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SUMMARY

This paper introduces a novel mechanism to perform intercession (a form of reflection) in an object-
oriented programming language with the goal of making the language extensible from within itself. The
proposed mechanism builds upon a mirror-based architecture, leading to a reusable reflective application
programming interface that cleanly separates interface from implementation details. However, support
for intercession has been limited in contemporary mirror-based architectures. This is due to the fact that
mirror-based architectures only support reflection explicitly triggered by metaprograms, while intercession
requires reflection implicitly triggered by the language interpreter. This work reconciles mirrors with
intercession in the context of an actor-based, object-oriented programming language named AmbientTalk.
We describe this language’s full reflective architecture, highlighting its novel mirror-based approach
to reflect upon both objects and concurrently executing actors. Subsequently, we apply AmbientTalk’s
mirror-based reflection to implement two language features, which crucially depend on intercession, to
wit future-type message passing and leased object references. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational reflection [1,2] provides programs with a well-defined interface to reason about
themselves. Reflection is often further refined according to what kind of reasoning is allowed and
what parts of the program can be reasoned about. A reflective architecture supports introspection if
it allows programs to inspect the structural aspects of a program. It allows for self-modification if
programs can modify their structure. It supports invocation if base-level operations (e.g. a method
call, a field assignment) can be dynamically constructed and executed. It allows for intercession
if programs can change their behavior, e.g. using custom metaobjects to change the semantics
of the language itself [3]. Reflection has been widely adopted in object-oriented languages (e.g.
Java, Self, Smalltalk, CLOS), although they differ greatly in terms of the reflective power they
convey.
In this paper, we present the metaobject protocol of AmbientTalk, a distributed, concurrent actor-

based object-oriented language. In our previous work, we have explicitly presented AmbientTalk as
a ‘language laboratory’ for experimenting with novel language features in the context of volatile,
ad hoc networks [4]. More concretely, we realized this ‘language laboratory’ by making Ambi-
entTalk a reflective language, such that novel language features can be expressed within the language
itself. Whereas our previous metalevel architecture provided adequate support for intercession, it
lacked a modular, stratified design. As a result, metalevel extensions to the language could interfere
with base-level code and vice versa.
Bracha and Ungar have proposed a set of design principles for the design of a mirror-based

metaobject protocol: a reflective application programming interface (API), which fosters a high
degree of reusability, loose coupling with base-level objects and whose structure and design directly
corresponds to the system being reflected upon [5]. Therefore, mostly influenced by Self’s mirrors
[6], we decided to redesign the AmbientTalk architecture in a mirror-based way. While mirror-based
architectures provide proper access to the structure of programs, their support for intercession has
been relatively limited. However, intercession is a key enabler for the reflective implementation of
language features.
This paper reports on the design of AmbientTalk’s mirror-based reflective architecture, which

allows reflecting on both objects and actors. In our previous work, we have introduced the mirage:
a base-level object whose semantics are described by a custom implicit mirror [7]. The novelty of
mirages is that they enable intercession in a mirror-based reflective architecture. The key design
issues of a mirror-based architecture and how they are influenced by mirages are recapitulated
in this paper (Sections 2.1 and 4.3). In addition, this paper provides a comprehensive overview
of AmbientTalk’s reflective API on objects (Section 4.1). Also added is a complete description
of AmbientTalk’s support for reflecting upon actors (Sections 4.2 and 4.4). AmbientTalk’s actors
are purely event-driven (cf. Section 3.2) and we believe this paper to be the first to discuss a
mirror-based ‘meta-actor protocol’ for such actors. We illustrate how AmbientTalk’s metaobject
and meta-actor protocols can be used to implement two established programming language features
(future-type message passing and leased references) as reflective extensions of the base language
(Section 5).
Availability: An open-source AmbientTalk interpreter with support for mirror-based reflection on

both objects and actors is available at http://prog.vub.ac.be/amop. The standard library that ships
with the implementation contains the complete reflective code for the futures and leased references
language features described later in this paper.
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2. MIRROR-BASED REFLECTION

2.1. Design principles

Bracha and Ungar define a mirror-based architecture as any reflective architecture that adheres to
three key design principles, to wit encapsulation, stratification and ontological correspondence [5].
In what follows, we summarize Bracha and Ungar’s arguments supporting a mirror-based reflective
architecture.

2.1.1. Encapsulation

The principle of encapsulation states that metalevel entities should encapsulate their implementation
details [5]. In essence, it should be possible to write metalevel programs (source code browsers,
debuggers, object inspectors) against an abstract API, which fosters a higher degree of reusability
because the API can serve as an abstraction barrier for multiple implementations. For example,
consider that we want to reuse as much code as possible from existing metaprograms to be able to
debug or inspect objects on a remote virtual machine. When the metaprograms only code against
an interface, rather than a specific reflective implementation, large parts of the code can be reused
without change.
To enable metalevel entities to encapsulate their implementation, a necessary (but not necessarily

sufficient) condition is that their type should expose only their interface, not their implementation.
This rules out nominal-type systems based on classes (implementation), as e.g. employed by Java
or C++. The Java reflection API, for example, ties metalevel representations to a specific imple-
mentation, inhibiting reuse. On the other hand, the Java Debugger Interface is a reflective API based
on interface types. Hence, clients are shielded from specific implementation classes [5]. Dynami-
cally typed or structurally typed languages (e.g. Strongtalk [8]) inherently avoid such encapsulation
breaches.

2.1.2. Stratification

The principle of stratification states that metalevel entities should be cleanly separated from base-
level functionality [5]. This separation ensures among others that e.g. a base-level method is not
accidentally regarded as part of the metaobject protocol. A stratified design also loosens coupling
between the base and the metalevel, which has benefits in terms of deployment: if access to the
metalevel architecture can be easily trapped, it is easier to deploy programs without reflective
support if it can be derived that programs never access it, or at least to postpone the activation of
reflective support until it is required by the application.
The principles of encapsulation and stratification are also innately connected. In order for reflec-

tion to be stratified, base-level objects should not contain any explicit reference to metalevel entities.
The very presence of such a link often breaks encapsulation and stratification. For example, invoking
obj.getClass() on a Java object links the object directly to its metalevel representation. This
makes it hard for metalevel programs to uphold encapsulation. For example, if obj is an instance
of a proxy class, perhaps a metalevel program would like to hide this fact from its metalevel clients.
This is virtually impossible given the hard-wired link from the base- to the metalevel.
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664 S. MOSTINCKX ET AL.

Another example of a violation of stratification occurs in Smalltalk. Performing obj class
results in a reference to the class of an object. In Smalltalk, classes play a dual role: they are used
both for base-level tasks such as instance creation (e.g. aClass new) and for metalevel tasks such
as code browsing (e.g. obj class subclasses). Because of this, it is hard to deploy Smalltalk
applications without the reflective capabilities of classes.
In a mirror-based architecture, access to the metalevel should be a dedicated, explicit operation,

such that it is not normally used by regular base-level programs.Moreover, whenmetalevel programs
can intervene in the execution of this operation, they can preserve the encapsulation of the metalevel
representation of base-level objects. For example, in Strongtalk the reflective API can only be
accessed by performing Mirror on: obj [5]. Likewise, in Self a mirror on an object is created
by performing reflect: obj [6]. These methods often serve as factory methods for the creation
of appropriate mirrors on objects. The downside is that access to the metalevel is not a polymorphic
message send, such that methods like reflect: often have to perform some internal dispatching
based on the object’s type.

2.1.3. Ontological correspondence

The principle of ontological correspondence states that the metalevel should be structured according
to the same concepts and rules that govern the base-level [5]. Bracha and Ungar further distinguish
between structural and temporal correspondence, which corresponds to the distinction between
code (a description of a computational process) and computation (the actual execution of that
process).
A mirror-based architecture that is temporally correspondent should make the distinction between

code and computation manifest in its API. The advantage is that the API that reflects on code can
be used both for reasoning about pure source code, as well as for reasoning about code that has
been turned into live objects. For example, when writing a code browser against such an API, it
becomes easy to use the browser both for viewing code loaded from a database, as well as for
inspecting live or even marshalled objects.
Structural correspondence implies that every language construct has a reified representation at the

metalevel [5]. In a truly structurally correspondent mirror-based architecture, this principle requires
that even the body of a method should have a metalevel representation. However, reasoning about
the body of a method brings us on dangerous grounds. If the method has been compiled into a
low-level language, e.g. bytecode, it does not suffice to provide a representation for bytecodes in
the reflective API: the bytecodes are concepts from a different language, i.e. the virtual machine
language. If exposed directly to the reflective API of the high-level language, transformations
employed by the compiler may present clients of the reflective API with inconsistent information.
Hence, a structurally correspondent mirror architecture ideally provides separate APIs for reasoning
about each distinct language in the system [5].

2.1.4. Summary

An ideal mirror-based system: (1) provides a reflective API based on interfaces, which preserves the
encapsulation of metalevel objects; (2) factors the link from base-level objects to metalevel objects
out of the base-level objects themselves. This stratifies base- and metalevels, making it easier for
metaprograms to preserve encapsulation or to disable reflection when it is not required; (3) makes
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the distinction between APIs that manipulate code and those that manipulate computation manifest.
The API that reflects on code does not require a running computation to reflect upon; (4) reifies
every element of the base-level language. Language features that are transformed, optimized or
desugared should remain intact when mirrored by the language’s reflective API.

2.2. Problem statement

While mirror-based reflective architectures have traditionally been very successful in providing
introspection and self-modification, they have not yet been applied to perform intercession [5].
While introspection and self-modification can be used to build, e.g. object inspectors, intercession
is required for changing the behavior of an object, e.g. when building novel language constructs.
Thus, the problem we address is how to reconcile the above design principles of mirrors with
intercession.
In mirror-based systems, a mirror returned by the mirror factory describes the structure of an

object (the reflectee), but is otherwise not causally connected with it. That is to say: when the
interpreter manipulates the reflectee, it does not do so by consulting the mirror factory and by
using the returned mirror. A key design decision when introducing intercession in a mirror-based
architecture, therefore, is how to make the interpreter use a mirror to manipulate an object. Should it
consult the mirror factory or not? As we will describe in Section 4, we will not make the interpreter
consult the mirror factory. Instead, we introduce intercession by distinguishing two kinds of mirrors:
explicit and implicit mirrors. We provide a motivation for this decision in Section 6.1.
Explicit mirrors correspond to the traditional mirrors present in Self and Strongtalk. Their goal

is to support structural reflection for which no causal connection with the reflectee is required.
For example, one can use an explicit mirror to create an ‘object inspector’ for an object stored in
a database or for a remote object. Implicit mirrors are ‘metaobjects’ [2,9] that are truly causally
connected to the computation (i.e. used by the interpreter itself), enabling intercession. Like
a traditional metaobject, an implicit mirror is tightly coupled to its reflectee (in terms of the
implementation, one can imagine the reflectee having a meta slot that refers to its implicit
mirror). However, unlike a traditional metaobject, an implicit mirror satisfies the mirror-based
properties of encapsulation and stratification. It satisfies encapsulation because it cannot be
accessed from the reflectee directly. Metaprograms must still use the mirror factory. The factory
returns the reflectee’s implicit mirror by default, but a custom mirror factory can override this
policy. Implicit mirrors respect stratification because they remain completely invisible to base-level
code.
In Section 4, we discuss implicit and explicit mirrors in detail in the context of the AmbientTalk

language. We briefly introduce the base language in the following section.

