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ABSTRACT

Bytecode instrumentation is a widely used technique to imple-
ment aspect weaving and dynamic analyses in virtual machines
such as the Java Virtual Machine. Aspect weavers and other in-
strumentations are usually developed independently and combin-
ing them often requires significant engineering effort, if at all pos-
sible. In this paper we introduce polymorphic bytecode instrumen-

tation (PBI), a simple but effective technique that allows dynamic
dispatch amongst several, possibly independent instrumentations.
PBI enables complete bytecode coverage, that is, any method with
a bytecode representation can be instrumented. We illustrate fur-
ther benefits of PBI with three case studies. First, we provide an
implementation of execution levels for AspectJ, which avoid infi-
nite regression and unwanted interference between aspects. Sec-
ond, we present a framework for adaptive dynamic analysis, where
the analysis to be performed can be changed at runtime by the user.
Third, we describe how PBI can be used to support a form of dy-
namic mixin layers. We provide thorough performance evaluations
with dynamic analysis aspects applied to standard benchmarks. We
show that PBI-based execution levels are much faster than control
flow pointcuts to avoid interference between aspects, and that their
efficient integration in a practical aspect language is possible. We
also demonstrate that PBI enables adaptive dynamic analysis tools
that are more reactive to user inputs than existing tools that rely on
dynamic aspect-oriented programming with runtime weaving.

Categories and Subject Descriptors: D.3.3 Programming Lan-
guages: Language Constructs – Frameworks

General Terms: Algorithms, Languages, Measurement

Keywords: Bytecode instrumentation, modularity constructs, dy-
namic program analysis, aspect-oriented programming, mixin lay-
ers, Java Virtual Machine

1. INTRODUCTION
Virtual machines for safe languages, such as the Java Virtual

Machine (JVM) or .NET, execute platform-independent code—
bytecode in the case of the JVM, and CLI code in the case of .NET.
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Many recent programming languages are compiled to virtual ma-
chines. For example, Java, Scala, or JRuby programs are compiled
to JVM bytecode, and C# programs are compiled to CLI code. Fur-
thermore, there are compilers for recent languages for the parti-
tioned global address space programming model, such as X10 [9]
or Fortress [32], which target the JVM.

Instrumentation and manipulation of platform-independent
code—subsequently called bytecode instrumentation—are key
techniques for the implementation of various tools and frameworks.
For example, many dynamic program analysis tools, such as profil-
ers and data race detectors, rely on bytecode instrumentation. Many
aspect-oriented programming (AOP) languages, like AspectJ [24],
are implemented using bytecode instrumentation [22]. Because
bytecode instrumentation has become so central for tool and frame-
work development, modern virtual machines offer dedicated sup-
port. For instance, the JVM supports bytecode instrumentation
with the JVM Tool Interface (JVMTI)1 and with the API in the
package java.lang.instrument. In addition, there are numerous in-
strumentation libraries for Java bytecode, such as BCEL2, ASM3,
or Javassist [10], as well as for other languages [14].

Typically, tools relying on bytecode instrumentation are sepa-
rately developed. Composing several bytecode instrumentations
is usually not foreseen and difficult to achieve. However, flexi-
ble composition of multiple bytecode instrumentations can enable
many interesting applications. For instance, a memory leak detec-
tor can analyze a profiler at work. Even if implemented by the same
instrumentation tool, interesting compositions like self-application
(e.g., a race detector analyzing itself) or adaptive dynamic analysis
are often out of reach. An adaptive dynamic analysis tool allows
the user to select between different analyses for different parts of a
program at runtime, thereby avoiding excessive overhead resulting
from applying all analyses at the same time for the overall program.
JFluid [15] is a good example of an adaptive profiler.

In this paper we introduce polymorphic bytecode instrumenta-

tion (PBI), a novel technique that allows several, possibly inde-
pendent bytecode instrumentations to coexist and be selected dy-
namically. First, different bytecode instrumentations are applied in
isolation to a program class. Afterwards, a PBI framework merges
the resulting instrumented classes into a single class that holds the
code for all applied bytecode instrumentations. For each method,
PBI introduces a dispatcher in order to select the desired version
of the code at runtime. Because the dispatch logic is customizable,
PBI is applicable in a wide range of scenarios.

In addition, PBI also enables bytecode instrumentation of shared
libraries, that is, of libraries that are used by the base program as

1http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html
2http://jakarta.apache.org/bcel/
3http://asm.ow2.org/
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well as by code inserted through instrumentations. A good exam-
ple of a shared library is the core class library of the considered
language, such as the Java class library: in Java, almost any base
program invokes methods in the core class library, and many byte-
code instrumentations insert code that needs to call some methods
in that library. If inserted code invokes already-instrumented meth-
ods, infinite regression can easily happen. By preventing infinite
regression, PBI enables instrumentations with complete bytecode
coverage; that is, any method that has a bytecode representation
is amenable to bytecode instrumentation, including methods in the
core class library. As a special case, aspect weavers implemented
with PBI are capable of weaving aspects with complete coverage;
this is in contrast with mainstream weavers, such as the standard
AspectJ weaver and abc [5].

