application can be partitioned at runtime by the
end-user to run on multiple devices. The partitioned appli-
cation is retractable and resilient to network failures.

In this paper we have described a conflict resolution mech-
anism of resilience strategies that is based on performing
match between the set of strategies specified on the defini-
tion of the elastic binding and the set of strategies specified
on the resilient actor. We are investigating on a resolution
mechanism that is based on context information. For exam-
ple an extension implementation can be provided such that
a resilient strategy chosen is dependent on the user location,
the CPU load or computational power of the device.

9. ACKNOWLEDGMENTS
This work was partially funded by SAFE-IS project in

the context of the Research Foundation - Flanders (FWO),
the MoVES project, and the VariBru project of the ICT
Impulse Programme of the Institute for the encouragement
of Scientific Research and Innovation of Brussels (ISRIB).

10. REFERENCES
[1] G. Agha. Actors: a model of concurrent computation

in distributed systems. MIT Press, Cambridge, MA,
USA, 1986.

[2] E. Bainomugisha. Resilient Service Partitioning for
Pervasive Computing Services. Master’s thesis, Vrije
Universiteit Brussel, Brussels, Belgium, September
2008.

[3] J. Bohn, V. Coroama, M. Langheinrich, F. Mattern,
and M. Rohs. Disappearing computers everywhere –
living in a world of smart everyday objects. In Proc. of
New Media, Technology and Everyday Life in Europe
Conference, London, UK, Apr. 2003.

[4] M. Dahm. Doorastha - a step towards distribution
transparency. In JIT, 2000. See
http://www.inf.fu-berlin.de/ dahm/doorastha.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and
A. m. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys,
35:114–131, 2003.

[6] D. J. Evans and W. U. N. Butt. Load balancing with
network partitioning using host groups. Parallel
Computing, 20(3):325–345, 1994.

[7] M. M. Fuad and M. J. Oudshoorn. Adjava - automatic
distribution of java applications. In M. J. Oudshoorn,
editor, Twenty-Fifth Australasian Computer Science
Conference (ACSC2002), Melbourne, Australia, 2002.
ACS.

[8] G. C. Hunt and M. L. Scott. The coign automatic
distributed partitioning system. In OSDI ’99:
Proceedings of the third symposium on Operating
systems design and implementation, pages 187–200,
Berkeley, CA, USA, 1999. USENIX Association.

[9] G. Kiczales, M. J. Ashley, L. Rodriguez, A. Vahdat,
and D. G. Bobrow. Metaobject protocols: Why we
want them and what else they can do. In MIT Press,
pages 101–118. Cambridge, MA, USA, 1993.

[10] N. King. Partitioning applications. In DBMS and
Internet Systems magazine, 1997. See
http://www.dbmsmag.com/9705d13.html.

[11] N. Liogkas, B. MacIntyre, E. D. Mynatt,
Y. Smaragdakis, E. Tilevich, and S. Voida. Automatic
partitioning: Prototyping ubiquitous-computing
applications. IEEE Pervasive Computing, 3(3):40–47,
2004.

[12] B. MacIntyre, E. D. Mynatt, S. Voida, K. M. Hansen,
J. Tullio, and G. M. Corso. Support for multitasking
and background awareness using interactive peripheral
displays. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and
technology, pages 41–50, New York, NY, USA, 2001.
ACM.

[13] C. Mascolo, L. Capra, and W. Emmerich. Mobile
computing middleware. In In Advanced lectures on
networking, pages 20–58. Springer-Verlag, 2002.

[14] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic,
D. Chen, T. J. Giuli, and X. Gu. Towards a
distributed platform for resource-constrained devices.
In ICDCS ’02: Proceedings of the 22 nd International
Conference on Distributed Computing Systems
(ICDCS’02), page 43, Washington, DC, USA, 2002.
IEEE Computer Society.

[15] M. Philippsen and M. Zenger. JavaParty —
transparent remote objects in Java. Concurrency:
Practice and Experience, 9(11):1225–1242, Nov. 1997.

[16] R. L. Rivest and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill, Inc., New York, NY, USA,
1990.

[17] I. Satoh. Dynamic federation of partitioned
applications in ubiquitous computing environments. In
PERCOM ’04: Proceedings of the Second IEEE
International Conference on Pervasive Computing and
Communications (PerCom’04), page 356, Washington,
DC, USA, 2004. IEEE Computer Society.

[18] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8:10–17,
2001.

[19] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of
“legacy” Java software. Lecture Notes in Computer
Science, 2072:236–255, 2001.

[20] E. Tilevich and Y. Smaragdakis. J-orchestra:
Automatic Java application partitioning. In ECOOP
’02: Proceedings of the 16th European Conference on
Object-Oriented Programming, pages 178–204,
London, UK, 2002. Springer-Verlag.

[21] T. Van Cutsem, S. Mostinckx, Gonzalez, J. Dedecker,
and W. De Meuter. Ambienttalk: Object-oriented
event-driven programming in mobile ad hoc networks.
In XXVI International Conference of the Chilean
Computer Science Society, pages 222–248, November
2007.

[22] A. Voida, R. E. Grinter, N. Ducheneaut, K. K.
Edwards, and M. W. Newman. Listening in: practices
surrounding itunes music sharing. In CHI ’05:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 191–200, New
York, NY, USA, 2005. ACM Press.

[23] S. Voida, E. D. Mynatt, B. MacIntyre, and G. M.
Corso. Integrating virtual and physical context to
support knowledge workers. IEEE Pervasive
Computing, 1(3):73–79, 2002.

40