3. THE AMBIENTTALK LANGUAGE

AmbientTalk is a distributed object-oriented programming language. More precisely, the language
described here is named AmbientTalk/2 [10], an updated version of the language whose reflective
API differs from the version presented in previous work [4]. In the remainder of this paper, we will
simply refer to the updated language as AmbientTalk.
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� �
def Point := object: {
def x := 0; // defines a slot named x containing 0
def y := 0;
// this method serves as the "constructor"
def init(newx, newy) {
x := newx;
y := newy;

};
def +(other) { self.new(x+other.x, y+other.y) };
def distanceToOrigin() { (x*x + y*y).sqrt() };

}
def p := Point.new(1,2); // instantiate a new point

� �

Listing 1. A prototypical planar point object.

3.1. Object-oriented programming in AmbientTalk

AmbientTalk inherits most of its standard language features from Self, Scheme and Smalltalk. From
Scheme, it inherits the notion of true lexically scoped closures. From Self and Smalltalk, it inherits
an expressive block closure syntax, the representation of closures as objects and the use of block
closures for the definition of control structures.
Objects: AmbientTalk’s objects are reminiscent of those of the prototype-based language

Self [11]: Classless objects consisting of slots that may contain either regular values or methods.
Listing 1 defines a prototypical planar point object. The code defines a new anonymous object and
binds it to a variable named Point. This object serves as a prototypical point object and can be used
to create clones, as shown on the last line. In response to the message new, an object creates a clone
of itself and initializes it by invoking the clone’s init method. This protocol closely corresponds to
that of class instantiation in class-based languages, but rather than allocating a new empty object
from a class, a clone is created from a prototype.
When an object receives a message it does not understand, it delegates the message to the

object bound to its slot named super. A delegated message is forwarded to another object, but in
the subsequent method invocation the self pseudo-variable will remain bound to the object that
originally received the message. Hence, delegation is an object-based alternative to class-based
inheritance [12]. A declarative syntax is provided for specifying that a new object delegates to an
existing prototype. In the code excerpt below, SpatialPoint and Point remain separate objects in
their own right. The extends relationship between a child and a parent object implies that the child’s
super slot refers to the parent object and that when a child is cloned, the parent object is cloned as
well. Hence, when a SpatialPoint is cloned, the clone has its own Point parent object with its own
copies of the x and y slots.

def SpatialPoint := extend: Point with: {
def z := 0;
...

}

Closures: AmbientTalk provides support for block closures reminiscent of those in Self and
Smalltalk. A block closure is an anonymous function object that encapsulates a piece of code and the
bindings of lexically free variables and self. Block closures are used to represent delayed compu-
tations, such as the branches of an if:then:else: control structure. Block closures are constructed
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by means of the syntax { |args| body }, where the arguments can be omitted if the block takes no
arguments. The following code excerpt shows a typical use of blocks to define a custom control
structure, which removes all elements from a collection that fail to satisfy a predicate:

def from: collection retain: predicate {
result := clone: collection; // shallow copy
collection.each: { |element|
predicate(element).ifFalse: {

result.remove(element)
}

};
result;

};
from: [1,-2,3] retain: { |e| e > 0 }

Note that AmbientTalk supports both traditional canonical syntax (e.g. o.m(a,b,c)) as well as
keyworded syntax (e.g. dict.at: key put: val) for method definitions and message sends. As a
general rule, we use keyworded syntax for control structures (e.g. while:do:) or language constructs
(e.g. object:). The canonical syntax is used for expressing application-level behavior.
Type Tags: Because AmbientTalk is neither statically typed nor class based, objects cannot be

easily classified. Type tags are a lightweight classification mechanism, used to categorize objects
explicitly by means of a nominal type§ . Type tags are declared using the deftype keyword and can
be a subtype of multiple other type tags:

deftype PhotoCopier <: Scanner, Printer;
def CopierPrototype := object: {...} taggedAs: [PhotoCopier];
...
is: CopierPrototype taggedAs: Scanner; // true

In the above example, the PhotoCopier type tag is defined as a subtype of both the Scanner and
the Printer type tags. The CopierPrototype object is explicitly tagged with a PhotoCopier type tag.
An object can only be tagged when it is created, such that its set of type tags remains constant.
The primitive is:taggedAs: is akin to Java’s instanceof operator and can be used to test whether or
not an object is tagged with a certain type tag. Type tags can also be used to annotate methods and
messages with metadata, as will be described later.

3.2. Concurrent programming in AmbientTalk

In AmbientTalk, concurrency is not spawned by means of threads but rather by means of actors [13].
AmbientTalk actors are not ‘active objects’, as they are traditionally represented (e.g. in ABCL [14]),
but rather as communicating event loops, as is done in the E programming language [15]. An actor is
an event loop encapsulating regular objects, which can communicate with one another using either
synchronous method invocations (expressed as o.m()) or asynchronous message passing (expressed
as o<-m()). Asynchronous messages are enqueued in an actor’s queue of incoming messages, called
its mailbox. An actor perpetually removes the next message from its mailbox and executes the
corresponding method on the receiver of the message. Actors process messages from their message

§Although type tags are not used for static type checking, they are best compared with empty Java interface types, like the
typical ‘marker’ interfaces used to merely tag objects (e.g. java.io.Serializable and java.lang.Cloneable).
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A
B

Mailbox

Actor

Object
Far reference

Event Loop Actor

Message from A to B

Figure 1. AmbientTalk actors as communicating event loops.

queue serially, i.e. one by one. By processing messages serially, race conditions on the mutable
state of the encapsulated objects are avoided.
A reference to an object encapsulated within another actor is called a far reference. Message

passing via a far reference must be asynchronous. Performing a method invocation via a far reference
provokes a runtime exception. Asynchronous messages sent via far references are enqueued in the
message queue of the actor that encapsulates the receiver object. Figure 1 illustrates AmbientTalk
actors as communicating event loops. The dotted lines represent the control flow of the actors’ event
loop, which perpetually takes messages from their message queue and synchronously executes the
corresponding methods on the actor’s encapsulated objects. An event loop’s control flow never
‘escapes’ its actor boundary. When communication with an object encapsulated by another actor is
required, a message is sent asynchronously via a far reference to the object. For example, when A
sends a message to B, the message is enqueued in the message queue of B’s actor, which eventually
processes it.
When sending an asynchronous message to an object that is encapsulated within the same actor,

the message is added to the actor’s own mailbox and the message’s parameters are passed by
reference, exactly as is the case with regular synchronous message sending.When sending a message
across a far reference, objects are instead parameter passed by far reference: the parameters of the
invoked method are replaced by far references to the original objects. Objects that have declared
themselves to be passed by copy form an exception to this rule and are instead marshalled and
passed along in the message. Far references passed back into their originating actor resolve into
regular, local references. Far references that are themselves passed by far reference to a third actor
are passed unmodified, allowing the third actor to directly communicate with the originating actor.
By default, asynchronous message sends in AmbientTalk have no return value (more precisely,

they evaluate to nil). However, in Section 5.1 we will show how the reflective architecture of
AmbientTalk can be used to modify this semantics.

3.3. Distributed programming in AmbientTalk

In AmbientTalk, two objects are said to be local when they are owned by the same actor. Objects
are considered remote when they are owned by different actors, even if those actors are located
on the same machine. By design, AmbientTalk abstracts from the physical location of actors and
considers actors to be the unit of distribution. As a consequence of this design, all object references
that can span across different machines are far references.
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By allowing far references to cross machine boundaries, we must specify their semantics in
the face of partial failures. AmbientTalk’s far references by default mask partial failures. When a
failure occurs, a far reference to a disconnected object starts buffering all messages sent to it. If the
network connection is restored at a later point in time, the far reference automatically reconnects and
forwards all accumulated messages to the remote object in the same order as they were originally
sent. Hence, messages sent to far references are never lost, regardless of the underlying connectivity
of the network¶ .
Objects can acquire far references to objects by means of parameter passing, as described previ-

ously. Additionally, an actor can explicitly export objects which can then be discovered by remote
objects. The details pertaining to this peer-to-peer service discovery protocol and its associated
programming language features can be found in previous work [10].
Asynchronous messages may be annotated with type tags by means of the syntax o<-m()@Tag. This

allows programmers to specify metadata that can be exploited by new language features. Example
metadata includes delivery guarantees, message priorities, timeouts for failure handling, etc. We
will demonstrate the use of such metadata by the new language features introduced in Section 5.

3.4. Summary

We have introduced the AmbientTalk language, in which computation occurs entirely in terms of
classless objects sending messages to one another. Objects are encapsulated within actors. Each
actor serializes all access to its encapsulated objects by means of its mailbox. Actors may be
distributed across machines and communicate strictly by means of asynchronous message passing.
Type tags may be used to annotate messages with additional metadata. With the base language now
explained, we can turn our attention to AmbientTalk’s metalevel architecture, which is described
in the following section.

4. MIRROR-BASED REFLECTION IN AMBIENTTALK

This section presents the mirror-based metalevel architecture of AmbientTalk. The architecture
supports mirrors reminiscent of those in Self and Strongtalk [5], which can be used to perform
introspection and self-modification. We name such mirrors explicit mirrors. The novelty of Ambi-
entTalk’s metalevel architecture are its implicit mirrors, which can be used to additionally perform
intercession as well.
The distinction between explicit and implicit mirrors corresponds to the distinction between

explicit and implicit reflection proposed by Maes and Nardi [17]. In their proposed distinction,
metacomputation triggered by metaprograms, which explicitly manipulate mirrors is named explicit
reflection. For example, an object inspector could invoke mirror.listSlots() to decompose an object
into a list of slots (methods and fields) that it can display. Metacomputation triggered implicitly by
the language interpreter itself is named implicit reflection. For example, source code of the form
o.m() may lead the interpreter to invoke mirror.invoke("m") on a mirror on o.

¶AmbientTalk has been designed as a programming language for use in mobile ad hoc networks, in which network failures
are assumed to be omnipresent [16]. Hence the design of making far references resilient to failures by default.
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<<uses>>

<<uses>>

interpreter

explicit mirror

implicit mirror

metaprogram

<<specializes>>

Figure 2. Use of explicit and implicit mirrors.

Explicit reflection has been previously explored in the mirror-based architectures of Self
and Strongtalk to build such metaprograms as source code browsers, object inspectors and
debuggers [5]. Explicit reflection enables introspection, invocation and self-modification, simply
by having metaprograms invoke the appropriate methods on explicit mirrors. To the best of our
knowledge, support for implicit reflection has not been integrated in a mirror-based architecture
before. Implicit reflection enables intercession by having metaprograms specialize the appropriate
methods on implicit mirrors. Figure 2 illustrates the different roles of explicit and implicit mirrors.
We further discuss the differences between implicit and explicit mirrors in Section 4.5.2.
Orthogonal to the distinction between explicit and implicit mirrors, AmbientTalk introduces

separate mirrors to reflect upon individual objects on the one hand and upon the actor in which they
are contained on the other hand. The remainder of this section is organized along the dual distinction
between objects versus actors and explicit versus implicit reflection. We conclude this section by
highlighting how AmbientTalk’s metalevel architecture adheres to the software engineering criteria
put forward in Section 2.1 (i.e. encapsulation, stratification and ontological correspondence).

