
feature

78 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

once a bug is precisely located, fixing it is often
trivial. Unfortunately, most debuggers provide very
limited assistance for temporal navigation, so pro-
grammers frequently have to resort to mental simu-
lation of program execution.

Omniscient debuggers drastically improve the
situation by enabling programmers to seamlessly
navigate forward and backward in a buggy pro-
gram’s execution history and easily find the root
cause of errors through causal links.3 An omni-
scient debugger can thus have a high impact on the
development process’s efficiency.

Omniscient debugging is far from a new idea:
the first omniscient debugger, EXDAMS (Extend-
able Debugging and Monitoring System),4 dates
back to 1969. While numerous systems have been
proposed since then, omniscient debuggers still
aren’t part of the typical development environment.
Are the challenges of omniscient debugging a defin-
itive barrier to its adoption?

This article presents TOD (trace-oriented de-
bugger), a prototype scalable omniscient debugger
for Java, which aims at making omniscient debug-
ging practical, at last.

Omniscient Debugging
in a Nutshell
So what is omniscient debugging about, and what
challenges does it face? First, let’s briefly expose the
traditional approaches to debugging and why they
eventually fall short.

Traditional Approaches to Debugging
Figure 1 shows the two traditional approaches
to debugging. Log-based debugging consists of
inserting logging statements within the source
code to produce an ad hoc trace during a pro-
gram’s execution. This technique exposes the
actual history of the execution but presents sig-
nificant inconveniences: it requires cumbersome,
widespread, and anticipated modifications to the
source code, and it hardly scales when the pro-
grammer has to manually analyze traces.

Breakpoint-based debugging consists of run-
ning the program under a dedicated debugger
tool, which lets the programmer pause the execu-
tion at determined breakpoints, inspect memory
contents, and then continue execution step by
step. Unfortunately, when the execution is paused,

D ebugging represents a major cost in the software development process. A 2002
US National Institute of Standards and Technology study established that soft-
ware errors have an enormous cost on the US economy and mentioned that
“software developers already spend approximately 80 percent of development

costs on identifying and correcting defects.”1 In an empirical study of debugging stories,
Marc Eisenstadt found that the major reason why bugs are difficult to track down is the
large temporal or spatial chasm between the root cause and the actual symptom of a bug;2

A scalable debugger
for Java integrated
into Eclipse paves
the way for
practical omniscient
debugging.

Guillaume Pothier and Éric Tanter, University of Chile

Back to the Future:
Omniscient Debugging

p ar a l l e l pr o gr amming

 November/December 2009 I E E E S O F T W A R E 79

information about the program’s previous state
and activity is limited to the current call stack.
Developers using breakpoint-based debuggers are
familiar with having to rerun the whole program
many times with different sets of breakpoints to
progressively home in on the bug.

Omniscient Debugging
Omniscient debuggers, also known as back-in-
time or reversible debuggers, record the whole his-
tory, or execution trace, of a debugged program
and let the user freely explore it. This approach
combines the advantages of both log-based (past
activity is never lost) and breakpoint-based debug-
ging (interactive navigation, step-by-step execution,
and complete stack inspection). Omniscient debug-
gers simulate step-by-step execution both forward
and backward, avoiding having to rerun the whole
program many times to pinpoint the bug’s root
cause. More importantly, they make it possible to
navigate through the history of a program by fol-
lowing causal links, so questions that would oth-
erwise require a significant effort can be answered
instantly—for instance, “When was variable x
assigned a null value?” or “What was the state
of object o when it was passed as an argument to
method foo?”

Challenges
Although omniscient debugging has clear advan-
tages over traditional approaches, it’s still consid-
ered mostly unrealistic because of the important
scalability issues it raises:

 ■ Capturing the execution trace should not

cause too high an overhead on the debugged
application.

 ■ Execution traces grow very quickly and thus re-
quire fast and scalable storage.

 ■ Queries on a possibly huge trace should be pro-
cessed fast enough for the debugging environ-
ment to be responsive to user interaction.