Polymorphic bytecode instrumentation is a general technique
that is applicable to any intermediate language. In this paper we
focus on CodeMerger, our PBI framework for Java bytecode. Two
of the case studies we consider are related to aspect weaving, and
one deals with another modularity construct, mixin layers [31]. The
original, scientific contributions of this paper are as follows:

1. We introduce Polymorphic Bytecode Instrumentation, a sim-
ple and effective technique to dynamically dispatch amongst mul-
tiple bytecode instrumentations (Section 2).

2. As a first application, we show how PBI enables instrumenta-
tion with complete bytecode coverage without disrupting the virtual
machine bootstrapping phase (Section 3).

3. We describe three consequent case studies of PBI. First, we
use PBI to support execution levels [33] in AspectJ (Section 4),
thereby enabling black-box composition of dynamic analysis as-
pects in multiple ways. Second, we leverage PBI to implement
adaptive dynamic analysis tools, where the dynamic analysis to be
performed can be changed at runtime for different parts of the base
program (Section 5). Third, we describe how PBI can be used to
support another modularity construct, a form of dynamic mixin lay-
ers (Section 6).

4. After a brief discussion of technical details (Section 7), we
thoroughly evaluate our PBI implementation for Java (Section 8),
using the two first case studies. Our evaluation shows that PBI-
based execution levels are much more efficient than equivalent con-
trol flow pointcuts to avoid interference between aspects, and are
generally as efficient as the standard AspectJ weaver when apply-
ing analysis aspects on the DaCapo benchmark suite; we also show
that PBI enables adaptive dynamic analysis tools that react more
quickly to user inputs than existing tools that rely on dynamic AOP
with runtime weaving.
Section 9 discusses prior and related work. Section 10 concludes.

2. POLYMORPHIC BYTECODE

INSTRUMENTATION
Many tools make use of bytecode instrumentation to achieve dif-

ferent goals. Polymorphic bytecode instrumentation (PBI) is a gen-
eral technique to allow these instrumentations to coexist, and to
select dynamically which instrumentation takes effect. The name
polymorphic stems from the parallel with polymorphic method
calls, where the actual code to be executed is chosen dynamically
according to some dispatch mechanism. However, as opposed to
typical polymorphic calls, the dispatch logic in PBI is not fixed,
but customizable.

Here, a bytecode instrumentation is considered purely augmen-
tative, meaning it may insert fields and methods4, as well as modify
method bodies, but it may not remove any field or method. Byte-

4In this paper “method” stands for “method or constructor”.
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Figure 1: Overview of Polymorphic Bytecode Instrumenta-

tion. First, N different bytecode instrumentations are ap-

plied to the original class Corig (class version 0), produc-

ing the instrumented classes Ci
instr (class versions i, 1 ≤ i ≤ N).

The PBI framework merges the class versions into the output

class Cmerged . Each method in Cmerged has a switch to select

the code version to execute; the dispatch logic is defined in the

function computeCV().

code instrumentations are treated as black boxes5 , which may be
implemented with any instrumentation framework, not necessarily
the same. A PBI framework is in charge of integrating these instru-
mentations, as explained below.

PBI overview Let us consider N ≥ 1 bytecode instrumen-
tations that are applied to a base program class Corig. Each
black-box instrumentation produces an instrumented class, denoted
Ci

instr (1 ≤ i ≤ N). These instrumented classes, as well as Corig, are
called class versions. A PBI framework takes these class versions
and merges them into a single class denoted Cmerged (Figure 1).
There are N +1 class versions considered for merging, where (typ-
ically) class version 0 corresponds to Corig and class version i cor-
responds to bytecode instrumentation i (1 ≤ i ≤ N).

At any single point in time, for a given computation step, only
one code version is active. Polymorphism comes from dynamic dis-

patch between these versions. Notably, the actual dispatch logic is
not fixed by the PBI framework. Rather, it is provided as input (as a
computeCV() function), in addition to the code versions (Figure 1).
The PBI framework uses this dispatch function to insert code that
selects the specific version to execute at runtime.

The merged class Cmerged generated by the PBI framework has
all fields and methods that exist in at least one class version. For
methods that have the same signature in different class versions, the
corresponding method bodies are merged. We refer to the body of
a method defined in class version i as code version i of that method.
The merged method body starts with the dispatch logic, whose pur-
pose is to jump to the code version to be executed. A PBI frame-
work is free to decide how this jump is realized and where the dif-
ferent code versions effectively reside.