4.1. Explicit reflection on objects

A metaprogram (e.g. an object inspector, a debugger, etc.) can obtain an explicit mirror on an object
to be inspected by invoking the reflect: function. As in Self, reflect: consults a mirror factory to
create a mirror on the appropriate object. In AmbientTalk, this mirror factory is defined at the level
of the event loop actor that encapsulates the object (cf. Section 4.4). The following code excerpt
illustrates how a mirror on the Point object p introduced in Section 3.1 can be acquired:

def mirrorOnP := (reflect: p);

A mirror represents the object upon which it reflects as a collection of slots. A slot binds a name
to a method. Fields are represented to the programmer as a pair of accessor and mutator slots. The
accessor is a nullary method that returns the field value upon invocation. The mutator is a unary
method that assigns the field to its single argument upon invocation. Mirrors support introspection
(inspection of an object’s slots), invocation (reflectively reading and invoking an object’s slots)
and self-modification (reflectively adding or removing slots). This functionality is illustrated by
example in listing 2.
Identifiers prefixed with a backquote (‘) denote symbols. The first argument to invoke denotes

the object to which self will be bound during the method invocation. Note that this object is not
necessarily the object, which the mirror reflects, because of AmbientTalk’s support for object-
based delegation. createInvocation returns an object encapsulating the selector, actual arguments
and potentially other metadata of a method invocation. createFieldSlot is a primitive function, which
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� �
// introspection: list all slots of an object
mirrorOnP.listSlots().map: { |slot| slot.name }; // ‘[x,y,init,distanceToOrigin,...]
// invocation: reflectively access the contents of a slot
mirrorOnP.grabSlot(‘x); // accessor for field x
mirrorOnP.grabSlot(‘x:=); // mutator for field x
// invocation: reflectively invoke a method
mirrorOnP.invoke(p, createInvocation(‘distanceToOrigin, []));
// self-modification: add and remove slots to/from an object
def [accessor, mutator] := createFieldSlot(‘z, 0);
mirrorOnP.addSlot(accessor);
mirrorOnP.removeSlot(‘z);

� �

Listing 2. Introspection, invocation and self-modification using mirrors.

� �
def createMirror(onObject) {
extend: super.createMirror(onObject) with: {
def addSlot(slot) { raise: IllegalOperation.new("Cannot add slot") };
def removeSlot(slotName) { raise: IllegalOperation.new("Cannot remove slot") };

}
}

� �

Listing 3. A custom mirror factory.

given a name and a value, creates a field and returns two slots representing an accessor resp. mutator
method for the field.
AmbientTalk achieves loose coupling between base-level objects and metalevel objects (i.e.

mirrors) by enforcing that mirrors are created by means of a mirror factory, rather than making the
base-level object refer to its mirror directly. As a consequence, it is possible to create different kinds
of mirrors on the same object, depending on the context of use. For instance, one could replace
the default mirror factory with a factory that produces mirrors that disallow any modification to
base-level objects, effectively ‘sealing’ the structure of those objects.
Listing 3 depicts a factory method that creates ‘sealed object’ mirrors. The factory method

creates mirrors, which inherit most of their functionality from the mirror returned by the call to
super.createMirror. In Section 4.2 we will describe to which object super refers. For now, it suffices
to understand that this call delegates to the default implementation, returning a standard mirror on
the object created by the AmbientTalk interpreter. The sealed object mirror overrides the addSlot and
removeSlot metalevel operations such that adding or removing slots reflectively raises an exception.
While listing 3 defines a new factory method, we have not yet shown how this factory method

replaces the default mirror factory consulted by the reflect: function. As mentioned previously,
this mirror factory is defined at the level of each event loop actor in the system. We describe how
to replace an actor’s default mirror factory in Section 4.4.

4.1.1. API of explicit mirrors on objects

Table I provides a comprehensive overview of the API exposed by explicit mirrors on objects.
These methods may be invoked by metaprograms to introspect or modify objects. In fact, these
methods may also be invoked by the interpreter and are also part of the API of implicit mirrors,
described later in Section 4.3.3. We categorize the different methods defined on mirrors according
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Table I. API of explicit mirrors on objects.

Structural access protocol
addSlot(slot) Adds a field or a method slot to the object
removeSlot(selector) Removes an owned slot from the object
grabSlot(selector) Returns an owned slot whose name matches the selector
listSlots() Returns an array of all owned slots
select(delegate,selector) Returns a closure which, when applied, invokes the slot corre-

sponding to the selector on the mirrored object
Method invocation protocol
invoke(delegate, invocation) Invokes a method (with self bound to delegate)
receive(message) Makes the object receive an asynchronous message
send(receiver,message) Makes the object send an asynchronous message
respondsTo(selector) Asks the object whether or not it (or one of its parents) has a slot

matching the selector
Object instantiation protocol
clone() Creates a shallow copy of the object (except for the object’s super

slot, whose value is recursively cloned as well)
newInstance(arguments) Clones the object and invokes init on the clone
Type tag protocol
isTaggedAs(typeTag) Asks the object whether it or one of its parents is tagged as a

subtype of the given type tag
listTypeTags() Returns an array of type tags with which the object is tagged

to different protocols. Each protocol reifies different aspects of the object to the metaprogrammer.
The remainder of this section briefly discusses each protocol.
Structural access protocol: reifies the structure of an AmbientTalk object as a collection of slot

objects. An object is said to own a slot if the slot is bound directly in the object being mirrored and
not in one of the objects in its delegation hierarchy.
Method invocation protocol: Reifies both synchronous and asynchronous method invocation.

When an object a executes b<-m(), first a’s mirror is asked to send the message m. At a later point in
time, when b’s actor finally processes the message, b’s mirror is asked to receive the message. By
default, an asynchronously received message is transformed into a regular (synchronous) method
invocation (i.e. b.m()). This invocation is reified by means of invoke(b,inv). The first argument of
invoke represents the object to which self will be bound during method invocation. In case of a
delegated message, this is the object that originally received the message, rather than the object in
which the method was found. The second argument of invoke is an invocation object encapsulating
the name and arguments of the method to be invoked.
Object instantiation protocol: Reifies the act of creating new objects from existing objects. clone

creates a copy of the mirrored object and recursively clones its parent object. Each object in the
cloned parent chain is otherwise a shallow copy of the original. The newInstance method also clones
the mirrored object but additionally initializes the clone by invoking its init method.
Type testing protocol: Reifies the type tags attached to an object. Objects can be tagged with zero

or more type tags. The isTaggedAs methodis akin to Java’s Class.isAssignableFrom(Class) method.
listTypeTags returns an array of all type tags with which the mirrored object (but not its parent
object) has been tagged.
Now that we have discussed explicit reflection on objects in full, we turn our attention to explicit

reflection on actors.
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� �
def retractMessagesMatching: selector {
// introspect on the actor to get a copy of its mailbox
def mailbox := reflectOnActor().listIncomingLetters();
// retain only those letters whose message name equals the given selector
mailbox := from: mailbox retain: { |letter| letter.message.selector == selector };
// remove all matching letters from the real mailbox
mailbox.each: { |letter| letter.cancel() };
// return the removed letters
mailbox;

}
� �

Listing 4. Introspecting on and modifying an actor’s mailbox.

4.2. Explicit reflection on actors

In Section 3.2 we described that AmbientTalk objects are encapsulated within event loop actors. An
object can be encapsulated only in one actor. An actor is responsible for operations that transcend
the scope of a single object such as buffering and scheduling asynchronously received messages for
its local objects in its mailbox, managing exported objects and the marshalling and unmarshalling
of messages (and their arguments) across actor boundaries.
Metaprograms can reflect upon the event loop actor as a whole through an explicit actor mirror, a

special object denoting the mirror on the actor. This mirror differs from the explicit object mirrors
discussed in the previous section in that it does not reflect upon a single base-level object, but rather
upon the event loop actor that is executing the (meta)program. The actor mirror allows manipulating
the event loop without exposing its implementation, similar to how a java.lang.Thread instance
allows manipulating a Java thread without exposing its implementation.
Invoking the top-level function named reflectOnActor returns an explicit actor mirror on the

executing actor. To ensure a loose coupling between the code requiring the actor mirror and its imple-
mentation, similar to reflect: for regular objects, the reflectOnActor function consults amirror factory
to create the explicit actor mirror. We discuss this actor mirror factory in more detail in Section 4.4.
To exemplify introspection on an actor by means of its explicit mirror, consider the metaprogram

in listing 4 that introspects all messages in the actor’s mailbox and removes from it all messages
matching a given selector, returning them in an array. As a result, these messages will no longer
be processed by the actor. This may be useful to implement custom synchronization policies, e.g.
depending on the actor’s internal state, it may not be able to process certain messages for a period of
time. A copy of the actor’s mailbox is acquired by invoking listIncomingLetters on the actor mirror.
The copy is represented as an array of letter objects. Letter objects encapsulate an asynchronous
message and the receiver object to which the message is ‘addressed’. Furthermore, letter objects
provide a method named cancel which can be invoked to remove the letter from the real mailbox
before it has been processed.

4.2.1. API of explicit mirrors on actors

Table II provides a comprehensive overview of the API exposed by explicit mirrors on actors. As
in the case of explicit object mirrors, these methods may be invoked by metaprograms to introspect
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Table II. API of explicit mirrors on actors.

Message sending protocol
send(receiver,message) Sends a message asynchronously to the receiver
Message reception protocol
schedule(receiver,message) Adds a letter containing the message and the receiver to the mailbox
listIncomingLetters() Returns an array of all letters currently in the mailbox
Service discovery protocol
listPublications() Returns an array of advertised local objects
listSubscriptions() Returns an array of active discovery event handlers
publish(object,typeTag) Advertises a local object as a discoverable service
subscribe(typeTag,closure) Registers a closure as a discovery event handler

on or modify the actor. They are also invoked by the interpreter and are thus also part of the API
of implicit actor mirrors, discussed in Section 4.4.1. We briefly discuss each protocol in turn.
Message sending protocol: Reifies the act of sending an asynchronous message. As seen in the

previous section, asynchronous message sending is also reified at the level of the object that sent
the message. By default, the object’s mirror delegates this responsibility to the actor’s mirror. The
default implementation of send enqueues the message in the mailbox of the recipient actor.
Message reception protocol: These methods are the metaprogrammer’s interface to the actor’s

mailbox, which is a queue in which incoming receiver–message pairs (i.e. letters) are buffered
before being processed. Letters can be added to the mailbox via the schedule method. The
listIncomingLetters method returns a copy of the mailbox as an array of letter objects. This array is
not causally connected to the real mailbox. For example, to remove a letter from the mailbox, one
does not remove the letter from the array but rather invokes the letter’s cancel method. To avoid
race conditions, the interpreter guarantees that no messages sent by other actors are added to the
actor’s mailbox while a (meta)program is executing. The interpreter updates the actor’s mailbox
only when that actor is not busy processing a message.
Service discovery protocol: Reifies the act of publishing local or discovering remote objects.