 ■ However large the execution trace, the devel-
oper must be able to rapidly locate the points of
interest and establish meaningful relations be-
tween execution points.

While fully addressing all these challenges is a non-
trivial task, it is possible to mitigate these issues to
a large extent. Our work on TOD illustrates how
we achieve practical omniscient debugging of Java
programs.

Overview of TOD
TOD is a trace-oriented debugger for Java inte-
grated into the Eclipse development environment
(see Figure 2):5

 ■ Instrumentation (phase 1). When the Java Vir-
tual Machine (JVM) is about to load a class,
the agent sends its bytecode to the weaver,
which inserts event generation code into the
class and then sends it back to the JVM.

 ■ Event emission (phase 2). As the program runs,
the instrumented code generates events and
sends them to the event database. The sequence
of generated events constitutes the execution
trace.

 ■ Storage and indexing (phase 3). The highly
specialized event database stores events at

Log-based debugging Breakpoint-based debugging

Time

Cause of the bug

? ?

Too much information ...

• Full program history can
 be recorded

Root cause

Symptom History recorder

• Scalability issues

• Full program history is recorded,
 allowing forward and backward
 stepping
• Ability to traverse causal links such
 as variable or field assignment
• Interactive navigation

• Past state and activity is lost
• Breakpoints must be set a priori

• Detailed inspection of program
 state at breakpoints
• Ability to follow program execution
 step by step from the breakpoint
 onward• Locations and information of

 interest must be known a-priori
• Potentially huge amount of
 information to analyze by hand
• Source code is polluted

16 String n = getName();
17 int = n.indexOf(’:’);

?

?

Traditional debugging paradigms Omniscient debugging

16 String n = getName();
17 System.out.println(”n: ”+n);
18 int = n.indexOf(’:’);

Symptom

Figure 1. Approaches to
debugging. Omniscient
debugging is an
alternative to traditional
techniques such as
log-based and
breakpoint-based
debugging.

80 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

a very high rate and indexes them to allow
fast query processing. Additionally, a struc-
ture database stores static information about
the debugged program, such as its classes and
methods.

 ■ Querying and navigation (phase 4). The devel-
oper navigates in the execution trace using the
debugger front end, which is integrated into the
Eclipse IDE.

By leveraging the very constrained nature of ex-
ecution traces (events arrive almost in timestamp
order and are never modified once emitted) and
the fact that all omniscient debugging navigation
actions can be computed using simple event filter-
ing queries, we designed a very scalable system:
the event database is parallelizable, and in our
benchmarks on a 10-machine cluster, it handled a
sustained input rate of 500,000 events per second
and processed queries in fractions of a second on
traces containing almost a billion events.5 How-
ever, trace capture causes a significant slowdown
of the debugged program: up to 80 times in the
worst case (a fully instrumented, CPU-intensive
program), although it’s possible to greatly reduce
it by excluding parts of the program from instru-
mentation (for example, classes of the standard
Java libraries).

From our experience, a single-machine setup
is enough for relatively small execution traces (10
million events), and a two-machine setup (that is,
one dedicated database machine in addition to
the development machine) can comfortably han-
dle traces of roughly 150 million events, which
is enough to debug the event database itself, for
instance. For larger traces, organizations that
can afford it would benefit from a more power-
ful setup.

Debugging with TOD
TOD supports temporal navigation via stepping
both forward and backward in time. In addition,
it supports fast causal navigation via a link dis-
played next to the value of inspected variables,
which lets the user directly jump to the event that
assigned the variable its current value. We now

Structure
database

Event
database

Query
processor

4
Queries/
results

3

2

1

Events

Original
classes

Woven
classes

Debugger
frontend

Debugger coreTarget JVM

Application

Weaving
agent

Weaver

(a)

(b)

1

3

c
a

2
4

5

7
b d

6 8

Figure 2. How TOD (trace-oriented
debugger) works: architecture and
operation. The four basic phases of
an omniscient debugging session:
(1) instrumentation, (2) event generation,
(3) execution trace storage and indexing,
and (4) interactive navigation.