Dynamic dispatch Support for dynamic dispatch between code
versions is at the heart of polymorphic bytecode instrumentation.
It offers the necessary flexibility to use PBI in a wide range of sce-
narios, such as complete bytecode coverage (Section 3), execution
levels for AOP (Section 4), adaptive dynamic analysis tools (Sec-
tion 5), dynamic mixin layers (Section 6), and so forth.

The case studies developed here highlight two different kinds of
dispatch logic, based either on (global) state or on control flow.

5As we will explain later, PBI imposes some restrictions on byte-
code instrumentations. Furthermore, PBI offers a special mecha-
nism for initializing inserted static fields, which is not transparent
to bytecode instrumentations.
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int codeVersion = computeCV(); // inlined
switch (codeVersion) {

case v0: goto CV0; // code version v0 from Corig

case v1: goto CV1; // code version v1 from C1
instr

...

case vN: goto CVN; // code version vN from CN
instr

default: goto Error; // code version does not exist
}

CV0: ... // method body from Corig

CV1: ... // method body from C1
instr

...

CVN: ... // method body from CN
instr

Error: throw new IllegalCodeVersionError();

Figure 2: Code pattern generated by CodeMerger when merg-

ing N +1 code versions.

More precisely, both kinds of dispatch logic are typically com-
posed. In the former case, dispatch depends on some value that
is accessible to all threads, and so changes between code versions
are global6. This is used for instance for adaptive dynamic analy-
sis, where the user globally selects which variant of the analysis to
apply. In the latter kind of dispatching, thread-local state is used,
thereby allowing different threads to concurrently execute different
code versions. This is needed for execution levels, among others.

Also, our first two case studies show that dispatch logic is typi-
cally common to all classes in a program, although some optimiza-
tions are applicable to reduce the complexity of dispatch for certain
classes. The third case study, which explores support for dynamic
mixin layers, illustrates a good scenario for class-specific dispatch.

PBI for Java: CodeMerger Our implementation of PBI for Java
bytecode is called CodeMerger. CodeMerger uses BCEL and is
implemented in less than 1000 lines of Java code. Each input class
version is passed as a pair consisting of the Java class file (rep-
resented as a byte array) and the desired version number. The
original class Corig is specially marked, allowing CodeMerger to
verify whether certain constraints that will be explained later are
met. Each input class must have a unique integer version number;
the numbering need not necessarily be continuous. While in many
cases, it is convenient to assign Corig version number zero, there
are also some scenarios where it is convenient to assign a differ-
ent version number to Corig; an example will be given in Section 4.
The function computeCV() holding the custom dispatch logic must
be provided as a static method in a separate class file. The merged
output class is a Java class file.

Figure 2 illustrates the generated code pattern for a merged
method body. Here we assume that Corig is assigned version num-
ber v0, and Ci

instr is version number vi. CodeMerger extracts
the body of computeCV() and inlines it in the beginning of each
merged method. The resulting code version is obtained as an inte-
ger, and then a switch statement dispatches to the appropriate code
version. All code versions of a method are simply concatenated in
the merged body.

If a method exists in more than one class version, PBI requires
that its modifiers (i.e. abstract, final, native, static, synchronized,
public, protected, private, strictfp) are the same in each class ver-
sion. When using PBI with independently developed bytecode in-
strumentations, it is important to ensure that there is no undesired
merging of methods with the same signature. Typically, methods
inserted by different bytecode instrumentations need to be renamed
before merging, so as to avoid name clashes.

6In the case of Java, the typical approach is to use fields that are
public, static, and volatile, such that their states can be altered asyn-
chronously and the new states become visible to all threads (ac-
cording to the happens-before relation for volatile writes and reads
guaranteed by the Java memory model [19]).

public class BootstrapState {

private static volatile boolean completed = false;

public static boolean bootstrapCompleted() {

return completed;

}

public static void signalEndOfBootstrap() {

completed = true;

// Optimization: if supported, redefine this class with a version
// where bootstrapCompleted() returns the constant true
...

} }

Figure 3: Class BootstrapState provides information

whether the JVM has completed bootstrapping. Method

signalEndOfBootstrap() is invoked by the PBI runtime before

the base program’s main class is initialized.

Inserted fields must have different names in each class version,
so it may be necessary to rename them to avoid name clashes. Con-
sequently, only the fields in the original class Corig exist in all class
versions, and are preserved (without any replication) in the merged
class Cmerged . More details about CodeMerger, such as field initial-
ization, are described in Section 7.

3. COMPLETE BYTECODE COVERAGE
Many applications of bytecode instrumentation require com-

plete bytecode coverage in order to function properly. For in-
stance, a profiler needs to be able to track computation occur-
ring in the core language libraries as well as in application code.
Binder et al. proposed a solution to this issue, albeit in an ad-hoc
manner [6]. The general technique of polymorphic bytecode in-
strumentation subsumes this previous approach.