The introspective listPublications and listSubscriptions methods return an array of, respectively,
published local objects and service discovery subscriptions. As in the case of listIncomingLetters,
these arrays are not causally connected to the implementation-level lists. New publications or
subscriptions can be added to the lists by means of the publish and subscribe methods. Publications
or subscriptions may be removed by invoking their cancel method, reminiscent of removing a letter
from the actor’s mailbox. The service discovery protocol forms the basis on top of which more
high-level service discovery language features are built [10].
We have now discussed the entire reflective API exposed by explicit mirrors on both objects and

actors. In the following two sections, we discuss implicit mirrors on objects and actors.

4.3. Implicit reflection on objects

The novelty of AmbientTalk is its support for implicit reflection (i.e. metacomputation triggered
by the interpreter itself) in a mirror-based architecture. To support implicit reflection on individual
objects, AmbientTalk introduces the concept of a mirage object. A mirage is an object whose
semantics (in terms of the methods defined on mirrors) is entirely described by its associated implicit
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mirror‖. We first exemplify implicit mirrors and subsequently show how they can become causally
connected to mirage objects.

4.3.1. Implicit mirrors

Consider the prototypical example of logging method invocations performed on an object. It is easy
to define a mirror object that overrides invoke and performs the logging behavior:

def createLogMirror(base) {
extend: defaultMirror.new(base) with: {
// override invoke to log the message
def invoke(delegate, invocation) {

log("invoked "+invocation.selector+" on "+base);
super.invoke(delegate, invocation); // default behavior

};
}

}

The base variable refers to the base-level object to be mirrored by the created mirror. Any object
can serve as an implicit mirror for a mirage as long as it implements the AmbientTalk metaobject
protocol. To facilitate the development of mirror objects that require only small changes with respect
to the default language semantics, there exists a top-level variable named defaultMirror, which is a
prototypical implicit mirror object encapsulating AmbientTalk’s default metaobject protocol. Most
implicit mirrors extend the default mirror to implement their custom semantics.
Mirror objects returned by the above function can perfectly function as explicit mirrors as well.

However, if the above mirrors are returned by the actor’s mirror factory, only invocations performed
explicitly upon the mirror are logged (e.g. by evaluating (reflect: o).invoke(o,invocation)). When
the interpreter is evaluating a standard base-level invocation on the mirror’s base object o (e.g. by
evaluating o.m()), no logging happens. This is because the interpreter does not itself consult the
mirror factory. Rather, it uses an implicit implementation of the invoke operation.
The implicit implementation used by the interpreter can be overridden by making the mirror

implicit. In order for the above mirror to become an implicit mirror, it must become causally
connected to its base-level object. This is the topic of the following section.

4.3.2. Mirages

Mirages are objects that are created by means of the object:mirroredBy: primitive. Listing 5 redefines
the Point prototype from Section 3 as a mirage, whose behavior is defined by the implicit mirror
defined in the previous section. The object:mirroredBy: primitive expects two closures as arguments:
an object construction closure and a mirror construction closure. Upon invocation, the primitive
creates a new, empty and uninitialized mirage object. It subsequently passes this object to the mirror
construction closure. This closure takes the uninitialized mirage as its argument (newMirage) and
should return its implicit mirror. When a mirror has been created, the object:mirroredBy: primitive

‖The term ‘mirage’ is a pun on the word ‘mirror’ and stresses the idea that, at the implementation level, a mirage is a
‘ghost’ object because its structure and behavior is unknown to the interpreter, as these are specified in the interpreted
language itself.
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� �
def Point := object: {
def x := 0;
def y := 0;
def init(newx, newy) { ... };
...

} mirroredBy: { |newMirage| createLogMirror(newMirage) }
� �

Listing 5. Definition of a mirage.

Table III. Additional methods in the API of implicit mirrors on objects.

Method invocation protocol
doesNotUnderstand(selector) Invoked when the object receives a message for which it has no

matching slot
Object marshalling protocol
pass() Invoked when an object is marshalled. Returns the object to be

marshalled instead of this object
resolve() Invoked when an object is unmarshalled. Returns the object

replacing the unmarshalled object

associates the empty mirage with the mirror. From this point on, the mirage and its mirror are
causally connected and the implicit mirror is effectively used by the interpreter.
Only after the mirage and the mirror are causally connected is the object construction closure of

the object declaration executed. As a result, the construction code is properly reflected by the new
implicit mirror. Hence, in listing 5, the field definitions for x and y are reified as addSlot invocations
on the logging mirror.
Because they are regular objects, mirages may be instantiated or cloned. The default cloning and

instantiation semantics (that can be overridden at the metalevel) uphold the one-to-one correspon-
dence between the mirage and its implicit mirror. When a mirage is cloned, its implicit mirror is
cloned and vice versa. Hence, clones are always created in pairs such that they too can become
causally connected.

4.3.3. API of implicit mirrors on objects

The API exposed by implicit mirrors on objects consists of all the methods previously defined on
explicit mirrors (cf. Table I) and additionally all of the methods defined in Table III. Recall that, while
introspection, self-modification and invocation are performed simply by invoking these methods,
intercession requires the metaprogrammer to implement or override these methods, replacing them
with a custom implementation.
With respect to the previously described API in Section 4.1.1, it is worth noting that evaluating

base-level code of the form def m() {...} within an object o triggers the addSlot method of o’s
implicit mirror, reifying the slot addition. Likewise, base-level code of the form o.new() triggers
the newInstance method on o’s implicit mirror. This will clone o and subsequently invoke its init

method with the arguments passed to new.
Method invocation protocol: By overriding invoke, a metaprogrammer can completely redefine

the method invocation semantics of a mirage object. In many cases, the metaprogrammer wants

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:661–699
DOI: 10.1002/spe



MIRROR-BASED REFLECTION IN AMBIENTTALK 677

to intervene only in failed method invocations. As in Smalltalk, the doesNotUnderstand method is
invoked by the AmbientTalk interpreter whenever method lookup has failed, and can thus be used
to conveniently ignore, repair or redirect failed method invocations. The default implementation of
doesNotUnderstand raises an exception.
Object marshalling protocol: Reifies the act of marshalling and unmarshalling objects when they

are passed as the argument of a message sent to another actor. These operations are reified by means
of the pass and resolve methods. Their semantics is akin to Java’s writeReplace and readResolve

methods, which allow hooking into the Java object marshalling process. The difference between
Java and AmbientTalk is that in AmbientTalk, these essentially metalevel operations are properly
stratified into a separate mirror object. For pass-by-reference objects (i.e. those who did not declare
themselves to be pass-by-copy), the default implementation of pass asks the actor to create and
return a far reference designating the mirrored object.

4.3.4. Summary

Implicit reflection in AmbientTalk is achieved by means of mirage objects, which are objects
associated with a so-called implicit mirror. The implicit mirror is used by the interpreter itself when
manipulating the mirage. A mirage is constructed in three steps:

1. An empty mirage object is created by the interpreter.
2. An implicit mirror object is constructed and associated with the empty mirage.
3. The empty mirage is associated with its implicit mirror. Subsequently the initialization code

of the mirage is evaluated.

The relationship between mirages, implicit and explicit mirrors is illustrated in Figure 3. The
figure shows a mirage causally connected to its implicit mirror. Note that the interpreter effectively
manipulates the mirage via its implicit mirror, without consulting a mirror factory. Metaprograms,
on the other hand, need to pass via a mirror factory, which may return the implicit mirror (as is
done by the default mirror factory), but can also return another explicit mirror, such as the sealed
object mirror described in Section 4.1.
Now that we have discussed implicit reflection on objects in full, we turn our attention to implicit

reflection at the actor level.

Base-level

Metalevel

mirage

default 
factory

explicit 
mirrorimplicit 

mirrorinterpreter

meta-
program

custom
factory

Figure 3. Accessing explicit versus accessing implicit mirrors.
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4.4. Implicit reflection on actors

Implicit mirrors on actors allow the metaprogrammer to provide custom implementations for the
metalevel operations discussed in Section 4.2. An implicit actor mirror am is installed by invoking
reflectOnActor().becomeMirroredBy: am. The actor mirror plays (among others) the role of mirror
factory: it defines a method createMirror(onObject), which serves as a factory method for the creation
of explicit mirrors on objects. By installing a new implicit mirror on an actor, the metaprogrammer
can override this method and thus customize the mirror factory. The code excerpt below illustrates
how the sealed mirror factory method defined in Section 4.1 can replace the default factory of the
actor.

def actorMirror := reflectOnActor();
actorMirror.becomeMirroredBy: (extend: actorMirror with: {
def createMirror(onObject) {
extend: super.createMirror(onObject) with: {

def addSlot(slot) { raise: IllegalOperation.new("Cannot add slot") };
def removeSlot(slotName) { raise: IllegalOperation.new("Cannot remove slot") };

}
}

})

Note that the replacement implicit actor mirror extends the current explicit actor mirror such that
it inherits the implementation for all other metalevel operations. Only createMirror is overridden
such that it returns a custom sealed object mirror.
In addition to being a mirror factory for explicit mirrors on objects, implicit actor mirrors

also serve as a mirror factory for explicit mirrors on the actor itself. The implementation
of reflectOnActor() creates an explicit mirror on the actor by invoking a method named
getExplicitActorMirror() on the implicit actor mirror. By overriding this method, an implicit actor
mirror may return a custom explicit actor mirror. This enables loose coupling between client code
requiring an actor mirror and the implementation of that mirror. In our current implementation,
however, getExplicitActorMirror simply returns the implicit actor mirror itself. We have not yet
found any convincing examples requiring the creation of a different kind of explicit actor mirror.
This may indicate that loose coupling does not seem to be as important at the actor level than it is
at the object level.

4.4.1. API of implicit mirrors on actors

The API exposed by implicit mirrors on actors consists of all the methods previously defined on
explicit actor mirrors (cf. Table II) and additionally all of the methods defined in Table IV. We
discuss the additional methods below.
Message sending protocol: The createMessage method is invoked whenever an asynchronous

message is constructed (e.g. as a result of evaluating code of the form o<-m()). It can be overridden
to add additional metadata to a message object. Metadata can also be added to the message object by
the type tags that are used to annotate it. The default implementation of createMessage allows these
type tags to add metadata to the message as follows: for each type tag t with which a message msg

is annotated, the implementation invokes t.annotateMessage(msg). The return value of this method
should be the message object, potentially extended with the appropriate metadata. We illustrate this
protocol by means of a concrete example in Section 5.
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Table IV. Additional methods in the API of implicit mirrors on actors.