Figure 3. TOD (trace-oriented debugger) user interface. (a) Hunting for
the root cause of a NullPointerException using the “why?” link: going
from the symptom to the cause in eight simple steps. (b) Navigation
history. Web browser-like back and forward buttons permit users to
easily navigate between visited events and views.

 November/December 2009 I E E E S O F T W A R E 81

describe a bug-hunting session that uses this fea-
ture, as illustrated in Figure 3.

After launching the buggy program with
the TOD launch button (1), we can easily lo-
cate the exception event in the execution trace.
Once the exception event is selected in the main
control flow view (2), the corresponding source
code line is automatically highlighted (3). Here
we notice that the thumbnail field of the cur-
rent ThumbnailPanel object is indeed null (4), which
is why the exception was thrown. Clicking the
“why?” link (4) immediately brings us to not
only the source code line where the value of the
field is set (5) but also to the precise event that
caused this particular assignment (6). Note that
the assignment occurred in a different thread
than the one that threw the exception (7). In-
specting the program state at the newly selected
event shows that we tried to create a thumbnail
of a .sh file (8), which failed.

In this simple example, TOD let us jump in
just a few steps directly from the bug’s symptom
(the exception) to its cause (the mishandling of
nonimage files). The same bug hunting with a
breakpoint-based debugger would have been te-
dious because the program potentially has many
places in which the thumbnail field is set apart
from the constructor and many correct instan-
tiations of ThumbnailPanel to step through.

Such a toy example doesn’t show TOD’s
full potential, however. Although it would be
too lengthy to relate here, we’ve used TOD to
quickly solve difficult problems, such as bugs
in the TOD database itself, and to understand
issues that arose in our use of highly complex
software such as the AspectBench Compiler for
AspectJ (http://abc.comlab.ox.ac.uk).

Not Getting Lost: Bookmarking to the Rescue
Given the huge amount of events that TOD can
record, it’s crucial to help users avoid getting lost
while navigating an execution trace. To this end,
TOD lets users bookmark events and objects,
and lets them quickly access previously visited
locations.

A timeline above the main TOD view displays
bookmarked events. Additionally, the event that’s
currently selected in the main view also appears
in this timeline, so users can immediately find
their way around in the execution trace relative
to known landmarks. This is particularly useful
when using the “why?” link, which can lead to
events that occurred far in the past, in completely
different contexts.

The green balloons in Figure 3a illustrate the

process of event bookmarking. The position of
the current event is always marked in the timeline
(a, b). When users feel they reached an important
landmark (or a starting point for exploring several
program paths), they press the bookmark button
(c), which also lets them choose a name and color
for the event (d).

Users can also bookmark and assign colors
and names to individual objects. It’s therefore pos-
sible to mark an object involved in a failure so that
previous usage of that object is easy to spot during
navigation.

In addition to bookmarking, the user inter-
face provides back and forward buttons similar to
a Web browser’s that permit access to the entire
navigation history (see Figure 3b).

Support for Partial Traces
Although we designed TOD to support huge ex-
ecution traces, it isn’t always practical to record ev-
ery single event: the runtime overhead caused by
event generation is considerable, as are the storage
requirements. Instead, because only certain parts
of a program execution are of interest, users can
capture partial traces.5

Developers obtain partial traces in TOD by us-
ing both static and dynamic scoping: static scop-
ing consists of selecting which classes should or
shouldn’t generate events. Dynamic scoping con-
sists of enabling or disabling trace capture at run-
time, either by using a simple API directly in the
debugged program or by using a switch button in
the debugger front-end. Dynamic scoping is partic-
ularly useful when a bug occurs after a long run-
ning time or under specific dynamic conditions.
For instance, in a Web application, it might be in-
teresting to limit trace capture to the processing of
a particular HTTP request’s control flow.