Message sending protocol
createMessage(name,args,tags) Creates a message from name, arguments and type tag annotations
Message reception protocol
serve() Dequeues a letter from the mailbox and process it
Mirror creation protocol
createMirror(onObject) Returns an explicit mirror on a local object
getExplicitActorMirror() Returns an explicit mirror on the actor
Reference creation protocol
createReference(toObject) Returns a far reference to a local object

Message reception protocol: The serve method is invoked by the interpreter whenever an actor
should process a message from its mailbox. The default implementation dequeues a letter object
from the actor’s mailbox and delivers its message to its associated receiver object. By overriding
serve, a metaprogrammer can redefine the message processing behavior of an actor. We illustrate
this by means of an example, below.
Mirror creation protocol: Reifies the act of creating explicit mirrors on objects. When calling

the reflect: function to create a mirror on an object, the actor’s mirror factory method, named
createMirror is invoked. This method returns an explicit mirror on the object, whose API is described
in Section 4.1.1.
Reference creation protocol: Reifies the act of creating far references to local objects. The method

createReference is invoked upon the actor mirror whenever a pass-by-reference object is parameter
passed in between actors. By default the actor returns a far reference to the object, which as described
in Section 3.3, is a remote object reference that masks network failures by default.
Now that the entire API of implicit actor mirrors have been described, we show how they

can be used to adapt an actor’s message reception protocol in order to support prioritized
messages. Consider a type tag Priority which can be used to annotate a message send as follows:
obj<-msg(args)@Priority(n) where n is a number denoting the message’s priority.
Listing 6 shows a metaprogram that installs a new implicit actor mirror to support prioritized

message passing. The implicit mirror overrides all methods of the message reception protocol such
that the mailbox of messages is organized as a priority queue sorted according to the messages’
priority. The code assumes a function priorityOf, which retrieves the priority of a message, returning
a default value if the message was not explicitly annotated with a priority. Upon installing the new
actor mirror, all messages previously scheduled in the old (regular) mailbox are removed and later
reinserted in the new (prioritized) mailbox. Recall that the interpreter guarantees that no messages
sent by other actors are added to the mailbox while the actor is executing code. Hence, the above
code is not subject to race conditions caused by messages arriving while the mailbox is being
replaced.

4.5. Evaluation

We have now discussed both explicit and implicit reflection on both objects and actors. In this
section, we discuss how AmbientTalk’s metalevel architecture upholds the principles of a mirror-
based architecture. Furthermore, we summarize the differences between explicit and implicit
mirrors.
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� �
def actorMirror := reflectOnActor();
// cancel all messages currently in the mailbox
def oldMailbox := actorMirror.listIncomingLetters();
oldMailbox.each: { |letter| letter.cancel() };
// install the new actor mirror
actorMirror.becomeMirroredBy: (extend: actorMirror with: {
def mailbox := PriorityQueue.new();
def schedule(rcv, msg) {
def letter := object: {

def receiver := rcv;
def message := msg;
def cancel() { mailbox.remove(self); }

};
mailbox.enqueue(priorityOf(msg), letter);

};
def serve() {
def letter := mailbox.dequeue();
if: (letter != nil) then: {

letter.message.process(letter.receiver)
};

};
def listIncomingLetters() { mailbox.toArray() };

});
// reschedule all messages in the new mailbox
oldMailbox.each: { |letter|
actorMirror.schedule(letter.receiver, letter.message)

};
� �

Listing 6. Example of implicit reflection on actors.

4.5.1. Mirror-based reflection

The metalevel architecture of AmbientTalk adheres to the mirror-based reflection principles
proposed by Bracha and Ungar [5]. In this section, we illustrate how the reflective API preserves
encapsulation, stratification and ontological correspondence.
Encapsulation: In Sections 4.1 and 4.2 we have described the reflective API of explicit mirrors on

objects and actors, respectively. These APIs are a concrete interface for clients of mirrors. Custom
mirrors can be defined and used by metaprograms, as long as they implement AmbientTalk’s
reflective API. Because AmbientTalk is a dynamically typed language, any mirror object can be
replaced by any other mirror object, as long as both implement the same interface.
Stratification: AmbientTalk mirrors are stratified: object mirrors are not accessed directly from

the base object on which they reflect. An explicit mirror on an object can only be obtained via the
mirror factory. This factory can in turn be replaced by metaprograms. Note that even mirages, which
have an associated implicit mirror, are reflected upon by means of explicit mirrors via the mirror
factory. For example, a mirror factory may return the sealed object mirror defined in Section 4.1
on the Point mirage defined in Section 4.3.2. Hence, mirages enjoy the same loose coupling with
their explicit mirrors as any other regular object.
Even though the implicit mirror object must be explicitly tied to the base-level mirage object,

base- and metalevel code remain strictly separated (stratified) in different objects. One advan-
tage of this strict separation is that base-level methods cannot accidentally override metaobject
protocol methods and vice versa. We illustrate this advantage by means of concrete methods in
Section 5.
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Finally, stratification is upheld for actor mirrors as well. Explicit actor mirrors are accessed by
means the method getExplicitActorMirror defined on the implicit actor mirror, which serves as a
factory for explicit actor mirrors.
Ontological correspondence: AmbientTalk’s mirror architecture is structurally correspondent to

the base-level: all base-level computation is modelled in terms of methods defined on mirrors.
Upholding structural correspondence required us to define mirrors on actors as well as on regular
objects, because base-level AmbientTalk computation cannot be described in terms of objects alone.
Actors are a crucial part of the base-level computation, and thus require a mirrored representation
as well, even though actors have no object representation at the base-level.
The issue of requiring a separate API for high-level and low-level language does not apply

to our current implementation of AmbientTalk: the interpreter uses the parse trees themselves as
instructions to evaluate method bodies, hence there is no low-level language (e.g. bytecode) to
reflect upon.
AmbientTalk’s mirrors are not temporally correspondent: mirrors do not explicitly distinguish

code from computation. It is not possible to introspect the source code of an object using the same
API to introspect the object itself.

4.5.2. Properties of explicit and implicit mirrors

AmbientTalk’s metalevel architecture allows metaprogrammers to define their own implicit and
explicit mirrors. However, the architecture does assume important substitutability requirements upon
objects representing implicit or explicit mirrors, which have been left unexplained up to this point:
Substitutability of implicit mirrors: An implicit mirror is required to be substitutable for the

default mirror.
This requirement implies that implicit mirrors must provide a complete implementation of the

metaobject protocol. It is motivated by the fact that implicit mirrors are used by the interpreter,
which can invoke any method of the metaobject protocol. This requirement is usually, but not
necessarily, upheld by the metaprogrammer by having a custom implicit mirror delegate to the
defaultMirror, which already provides a complete implementation of the MOP.
Substitutability of explicit mirrors: An explicit mirror on an object is required to be substitutable

for the implicit mirror of that object.
This requirement implies that an object’s explicit mirror can be used everywhere a metapro-

grammer expects its implicit mirror. It is motivated by the fact that metaprograms that want to
access an object’s implicit mirror must always do so via an explicit mirror because the prin-
ciple of stratification forces them to use the mirror factory. This requirement is usually, but not
necessarily, upheld by the metaprogrammer by having an object’s explicit mirror delegate to the
object’s implicit mirror, such that the explicit mirror is guaranteed to provide at least the inter-
face of the object’s implicit mirror. The default mirror factory returns the implicit mirror of a
mirage as its default explicit mirror. An implicit mirror can thus always be used as an explicit
mirror.
A direct corollary of the above requirements is that an explicit mirror must also provide a complete

implementation of the MOP. The requirements also state that if an implicit mirror adds methods
to an object’s MOP, the explicit mirror must also support them. However, methods added to the
MOP of an object by an explicit mirror must not necessarily be supported by the object’s implicit
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Table V. Reflective operations to retrieve and install mirrors.

Reflecting on objects
reflect: obj Returns an explicit mirror reflecting on the given object
object: occ mirroredBy: mcc Creates a mirage, with the object returned by the mcc closure as

its implicit mirror
Reflecting on Actors
reflectOnActor() Returns an explicit mirror on the local actor
becomeMirroredBy: actorMirror Installs a new implicit actor mirror

mirror. In Section 5.1 we will describe a metaprogram that depends upon substitutability of explicit
mirrors for its correct operation.

4.6. Summary

AmbientTalk’s mirror-based architecture distinguishes explicit from implicit reflection. Explicit
reflection, as required by metaprograms such as object inspectors, debuggers, etc. is achieved simply
by explicitly invoking the methods of mirrors on objects and actors. Implicit reflection, as required
for tracing and monitoring objects or for implementing language features, is achieved by having
metaprogrammers define their own implicit mirrors on objects and actors. Implicit mirrors often
specialize the default implementations provided by the language. An implicit mirror on an object
is installed when the object is created (by means of object:mirroredBy:) while an implicit mirror on
an actor can be installed at any point in time (by means of becomeMirroredBy:). Table V summarizes
all reflective operations to retrieve and install mirrors.

5. GROWING A LANGUAGE USING INTERCESSION

In this section, we illustrate how AmbientTalk’s reflective facilities, described in the previous
section, can be used to ‘grow the language’ [18] with more expressive language features. The
language features discussed in this section augment the basic AmbientTalk language presented in
Section 3 as follows:

• We extend the language with future-type message passing [14] in which asynchronous message
sends can be made to return a future rather than the default nil value. A future is a placeholder
for the return value that is being computed asynchronously and avoids the use of separate
callback methods to process results.

• We extend the language with leased far references in which far references are combined with
leasing. Leasing [19] is a time-based technique by means of which both client and server
objects can deal with long-lasting network partitions.

Both language features require explicit support for intercession (in particular the ability to inter-
cept messages). Both features are implemented using a two-step methodology:

1. We use implicit mirrors on objects to introduce a new data type into the language (a future
resp. a leased far reference).
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2. We use implicit mirrors on actors to introduce these data types in the relevant actor-level (the
message sending resp. reference creation protocol).

We describe the concrete implementation of both language features in each of the following
sections.

5.1. Future-type message passing

Future-type message passing is an exemplar language feature, which relies on intercession at both
the object level (to define the future data type) as well as at the actor level (to integrate futures in
the message passing protocol). The introduction of future-type message passing reintroduces the
notion of a return value into a system with asynchronous message passing.
In AmbientTalk, an asynchronous message send normally has no return value (i.e. it evaluates

to nil), forcing the programmer to rely on explicit, separate callback methods to obtain the result
of an asynchronous computation. Future-type message passing is a classic technique to reconcile
asynchronous message sends with return values, by making an asynchronous send immediately
return a future object [14]. A future is a placeholder object (i.e. a proxy) which is eventually
resolved with the return value. The code excerpt below illustrates future-type message passing in
AmbientTalk.

def database := dbms<-connect(properties);
def employees := database<-query("SELECT * FROM Employee");
when: employees<-nextRow() becomes: { |employeeRow|
system.println(employeeRow.name);

}

In the above example an asynchronous message is sent to create a connection to a database.
The resulting future object is stored in the database variable. This future object will be resolved
with an object representing a connection to the database at a later point in time. Subsequently,
an asynchronous query message is sent to the database future, which will buffer the message and
forward it to its resolved value once this value is available. Only asynchronous messages can be
sent to a future object. Invoking a method or accessing a field synchronously on a future raises a
runtime exception.
In the majority of systems introducing futures, when code requires access to the actual resolved

value of the future, the thread requiring the value is suspended until the future is resolved. Such
a synchronization style is called wait-by-necessity [20]. However, because AmbientTalk actors are
event-driven (as explained in Section 3.2), the event loop of an actor should never be suspended
in the middle of a computation. Instead, one can register a block closure with the future, which
represents a ‘continuation’: it encapsulates the code to be postponed until the future is resolved. This
is done using the when:becomes: control structure, which was first introduced in the E programming
language [15]. The closure passed to when:becomes: will be applied to the future’s resolved value.
In the remainder of this section we describe how to integrate future-type message passing in

AmbientTalk by means of implicit mirrors on objects and actors. We focus on the key issues
of the language abstraction. The actual implementation of future-type message passing shipped
with the AmbientTalk distribution covers additional features such as exception handling and
timeouts.
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� �
def createFutureMirror(base) {
// variables private to the mirror
def isResolved := false;
def resolvedValue := nil;
def inbox := Vector.new();
def observers := Vector.new();
extend: defaultMirror.new(base) with: {
def invoke(delegate, invocation) {

raise: IllegalOperation.new(
"Cannot synchronously invoke methods on a future");

};
def receive(msg) {

// msg received by a resolved future?
if: (isResolved) then: {
// forward msg to the resolved value
reflectOnActor().send(resolvedValue,msg);

} else: {
// buffer message in this future’s inbox
inbox.append(msg);

};
};
// methods added to a future’s MOP
def resolveWithValue(value) {

if: !(isResolved) then: {
isResolved := true;
resolvedValue := value;
// forward all buffered messages
inbox.each: { |msg| reflectOnActor().send(value,msg) };
observers.each: { |obs| obs<-notifyResolved(value) };

};
};
def subscribe(observer) {

if: (isResolved) then: {
observer<-notifyResolved(resolvedValue);

} else: {
observers.append(observer);

}
}

};
};

� �

Listing 7. Implicit mirror on futures.

5.1.1. Future data type

Futures are proxy objects whose message reception semantics deviate from that of normal objects.
Rather than implementing such proxies by means of hooks such as Smalltalk’s doesNotUnderstand:

protocol [21], we implement futures as mirages such that their message reception semantics can be
modified by an implicit mirror. We describe two changes to the semantics. First, the future’s implicit
mirror disallows synchronous method invocations by overriding invoke. Second, any asynchronously
received message is either buffered if the future is unresolved or forwarded if it is resolved. This is
done by overriding receive.
Listing 7 shows the definition of a future’s implicit mirror. The future is either in an unresolved

or in a resolved state, as indicated by the isResolved variable. Initially, the future is unresolved. The
transition from an unresolved to a resolved state occurs when an asynchronous resolveWithValue

message is sent to the mirror. In addition to the resolveWithValue method, the mirror also extends
the default metaobject protocol with a subscribe method, which allows registering observers to
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be notified when the future has been resolved. When a future is resolved, all messages it has
accumulated while it was unresolved are forwarded to the computed value (in the same order as
they were received by the future). Similarly, all subscribed observers are asynchronously notified
of the resolved value.
We now turn our attention to the so-called ‘language constructs’, which form the language

feature’s public interface to the base-level programmer. The following code excerpt shows how the
programmer may create a base-level future object.

def createFuture() {
def future := object: { } mirroredBy: { |base| createFutureMirror(base) };
def resolver := object: {
def resolve(value) { (reflect: future).resolveWithValue(value) };

};
[ future, resolver ] // return a tuple containing the future and the resolver

};

A future is represented as an empty mirage object with an implicit future mirror. createFuture
returns two values: the future itself and an associated resolver object. The resolver has a single
method named resolve, which can be used by the base-level programmer to resolve the future
without having to know anything about the metalevel interface of the future. Below is the definition
of the when:becomes: control structure that allows base-level programmers to postpone the execution
of a closure until a future has been resolved.

def when: future becomes: closure {
(reflect: future).subscribe(object: {
def notifyResolved(value) { closure(value) }

});
};

Both the resolveWithValue and subscribe methods defined previously are part of the mirror on
the future and thus reside completely at the metalevel. This stratification of base- and metalevel
methods has the advantage that metalevel messages are not trapped and forwarded by the receive

method shown before, as this method only traps messages sent to the base-level future object.
Because resolveWithValue and subscribe reside at the metalevel, the language constructs defined
above must invoke these methods on the future’s mirror, rather than on the base-level future object
itself. This illustrates another advantage of stratifying base- and metalevel: base-level messages
(sent to the future itself) cannot be mistaken for metalevel messages (sent to the future’s implicit
mirror). For example, in an application involving newsletters, a subscribe message sent to a future
for a newsletter object cannot be mistaken for the subscribe message, which is part of the future’s
metaobject protocol.
A subtle point in both of the above code snippets is that reflect: is used to acquire a mirror on the

future. Because reflect: consults the actor’s mirror factory, the explicit mirror being returned may
not be the future mirror defined in listing 7. However, because of the substitutability requirement
on explicit mirrors (cf. Section 4.5.2), the metaprogrammer of the above language constructs may
assume that the explicit mirror adheres to the interface of the future’s implicit mirror. Thus, the
metaprogrammer may invoke additional methods such as resolveWithValue and subscribe on the
explicit mirror.
Note that because our architecture explicitly distinguishes explicit from implicit mirrors, we

introduce the freedom to choose whether reflecting upon a resolved future returns a mirror on the
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� �
deftype OneWayMessage <: AsyncMessage;
deftype FutureMessageTag <: AsyncMessage;
def FutureMessage := extend: FutureMessageTag with: {
def annotateMessage(msg) {
def [future, resolver] := createFuture();
extend: msg with: {

// invoked whenever msg is sent to a receiver object
def sendTo(receiver, sender) {
super.sendTo(receiver, sender); // returns nil by default
future // return the future instead

};
// invoked whenever msg arrives at a receiver object
def process(receiver) {
def result := super.process(receiver); // invoke the method
resolver<-resolve(result)@OneWayMessage;
result;

};
};

};
};

� �

Listing 8. Integrating futures in the message sending protocol.

future itself (by default, the object returned by createFutureMirror) or a mirror on the value with
which the future is resolved (which would make metaprograms oblivious to resolved futures).
At this point, futures have been introduced as a new data type into the interpreter. However, we

have yet to define how futures can be automatically attached to asynchronous messages. This is the
topic of the following section.

5.1.2. Integration in message sending protocol

In the previous section, we have described how to create future mirages based on a mirror object
that describes their semantics. In this section, we describe how futures can be integrated in the
AmbientTalk message sending protocol. First of all, we describe how futures can be added to
individual messages by annotating them with a new type tag. Subsequently, we describe how to
automatically add this type tag to every message send performed within an actor by means of a
custom implicit mirror on the actor.
Listing 8 shows the definition of two new type tags, OneWayMessage and FutureMessage, which can

be used to annotate asynchronous message sends. The OneWayMessage annotation can be used to
distinguish asynchronous messages, which have no (meaningful) return value and therefore never
need to resolve a future. When a message is annotated with the FutureMessage type tag, this signals
that the programmer is interested in the return value of that asynchronous message. Therefore, the
message needs to be equipped with a future and the necessary infrastructure to resolve the future
when the result has been computed. This is done by having the type tag override the annotateMessage

method. Recall from Section 4.4.1 that this method is invoked when the type tag is used to annotate
an asynchronous message. The method returns the original message, extended with the necessary
metadata.
The extended message object overrides the original message’s sendTo and process methods.

The former method is invoked when the asynchronous message is sent and is specialized such
that it returns the attached future rather than the default value (nil). The process method is
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invoked by the recipient actor when the message is received and is used to resolve the future
with the return value of the invoked method. This method is executed remotely, on a parameter-
passed copy of the message. The resolver object, being an implicit parameter of the message,
is passed by far reference. This explains why the resolve message is sent asynchronously using
<-. This message is also explicitly annotated as a OneWayMessage. Without such an annotation, if
future-type message passing is installed as the default (see below), resolving one future would
require the creation of another future. Resolving that future would again create another future,
and so on.
The introduction of the FutureMessage type tag allows the programmer to explicitly annotate

which messages require a future. Installing future-type message passing as the default message
passing semantics can be achieved by means of a custom actor mirror. The code excerpt below
installs a custom actor mirror, which intercepts message creation to implicitly add the FutureMessage

annotation to all newly created messages.

def actor := reflectOnActor();
actor.becomeMirroredBy: (extend: actor with: {
def createMessage(selector, args, annotations) {
if: !((annotations.contains: { |tag| tag.isSubtypeOf(FutureMessage) }).or:

{(annotations.contains: { |tag| tag.isSubtypeOf(OneWayMessage) }) }) then: {
annotations := [FutureMessage] + annotations;

};
super.createMessage(sel, args, annotations);

}
})

Whenever a new asynchronous message object is created, the above actor mirror automatically
adds the FutureMessage annotation unless the message was already annotated as a FutureMessage or
it was explicitly annotated as a OneWayMessage. The check for the OneWayMessage annotation ensures
that messages tagged as being ‘one-way’ never get associated with a future.
This concludes our implementation of the future-type message passing language feature. In the

following section, we repeat the methodology applied in this section to another language feature.

5.2. Leased far references

We now present leased far references, a language feature that limits the lifetime of far references
such that the object being referred to by a far reference (henceforth called the service object) and
the objects using the far reference (henceforth called the client objects) can deal with potentially
permanent network partitions.
As explained in Section 3.3, AmbientTalk’s far references by default mask partial failures:

messages may be sent to a disconnected far reference, where they will be buffered until the far
reference becomes reconnected. Consequently, transient network partitions have no direct impact
on the application. Computation is resumed transparently, allowing both client and service objects
to continue their collaboration from the point where they disconnected. This behavior is desir-
able in mobile ad hoc networks since they exhibit more frequent transient network partitions than
traditional computer networks. However, not all network partitions are transient. Some partitions
may result in permanent failures, e.g. when a device has crashed or has moved out of wireless
communication range and never returns.
To preserve the resilience of far references to transient failures while still being able to deal

with permanent failures, AmbientTalk employs leasing [19]. A lease denotes the right to access a
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� �
def openSession() {
def shoppingCart := Cart.new(); // to store purchased items
def session := object: {
def addItemToCart(anItem) { ... }
def checkOutCart() { ... }

};
def leasedSession := lease: 5*60*1000 for: session;
when: leasedSession expired: {
... // free up resources used by this session

};
leasedSession; // return lease on the session to the client

};
� �

Listing 9. A leased session in an online shopping application.

resource (e.g. an object) for a finite amount of time. At the discretion of the owner of the resource
a lease can be renewed, prolonging access to the resource. In AmbientTalk, we chose to represent
leases as a special kind of far references, which we name leased far references. A leased far
reference behaves like a far reference, except that it grants access to its service object only for a
limited period of time. Moreover, whenever a message is sent via a leased far reference, the lease
is transparently renewed. By automating the renewal of the lease upon message sending, tedious
boilerplate renewal code is avoided.
Listing 9 illustrates leased far references in the context of an online shopping application. In the

example, a client can ask a server to start a shopping session by sending it the openSession message.
In response to this message, the server returns a session object, which implements methods that
allow a client to place items in its shopping cart or to check out. It is assumed that the client
uses future-type message passing to get a reference to the openSession method’s return value. If the
session object would be returned directly, the client would acquire a far reference to it. The method
instead returns a leased far reference to the session, to ensure that the client’s connection to the
session is leased.
The lease:for: function takes as parameters a time interval (in milliseconds) and the service

object to which it grants access, and returns a leased far reference that remains valid for the indicated
time interval (5minutes in the example). The when:expired: function implements a control structure
that applies a closure after a given leased reference expires. In the example, this control structure
is used to schedule clean-up code when the session expires. At client side, a customer can ask a
server to open a shopping session as follows:

def mySession := server<-openSession()@FutureMessage;
...
mySession<-addItemToCart(selectedItem);

mySession stores a leased far reference to a session object, which remains valid for the next 5
minutes. After this time period, access to the session is terminated and the leased far reference
is said to expire. As discussed above, a leased far reference is automatically renewed whenever
a message is successfully delivered to its service object. Hence, as long as a client actually uses
the session (by adding items to its cart or by checking out), the session remains active. Note that,
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because we chose to model leasing by means of a special kind of far reference, the client can use
the leased reference as if it were the session object itself. The use of leasing is made transparent to
the client.
Upon a network partition, the leased far reference cannot successfully deliver messages to the

session and as a result it cannot be renewed. If the network partition outlasts the reference’s lease
period, the reference will expire and the logical connection between client and service is permanently
broken. Both client and service objects can schedule clean-up actions with the leased reference upon
expiration. Hence, both sides can gracefully deal with the termination of the logical connection.
In particular, leasing provides fault-tolerant garbage collection of service objects: once all leased
references to a service object have expired, this object is subject to garbage collection (provided it
is not referred to by any local objects).
In the remainder of this section we describe how to implement leased far references reflectively

in AmbientTalk. Leased far references require intercession at the object-level (to intercept messages
sent via a leased reference). Furthermore, if we want to make leased references the default type of
reference used for inter-actor communication, intercession at the actor-level is required (to integrate
leased references in the actor’s reference creation protocol).