The downside of partial traces is that they are,
indeed, partial. Consequently, developers can’t re-
constitute every part of the debugged program’s
history. To allow them to soundly reason about
available information, TOD systematically makes
missing information explicit. For instance, in Fig-
ure 4, the small dots indicate that control flow in-
formation is missing: between the execution of sort

Figure 4. TOD (trace-
oriented debugger)
displays missing
information while
reconstructing control
flow. Making the
missing information
explicit allows the user
to reason soundly about
the information that’s
available.

82 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

and compare, some unrecorded computation took
place because the standard Collections.sort method
wasn’t included in the trace.

In practice, the benefits of partial traces far
outweigh the drawbacks. Combining static and
dynamic scoping has proven invaluable for debug-
ging long-running, CPU-intensive programs such
as the TOD database itself.

Custom Formatters
Similar to most breakpoint-based debuggers,
TOD displays reconstituted objects by default as
a list of field = value pairs and lets the user ex-
plore the object graph by “opening” objects of in-
terest. Although this is sufficient in some cases, a
higher-level representation is more useful in oth-
ers. Consider, for instance, a linked list (see Figure
5): the user is usually more interested in the list’s
sequence of elements than in details of each node’s
next and previous pointers.

Like modern IDEs such as Eclipse, TOD lets
the user define custom formatters for classes of in-
terest. In TOD, these formatters are small scripts
that can easily access the fields of reconstituted
objects to produce rich (HTML) textual repre-
sentations. Figure 5 shows an example of such a
formatter.

Current State of the Practice
Most modern IDEs only provide a breakpoint-
based debugger out of the box, and they all have
roughly the same set of features: setting regular
or conditional breakpoints, watchpoints, for-
ward stepping, and the ability to inspect the cur-
rent stack frame and the objects reachable from it.

However, some omniscient debuggers are avail-
able today.

Omniscient Debuggers for Java
ODB is one of the first omniscient debuggers for
Java.3 Like TOD, it obtains execution traces by in-
strumenting classes as the JVM loads them; how-
ever, ODB stores the captured trace data inside
the target JVM. This raises some issues: the avail-
able heap space limits the amount of trace data,
and references to objects that are no longer in use
are kept, preventing proper garbage collection.
A unique feature of ODB is the ability to resume
execution from any point in time with a modified
state.

The Whyline for Java lets users select ques-
tions about why some behavior did or didn’t oc-
cur.6 The Whyline automatically generates these
questions based on a combination of static and
dynamic analysis. It can deal not only with the
program’s internal state—for example, “why does
variable x have value y?”)—but also with its tex-
tual and graphical output, all the way down to in-
dividual pixels. Although the Whyline can analyze
relatively large execution traces (for example, 35
million events), its scalability is limited because it
performs the analysis in memory.

JIVE is an interactive visualization environ-
ment for Java programs7 that provides UML-like
sequence diagrams as well as object diagrams
extended with information about the current
method call. Users can reduce the diagrams’ level
of detail to fit more information on the screen,
but it isn’t clear that this mechanism scales past
a few hundred elements. JIVE supports forward
and backward stepping but not quick causal navi-
gation. It captures execution trace using JPDA,
JVM’s debugging interface, and processes it in
memory, thus limiting the system’s efficiency and
scalability.

Other Platforms
Omniscient debuggers have also been proposed for
platforms other than Java.

Lisp. In 1984, ZStep provided a reversible stepper
for Lisp that allowed developers to step forward
and backward and see the result of evaluated ex-
pressions in parallel to the corresponding source
code.8 Its sequel, ZStep95, added the ability to re-
late graphical output to the event that caused it, as
well as tape-recorder-like controls for easier navi-
gation.9 However these systems didn’t handle side
effects, causal links (except for graphical output),
or scalability issues.

(a)

(b)

(c)

– myList: LinkedList
 – �rst: Node
 + value: “my”
 + prev: null
 – next: Node
 + value: “tailor”
 + prev: Node
 – next: Node
 + value: “is rich”
 + prev: Node
 + next: null

result = "["
current = o.�rst
while current != None:
 result += str(current.value)+”, “
 current = current.next
return result + "]"

myList: [“my”, “tailor”, “is rich”,]

Figure 5. Custom formatter for a linked list. (a) The default formatting
shows the list’s internal structure. (b) The custom formatter receives
the object to process in the o variable. It iterates through the linked
list using its internal structure (the list header and each node’s next
pointer) to (c) construct a string representation.

 November/December 2009 I E E E S O F T W A R E 83

Native. TimeMachine by Green Hills Software
(www.ghs.com/products/timemachine.html) is an
omniscient debugger for embedded systems (Pow-
erPC, ARM and similar architectures). On some
platforms, a specialized hardware probe lets de-
velopers capture trace data without incurring any
runtime overhead; otherwise, it uses traditional
software instrumentation. In addition to the usual
features of omniscient debuggers, developers can
also use TimeMachine as a profiling tool.

UndoDB is an omniscient debugger for na-
tive x86 Linux programs by Undo (www.undo-
software.com). As opposed to most of the other
tools presented here, UndoDB is based on a check-
point/replay mechanism: it periodically obtains a
checkpoint, or snapshot, of the process memory,
and uses a replay technique to reconstruct the pro-
gram’s state between checkpoints. This mecha-
nism yields a relatively low runtime overhead, but
it doesn’t allow causal navigation.

Chronicle (http://code.google.com/p/chronicle-
recorder) is an open source omniscient debug-
ger for native x86 Linux programs with an ar-
chitecture similar to that of TOD: binaries are
instrumented so that they send trace data to an
out-of-process, disk-based database. A key char-
acteristic of Chronicle is the aggressive compres-
sion and indexing of events that lets developers
efficiently record very large traces and process
queries.

Smalltalk. Unstuck is an omniscient debugger for
Smalltalk that’s similar in architecture and op-
eration to ODB.10 Adrian Lienhard and his col-
leagues11 proposed another back-in-time debug-
ger for Smalltalk that handles the scalability issue
by using partial traces but in a very different way
from TOD. They postulate that information about
objects that aren’t reachable at a certain point in
time (that is, objects eligible for garbage collec-
tion) can be discarded. Although discarding this
information boosts efficiency, we think that a
bug’s root cause can have occurred in the context
of objects that have been discarded long before the
bug’s symptoms manifest themselves, thus render-
ing this approach ineffective in some cases.

Comparison
Figure 6 summarizes the characteristics of these
tools; TOD has several characteristics that make it
a competitive alternative:

 ■ TOD’s scalable database engine enables fast
storing and querying of events. Moreover, it
can be distributed over a cluster of machines
to further improve its scalability.

 ■ The support for partial traces dramatically
enhances TOD’s applicability by offering
expressive means to specify selective trace
generation and adequately report incomplete
information.

 Platform Mechanism Storage History Runtime Partial traces Casual High-level IDE
 media size overhead nav. overviews integration

TimeMachine Embedded ? RAM/ 1e9 Soft.: ? ? ? � Part of Green
 probe Hard.: none Hill's MULTI IDE

UndoDB Linux Checkpoint replay RAM n/a 7x Not applicable � � Wrapper for gdb

Chronicle Linux Event log Disk 1e9 300x ? � � Plugin for Eclipse CDT

[Lienhard] Squeak Event log RAM 1e5 6x Events on unreachable � � Integrates into
 objects are discarded
Unstuck Squeak Event log RAM 1e5 250x Lexical scoping � � Integrates into
 the platform

Whyline Java Event log Disk 1e7 252x/20x Lexical scoping � � No

JIVE Java Event log RAM ? ? Lexical scoping � � Plugin for Eclipse JDT

ODB Java Event log RAM 1e6 95x/37x Lexical scoping � � Limited Eclipse integration

TOD Java Event log Disk 1e9 83x/28x Lexical & dynamic scoping � � Plugin for Eclipse
 Missing info explicit in GUI JDT/AJDT

History size gives the order of magnitude of the number of events that can reasonably be collected and processed by the system.
Runtime overhead gives an idea of the slowdown caused by the debugger.
In the Partial traces column, lexical scoping means that it’s possible to select the classes or packages to instrument, and dynamic scoping means that it is
 possible to activate or deactivate trace capture at runtime.
Causal navigation indicates if the debugger permits to directly jump to the past event that set a variable to its current value.
High-level overviews indicate if the system can provide summary views of the debugged program.