5.2.1. Leased far reference data type

Like futures, we implement leased far references as mirages whose implicit mirror mimics the
behavior of far references with some modifications to introduce the leasing semantics. Listing 10
shows the definition of a leased reference’s implicit mirror. base is the base-level representation
of the leased far reference. It is simply a proxy object with special message passing semantics.
serviceObj is the service object to which the leased reference grants access. The isExpired variable
holds the leased reference’s state (i.e. expired or not). When the mirror is initialized, a timer object is
created by means of the when:elapsed: control structure, which takes a time interval (in milliseconds)
and a closure as parameters and applies the closure once the time interval has elapsed. When the
timeInterval elapses, the leased reference expires.
Similar to far references, leased far references can only carry asynchronous messages. To enforce

this, the leased reference’s implicit mirror disallows synchronous method invocations by overriding
the invoke MOP method, causing it to raise a runtime exception. The mirror also overrides the
receive MOP method to intercept all asynchronous messages. As long as it has not expired, the
mirror renews the lease and forwards the message to the service object. For all other MOP methods,
the leased reference mirror inherits the default implementation from defaultMirror.
The leased reference’s implicit mirror also extends the default metaobject protocol with methods

that manage the life cycle of a leased reference. The expire method terminates remote access to
the leased reference by invoking a primitive method named takeOffline. This primitive removes
the leased reference from the export table of the owning actor. This table is used by the interpreter
to resolve far references into local object references. When an object is removed from the export
table, it is no longer accessible remotely and, importantly, becomes subject to garbage collection
once it is no longer locally referenced. The renew method renews the lease by resetting the timer

object that refers to the code scheduled to expire the reference. Similar to the mirror on a future, the
leased reference mirror defines an addExpiredObserver method, which allows registering observers
to be notified upon expiration.
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� �
def createLeasedRefMirror(base, serviceObj, timeInterval) {
def isExpired := false;
def timer;
def expiredObservers := Vector.new();
extend: defaultMirror.new(base) with: {
timer := when: timeInterval elapsed: { self.expire() };
def invoke(delegate, invocation) {

raise: IllegalOperation.new(
"Cannot invoke a method synchronously on a leased reference");

};
def receive(msg) {

if: !(isExpired) then: {
self.renew();
reflectOnActor().send(serviceObj, msg); // forward msg to the service object

};
};
def expire() {

if: !(isExpired) then: {
isExpired := true;
takeOffline(self); // terminate remote access to the leased reference
expiredObservers.each: { |obs| obs<-notifyExpired() }

};
};
def renew(renewalTime := timeInterval) { // timeInterval is a default argument

// reset the timer by cancelling the previously scheduled closure
timer.cancel();
timer := when: renewalTime elapsed: { self.expire() };

};
def addExpiredObserver(observer) {

if: isExpired then: {
observer<-notifyExpired();

} else: {
expiredObservers.append(observer);

};
};
def pass() { ... }

};
};

� �

Listing 10. Implicit mirror on leased references.

Finally, a leased far reference mirror overrides pass to modify the parameter-passing semantics of
its base-level object. When a leased reference is parameter passed, it is not passed by far reference
but rather by copy: the remote client will receive its own, local leased far reference proxy that
allows it to locally keep track of the lease time left. The parameter-passing semantics for leased far
references is explained in further detail in the following section.
Listing 11 shows the definition of the language constructs by means of which the programmer

can use leased far references. A leased far reference is represented as an empty mirage object
with an implicit leased reference mirror. The when:expired: control structure allows programmers
to postpone the execution of a closure until a leased far reference expires. It is implemented by
registering an observer on the leased reference’s mirror.
We have shown how leased far references can be reflectively implemented as proxy objects with

a custom message passing semantics, by means of implicit mirrors. However, the programmer must
still manually wrap service objects using the lease:for: language construct. In the following section,
we show how leased far references can be introduced automatically by hooking into the actor’s
reference creation protocol.
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� �
def lease: period for: serviceObj {
object: {} mirroredBy: { |base| createLeasedRefMirror(base, serviceObj, period) };

};
def when: leasedRef expired: closure {
(reflect: leasedRef).addExpirationObserver(object: {
def notifyExpired() { closure() }

});
};

� �

Listing 11. Language constructs to manipulate leased far references.

� �
def actor := reflectOnActor();
actor.replaceMirror: (extend: actor with: {
def createReference(toObject) {
lease: DEFAULT_LEASETIME for: toObject;

};
});

� �

Listing 12. Integrating leasing in the reference creation protocol.

5.2.2. Integration in reference creation protocol

In the previous section, we have described how to create leased far references based on a mirror
object that describes their semantics. We also described how leased far references can be added
to individual objects by means of the lease:for: construct. In this section, we describe how to
automatically add a leased far reference to every pass-by-far-reference object, which is parameter
passed in between actors (and thus becomes remotely accessible). More concretely, we define an
implicit actor mirror, which intercepts the act of creating a far reference to a local object to create
a leased far reference instead.
Listing 12 shows the definition of the new implicit actor mirror, which overrides the default

createReference method. Recall from Section 4.4 that pass-by-far-reference parameter passing is
reified by invoking this method on the actor mirror. The method is specialized to attach a leased far
reference to the object, valid for a default time interval (specified by the constant DEFAULT_LEASETIME).
The object returned from createReference must itself be parameter passed as well. As described in

the previous section, leased far references are not pass-by-far-reference and thus do not recursively
trigger the createReference method. Rather, a leased far reference is passed by copy. Therefore, a
leased far reference consists of two leased reference mirrors: one at client-side and one at server-
side. A client-side mirror behaves slightly different than its server counterpart (which is the one
discussed previously). The key difference is that it does not actually grant access to the service
object itself but rather to the server-side mirror. Messages intercepted by the client-side mirror
are thus forwarded to the server-side mirror, which then forwards them to the real service object.
The client-side mirror also maintains its own timer (which is weakly synchronized with the timer
of the server mirror) and its own when:expired: observers (which allow client objects to be noti-
fied upon the expiration of the leased reference without requiring a network connection with the
server).
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5.3. Summary

In the above sections, we have shown how to incorporate new language features in the AmbientTalk
base language. They illustrate that AmbientTalk is indeed an extensible language. Both language
features require support for intercession: futures and leased far references are proxies, which require
the ability to intercept messages to alter their message passing semantics. Futures postpone the
processing of messages until the future is resolved while leased far references renew a lease upon
each message send. Support for intercession was provided by means of a two-step methodology:

• Implicit mirrors on objects have been used to implement the proxy objects as mirages. Because
futures and leased far references are mirages, the metaprogrammer has total control over the
semantics of message delivery via their implicit mirror.

• Implicit mirrors on actors have been used to integrate the language feature with existing
language features. In the case of futures, we have shown how the actor’s message sending
protocol can be adapted to automatically include a future in each asynchronous message send.
In the case of leased far references, we have shown how the actor’s reference creation protocol
can be adapted to automatically parameter-pass objects in between actors ‘by leased reference’
rather than ‘by far reference’.

The major advantages of the mirror-based approach are that the implementation of the language
features is encapsulated (it does not disrupt other metaprograms, e.g. a future or leased far reference
can be inspected by an object inspector as any other regular object) and stratified (base-level
messages pertaining to the application are not misinterpreted as meta-level messages pertaining to
the language constructs and vice versa).

6. DISCUSSION

In this section, we motivate the more important design decisions of AmbientTalk’s mirror-based
architecture as it is presented in Section 4.

6.1. Distinguishing explicit from implicit mirrors

AmbientTalk enables intercession in a mirror-based architecture by introducing the concept of an
implicit mirror, which is associated with a so-called mirage object. An implicit mirror is causally
connected to its mirage and is thus very similar to the traditional notion of a metaobject [2,9].
Unlike a metaobject, an implicit mirror remains encapsulated and stratified. While the interpreter
can directly access a mirage’s implicit mirror, other metalevel programs must use the mirror factory.
The default mirror factory returns an object’s implicit mirror, but this policy can be changed by
metaprograms.
In our current architecture, explicit mirrors (as defined by metaprograms and returned from

custom mirror factories) are not causally connected to the base-level computation. They could be
made causally connected if the interpreter is treated like any other metaprogram that must consult
the mirror factory when manipulating an object. It would then be possible to make the interpreter
use an explicit mirror. We did not consider this alternative architecture because of a number of
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reasons:

• An explicit mirror does not necessarily reflect upon a concrete base-level object, such that there
is no object for the mirror to become causally connected to. For example, an explicit mirror
could reflect upon an object stored in a database. The explicit mirror would then interface with
the database to represent the relational data as an object (i.e. a collection of slots), which is
useful for other metaprograms such as an object inspector, which can then inspect persistent
objects. In this case, no causal connection to any concrete base-level object is required.

• Objects can be reflected upon by multiple and unrelated explicit mirrors, each providing a
different form of reflective access to its reflectee. For instance, when reflecting upon a proxy
object for a remote object, two explicit mirrors can be conceived: one which reifies the proxy
object itself and one which reifies the remote object. If we were to causally connect the
proxy to an explicit mirror, which one should the interpreter use? Such situations are avoided
by enforcing a strict one-to-one correspondence between an object and its unique implicit
mirror∗∗.

• Making the interpreter use explicit mirrors may cause unwanted interference. Consider the
sealed object mirror introduced in Section 4.1: it can ensure read-only reflection by metapro-
grams such as object inspectors; however if it is used by the interpreter, the interpreter itself
would be precluded from adding slots to an object, making it impossible to instantiate non-
empty base-level objects. Such issues are avoided by distinguishing explicit mirrors for use by
metaprograms (e.g. the sealed object mirror) from implicit mirrors for use by the interpreter
(e.g. the log mirror).

Although our current architecture does not allow an explicit mirror to become causally connected
to its reflectee, we acknowledge that it may be useful for an explicit mirror to react upon the
manipulation of its reflectee by the interpreter. A typical example would be an object inspector
that needs to update its graphical user interface whenever the value of one of its reflectee’s slots is
changed. Currently, we must implement such an inspector by means of an implicit mirror that can
override the necessary MOP methods. In our future work, we would like to extend the reflective
API with methods that allow explicit mirrors to register observers on their reflectee, allowing them
to get notified of the execution of a metalevel operation without actually having to override it.
In general, implicit mirrors are most often useful to encode ‘language features’: they change the

structure or behavior of an object as viewed by the interpreter itself, thus changing the semantics
of the language. We have provided concrete examples of such mirrors in Section 5. If the goal is
only to change the structure or behavior of an object for other metaprograms (e.g. for the purposes
of displaying an object stored in a database), then explicit mirrors are sufficient.