Figure 6. Comparison of available omniscient debuggers. For systems on which we performed our own benchmarks,
we provide two figures: the first is the runtime overhead in the worst case (that is, for a fully instrumented, CPU-
intensive program), and the second corresponds to a more typical situation (a run of the jTidy HTML beautifier
program). For the other systems, the unique figure is the one provided by the system’s authors.

84 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

 ■ The GUI’s responsiveness, achieved through
efficient query processing, lets users interac-
tively navigate huge execution traces.

 ■ TOD’s specialized GUI metaphors, such as
the “why?” link, bookmarks, and timelines,
allow for effective navigation and program
understanding.

 ■ The tight Eclipse integration lets users
smoothly integrate TOD in the develop-
ment process (integration with IntelliJ and
NetBeans is currently ongoing).

On the other hand, some of the features pro-
vided by other systems are missing from TOD:

 ■ Whyline lets users ask negative questions such
as, “Why did method x not execute?” These
questions frequently occur during the debug-
ging process.

 ■ Whyline lets users relate the program’s tex-
tual and graphical output to the event that
caused them. Support for textual output in
TOD is underway, but support for graphical
output would require considerable work.

 ■ TOD has a runtime overhead similar to that
of ODB and Whyline, yet it provides a much
greater scalability. However, systems such as
UndoDB and Lienhard’s have a much lower
overhead, and TimeMachine has no overhead
at all because it uses a hardware probe. We
strive to reduce TOD’s runtime overhead by
using static analyses to limit the amount of
redundant information it captures.

 ■ JIVE provides graphical visualizations of the
object graph, which can be very useful for
program understanding. Although TOD sup-
ports custom formatters, they’re only textual.

Although TOD is a prototype and still con-
tains many rough edges, we found it invaluable
in our day-to-day development experience, both
in academia and in industry. If you want to give
it a try, it’s free and open source (http://pleiad.cl/
tod). Don’t hesitate to subscribe to the mailing
list or to contact us for more information.

A though omniscient debugging seems to
be slowly attracting more attention in
industrial settings, new programming

languages and paradigms present new chal-
lenges. We can already identify three major areas
in which the development of practical omniscient
debugging is crucial:

 ■ Dynamic languages (for example, Python,
Ruby, and so on) are becoming increasingly
popular. Improving the debugging support
could help alleviate, at least to some degree,
the lack of static type checking.

 ■ Developing concurrent and distributed sys-
tems is notoriously difficult, in particular be-
cause failures can be hard to reproduce. Being
able to automatically record and later navigate
through the execution history of such pro-
grams is thus of primary importance.

 ■ Because it adds more possible loci for late
binding, aspect-oriented programming (AOP)

makes it more difficult for programmers to
mentally reconstruct a program’s execution
flow.12 Appropriate development tools—in
particular debuggers—are required to support
AOP.

We’re already exploring how omniscient debug-
ging can provide adequate support for AOP.13
We’re also developing a version of TOD for Py-
thon. Concurrent and distributed programming is
on our research agenda.

Because omniscient debugging is such an ef-
fective tool for program understanding, it greatly
enhances the software development process. It’s
therefore crucial to devote efforts to make it prac-
tical and applicable in as many situations as pos-
sible and address the different challenges to its
adoption.

Acknowledgments
We thank Greg Law of Undo for providing detailed
technical information on UndoDB, as well as Alex-
andre Bergel, Johan Fabry, Adrian Lienhard, Olivier
Motelet, and the anonymous reviewers for their valu-
able comments.

About the Authors
Guillaume Pothier is a doctoral candidate in the Computer Science Department of
the University of Chile. His main research interests are programming languages and tools.
His current research is dedicated to finding ways and means to make omniscient debugging
practical. He obtained a MEng in computer science from the École des Mines de Nantes,
France. He is a member of the ACM. Contact him gpothier@dcc.uchile.cl.