6.2. When and how to connect implicit mirrors

The reader may have noticed that there is a difference in the way implicit mirrors are causally
connected with objects versus with actors. Contrary to implicit mirrors on objects, which are created
when the mirage object is declared (by means of object:mirroredBy:), implicit mirrors on actors can

∗∗Of course, the implicit mirror bound to a base-object can be the result of a composition of multiple implicit mirrors,
however this composition needs to be semantically coherent [22].
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be installed at any time during the lifetime of the actor (by means of becomeMirroredBy:). There is
no actor:mirroredBy: construct to statically connect an actor with an actor mirror. This design is
motivated by the fact that the code that creates an actor may be totally independent of the code that
the actor will execute. As such, the creator of the actor may be unaware of reflective extensions
required by the code to be executed. This is particularly the case in frameworks that spawn generic
actors, e.g. a unit testing framework that spawns an actor to run an arbitrary unit test.
Similarly, one may wonder why there is no support for becomeMirroredBy: on regular objects.

Using such a construct, a regular object could be turned into a mirage and vice versa. We opted
to disallow this because it enables the interpreter to in-line the metalevel methods associated with
normal objects. The interpreter can assume that it will never need to reify them because the object’s
implicit mirror cannot be changed. Nevertheless, one could allow a becomeMirroredBy: operation
on mirages only. However, simply assigning the implicit mirror of a mirage may break the strict
one-to-one relationship established between the mirage and its unique implicit mirror: if a mirage
m’s implicit mirror m1 would be replaced by an implicit mirror m2, then m2.basemay not properly refer
back to m but to another mirage. To avoid such issues, we opted to keep the one-to-one relationship
constant for objects.

7. RELATED AND FUTURE WORK

We now briefly discuss how the present architecture differs from the previous version of Ambi-
entTalk [4], as well as related work in the area of implicit reflection. We end by outlining the current
state of AmbientTalk and future work.

7.1. Previous work

In previous work, we have discussed the metaobject protocol of AmbientTalk/1— the predecessor
of the AmbientTalk language described in this paper—to develop language features specifically
for mobile ad hoc networks [4]. In AmbientTalk/1, an actor is represented as an active object,
which executes in a thread of its own, has a message queue and a dedicated behavior describing the
methods that may be asynchronously invoked on the active object. This behavior object contains
base-level application methods as well asmetalevel methods used to hook into the actor’s metaobject
protocol. Intercession is made possible by making the active object implement a metalevel method,
which is only distinguishable from a base-level method by its reserved name.
In AmbientTalk/1 reflection is neither stratified nor encapsulated: base-level code can be affected

by the implementation details of metalevel code such as that of a new language feature. Because
the base- and metalevels are not partitioned into separate namespaces, name clashes between
the two levels can occur. For example, a base-level method may accidentally be regarded as a
metalevel method simply because its name accidentally matches that of a metalevel operation.
Finally, AmbientTalk/1 had no metaobject protocol for objects, only for actors.

7.2. Related work

Intercession—the ability of a program to modify its own execution semantics—has been present in
early work on reflection in general [1] and reflection in object-oriented languages in particular [2].
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Since then, there have been numerous proposals to introduce intercession in languages that originally
had few (if any) such capabilities.
It is indeed quite rare to see a programming language with a clean reflective architecture for

supporting intercession—such as interception of message sending, object creation, etc.—from the
start. A notable exception is the CLOS MOP [3,23], which can still be considered as the most
advanced metaobject protocol in use to date. The difference between the metaobject protocols of
CLOS and AmbientTalk is that AmbientTalk’s MOP is object-based rather than class-based and
that the CLOS metaobject protocol is not entirely stratified [5]. Moreover, CLOS has no equivalent
for mirrors on actors, because it is not a language based on event loop actors.
Because the interception of messages sent to objects is a common use case of intercession,

many languages have introduced ad hoc approaches to achieve intercession for this specific case.
In Smalltalk, for example, several alternatives have been proposed to control message passing
semantics [21], such as method wrappers [24] or using the doesNotUnderstand: protocol.
The downside of these approaches is that they implement new metalevel behavior at the base level,
thereby violating stratification. For example, when a future is represented as an object overriding
doesNotUnderstand:, the future acts as both a base and a metalevel object. Because both
levels are indistinguishable, name clashes can occur making it difficult to distinguish between, e.g.
sending subscribe to a future and sending subscribe to the object denoted by the future. As
exemplified in Section 5.1.1, AmbientTalk’s stratified MOP avoids such name clashes.
In Java, since there is no such thing as a doesNotUnderstand: protocol, nor enough reflec-

tive facilities to intervene in the method lookup process to define method wrappers, many proposals
to introduce intercession rely on proxies. The dynamic proxies added to Java 1.3 [25] do introduce a
form of stratification: using our terminology, the proxy is an empty mirage object while the associ-
ated InvocationHandler acts as its (implicit) mirror. However, with respect to encapsulation,
there is no equivalent of a mirror factory to access the InvocationHandler of a given proxy.
Bytecode transformation is another technique for intervening in the method lookup process of

a language [26,27]. Recently, techniques relying on bytecode transformation have been used to
add fine-grained implicit reflection to Smalltalk [28,29]. On the one hand, these transformation-
based approaches mostly ignore the principles of mirror-based architectures, especially structural
correspondence: introspecting on transformed code unfortunately reveals the implementation tricks
used by the transformation engine. On the other hand, the mirror-based architectures that have been
proposed up to now, such as the ones of Self and Strongtalk, offer limited intercession [5]. The
architecture presented in this paper precisely reconciles mirrors with intercession.
The combination of reflection and actors was an active research topic in the late 80s/early

90s. Our support for reflection on actors has been inspired by early reflective actor languages
such as ABCL/R [30] and AL-1/D [31]. The innovation of AmbientTalk’s reflection on actors
is that the actors reflected upon are event loops rather than ‘active objects’, as they have been
traditionally represented. AmbientTalk is the first language to combine an E-style concurrency
model [15] with an advanced reflective architecture. The message passing protocol that transmits
asynchronous messages from one actor to another has been largely inspired by the protocol intro-
duced in CoDA [32].
Our work also relates to partial behavioral reflection [33]: the principle of limiting the cost of

implicit reflection to where and when it is really needed. The idea is to only intercess (i.e. reify
a certain metalevel operation) at those execution points where a reification is really necessary.
AmbientTalk’s implicit mirrors currently support what is known as entity selection: the ability to
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activate intercession on a per-object basis. That is: the AmbientTalk interpreter knows that it only
needs to reify metalevel operations performed on mirage objects. Non-mirage objects follow the
default language semantics and thus require no intercession. There exist more fine-grained selection
levels, such as operation and intra-operation selection [33]. These features are particularly useful
for efficiently supporting aspect-oriented extensions [33–35], and can be provided by the language
processor [35,36]. Incorporating them in the AmbientTalk interpreter is future work. A benchmark
of early experiments in adding operation selection indicates promising gains in performance [7].

7.3. Current status and future work

An open-source interpreter for the AmbientTalk language has been implemented in Java and, as
noted previously, can be downloaded from http://prog.vub.ac.be/amop. In addition to the desktop,
the implementation runs on the Java 2 micro edition (J2ME) platform, under the connected device
configuration. Hence, AmbientTalk runs on PDAs and high-end cellular phones. Our current exper-
imental setup consists of a number of smartphones, which communicate by means of an ad hoc
WLAN network. The reflectively implemented future-type message passing and leased far reference
language features are shipped with AmbientTalk’s standard library. Their actual implementations
are more elaborate than the didactic versions described in this paper, but in essence they are
equivalent.
Partial behavioral reflection: In future work, we would like to investigate whether the perfor-

mance gain achieved by incorporating partial behavioral reflection in the mirror-based architecture
outweighs its associated complexity cost. One possibility to strike a balance between both is to
give the ‘protocols’, which group logically related meta-operations (cf. Sections 4.1 and 4.2) a first-
class status as separate objects. For example, rather than having invoke as a method defined on an
object’s mirror m directly, the method would be defined on the protocol object m.invocationProtocol.
Having partitioned all methods into separate protocol objects, the next step would be to make
protocol objects replaceable. For example, rather than overriding invoke, one replaces the mirror’s
invocationProtocol object with a new protocol object (with its own definition of invoke). Replacing
only a single protocol object and leaving the others intact leads to more fine-grained partial behav-
ioral reflection, because the implementation of metalevel operations can be hard-wired for protocol
objects that have not (yet) been replaced.
Security: AmbientTalk is a reflective distributed programming language, which raises the issue of

how objects can be secured against malicious programs. AmbientTalk’s security model is based on
the object-capability model as embodied in the E language [37]. However, in E the trust boundary is
defined at the individual object level. In AmbientTalk, we currently assume (but not yet enforce) that
objects local to the same actor can be trusted. The trust boundary is thus defined at the actor level.
From the point of view of the reflective architecture, the question then becomes what capabilities a
metaprogrammer can exert on a remote object. In AmbientTalk, a mirror on a far reference currently
does not give the metaprogrammer more rights at the meta-level (e.g. inspecting or reading the slots
of a remote object), except for the ability to reflectively send an asynchronous message across the
far reference. Thus, remote objects cannot by default be inspected or taken apart. However, remote
reflection on an object is still possible if the inspector is given a far reference to the mirror of the
remote reflectee (which is distinct from a far reference to the reflectee itself ). In this case, the far
reference to the mirror must be explicitly parameter passed to the inspector by a party trusted by
the reflectee, following the usual rules of object-capability security.

Copyright q 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:661–699
DOI: 10.1002/spe



MIRROR-BASED REFLECTION IN AMBIENTTALK 697

8. CONCLUSIONS

We have introduced the mirror-based metalevel architecture of the distributed programming
language AmbientTalk. AmbientTalk programs consist of concurrently executing actors each
encapsulating one or more objects. Metaprograms can inspect actors and their objects by means
of mirrors, which are metaobjects created by a separate mirror factory. While mirrors traditionally
provide good support for introspection and self-modification, they lack support for intercession.
Furthermore, to the best of our knowledge, mirror-based reflection has not previously been applied
to an event loop actor-based language.
AmbientTalk reconciles traditional, introspective mirrors with intercession by dinstinguishing

between explicit and implicit mirrors. Implicit mirrors are used by the interpreter itself when
performing metalevel operations on base-level objects. In order to causally connect such mirrors
to base-level objects, AmbientTalk introduces mirages: objects whose MOP is implemented by
a causally connected implicit mirror. AmbientTalk also supports implicit mirrors on actors as a
whole.
Because AmbientTalk successfully combines mirrors with implicit reflection, it can introduce

the benefits of mirror-based reflection in the implementation of language features, which require
intercession. First, to metaprograms, mirrors remain only accessible via the mirror factory, allowing
an object to encapsulate the metalevel behavior implementing the new language feature. Second,
implicit mirrors are stratified with respect to base-level code, such that extensions to the metaobject
protocol do not interfere with application-level code. We have illustrated these benefits by imple-
menting two non-trivial language extensions using implicit mirrors, namely future-type message
passing and leased far references.
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