Éric Tanter is an assistant professor in the Computer Science Department of the
University of Chile, where he leads the PLEIAD (Programming Languages and Environments
for Intelligent, Adaptable, and Distributed Systems) laboratory. His research interests include
programming languages and tool support for modular and adaptable software. Tanter
received his PhD in computer science from both the University of Nantes and the University
of Chile. He is a member of the ACM and the IEEE. Contact him at etanter@dcc.uchile.cl.

 November/December 2009 I E E E S O F T W A R E 85

References
 1. Nat’l Inst Standards and Technologies, “Software Er-

rors Cost U.S. Economy $59.5 Billion Annually,” June
2002; www.nist.gov/public_affairs/releases/n02-10.
htm.

 2. M. Eisenstadt, “My Hairiest Bug War Stories,” Comm.
ACM, vol. 40, no. 4, 1997, pp. 30–37.

 3. B. Lewis, “Debugging Backwards in Time,” Proc. 5th
Int’l Workshop Automated Debugging (AADEBUG
03), M. Ronsse and K.D. Bosschere, eds., Computer
Science Repository, 2003.

 4. R.M. Balzer, “EXDAMS—Extendable Debugging and
Monitoring,” Proc. Am. Federation of Information
Processing Societies Spring Joint Computer Conf.,
ACM Press, 1969, pp. 567–580.

 5. G. Pothier, É. Tanter, and J. Piquer, “Scalable Omni-
scient Debugging,” Proc. 22nd ACM SIGPLAN Conf.
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 07), ACM Press, 2007, pp.
535–552.

 6. A.J. Ko and B.A. Myers, “Debugging Reinvented: Ask-
ing and Answering Why and Why Not Questions about
Program Behavior,” Proc. 30th Int’l Conf. Software
Eng. (ICSE 08), ACM Press, 2008, pp. 301–310.

 7. P. Gestwicki and B. Jayaraman, “Methodology and
Architecture of JIVE,” Proc. 2005 ACM Symp. Soft-
ware Visualization (SoftVis 05), ACM Press, 2005,
pp. 95–104.

 8. H. Lieberman, “Steps toward Better Debugging Tools
for Lisp,” Proc. 1984 ACM Symp. LISP and Func-
tional Programming (LFP 84), ACM Press, 1984, pp.
247–255.

 9. H. Lieberman and C. Fry, “ZStep 95: A Reversible,
Animated Source Code Stepper,” Software Visualiza-
tion—Programming as a Multimedia Experience, J.
Stasko et al., eds., MIT Press, 1998, pp. 277–292.

 10. C. Hofer, M. Denker, and S. Ducasse, “Implementing a
Backward-in-Time Debugger,” Proc. Net.Object Days
(NODe 06), Lecture Notes in Informatics, vol. P-88,
Gesellschaft für Informatik, 2006, pp. 17–32.

 11. A. Lienhard, T. Gîrba, and O. Nierstrasz, “Practical
Object-Oriented Back-in-Time Debugging,” Proc. Eu-
ropean Conf. Object-Oriented Programming (ECOOP
08), Springer, 2008, pp. 592–615.

 12. T. Elrad, R.E. Filman, and A. Bader, “Aspect-Oriented
Programming,” Comm. ACM, vol. 44, no. 10, 2001,
pp. 29–32.

 13. G. Pothier and É. Tanter, “Extending Omniscient
Debugging to Support Aspect-Oriented Programming,”
Proc. 23rd ACM Symp. Applied Computing (SAC 08),
vol. 1, ACM Press, 2008, pp. 266–270.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

IEEE Computer Graphics and Applications bridges the theory and practice of computer graphics.
From speci� c algorithms to full system implementations, CG&A offers a unique combination
of peer-reviewed feature articles and informal departments. CG&A is indispensable reading
for people working at the leading edge of computer graphics technology and its applications
in everything from business to the arts.

AAA&&GGCC
Visit us at www.computer.org/cga