Instrumentation with complete bytecode coverage implies that
every method that has a bytecode representation (i.e. every non-
abstract and non-native Java method) must be amenable to byte-
code instrumentation, including methods in the Java class library
and in dynamically downloaded or generated classes. Full cover-
age of the Java class library is delicate because of two issues:

1. The instrumentation must not break JVM bootstrapping, for
instance by triggering premature initialization of classes used by
inserted code.

2. Code inserted by the instrumentation must not cause infinite
regression when invoking methods in the (instrumented) Java class
library.
By allowing to keep both the instrumented method bodies (class
versions 1) and the original unmodified method bodies (class ver-
sions 0) of the Java class library and dispatching amongst them dy-
namically, PBI solves both of these issues, as explained hereafter.

Bootstrap with an instrumented Java class library Many cur-
rent JVMs are very sensitive to the order in which some core classes
in the Java class library (e.g., java.lang.Object, java.lang.String, or
java.lang.Thread) are initialized. In such classes, code inserted by a
bytecode instrumentation may change the class initialization order
when bootstrapping, typically causing a JVM crash.

Because the JVM specification mandates lazy class initialization
(JVM Specification, Second Edition, Section 5.5 [26]), inserted
code that is not executed during bootstrapping does not change
the class initialization order. Hence, we can use PBI in order
to execute only the original code version of invoked methods as
long as the JVM is bootstrapping. Dispatch is therefore based
on a global state that indicates whether the JVM has completed
bootstrapping. Class BootstrapState (Figure 3) maintains that
global state in a static volatile flag. The flag is toggled (by an
invocation of signalEndOfBootstrap()) before the base program
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public class ControlFlow {

public static boolean inCFlow() {

Thread t = Thread.currentThread();

return t.pbi_cflow;

}

public static void setCFlow(boolean value) {

Thread t = Thread.currentThread();

t.pbi_cflow = value;

} }

Figure 4: Class ControlFlow provides access to boolean, thread-

local control flow information.

main class is initialized. This state-based dispatch can be simply
defined as follows:

computeCV() ≡ return BootstrapState.bootstrapCompleted() ? 1 : 0;

That is, the instrumented code version is only used after the JVM
has completed bootstrapping.7

While in prior work [6] the access to the volatile flag upon each
invocation of a method in the Java class library introduced signif-
icant extra overhead, some recent state-of-the-art JVMs, such as
on Oracle’s HotSpot Server VM, enable us to completely get rid
of that overhead. If the JVM supports class redefinition, method
signalEndOfBootstrap() can replace class BootstrapState with a
version where bootstrapCompleted() returns the constant true.
Thanks to just-in-time compiler optimizations, the overhead due
to the check can be completely eliminated.

Preventing infinite regression If code inserted by an instrumen-
tation invokes some instrumented methods in the Java class library,
infinite regression can happen. In order to prevent infinite regres-
sion, we can keep track of whether a thread is executing code in
the control flow (i.e. in the dynamic extent) of inserted code, and
if so, dispatch to the non-instrumented version of the code. To this
end, we need to maintain boolean control flow information for each
thread.

Class ControlFlow (Figure 4) provides access to a boolean,
thread-local flag indicating whether the execution is in the
dynamic extent of inserted code. We directly insert that flag
in class java.lang.Thread as the public, boolean instance field
pbi_cflow. The control flow-based dispatch is as follows:

computeCV() ≡ return ControlFlow.inCFlow() ? 0 : 1;

Whenever inserted code may invoke instrumented methods, such
as methods in the Java class library, it must first set the thread-
local control flow flag to true, and upon completion of the inserted
code, it must restore the previous value. That is, in general, in-
serted code that may invoke instrumented methods has to use the
following code pattern:

boolean old = ControlFlow.inCFlow();

ControlFlow.setCFlow(true);

try {

... // inserted code that may invoke instrumented methods
} finally { ControlFlow.setCFlow(old); }

In order to ensure that a bytecode instrumentation properly im-
plements the above code pattern, the instrumentation may either
be manually adapted, or some automated tool may be applied to
detect inserted code and to enclose it with the operations that up-
date the control flow information. For example, our aspect weavers

7Note that our approach will cause initialization of class
BootstrapState during bootstrapping. However, that class has no
static initializer, and reading the boolean flag during bootstrapping
does not trigger any other class initialization. Our approach has
been thoroughly tested on many versions of Oracle’s HotSpot VMs
and IBM’s J9 VMs.

MAJOR [38] and HotWave [37] generate the code pattern on code
previously woven with the standard AspectJ weaver in a fully auto-
mated way.

Composite dispatch Each of the two issues of complete byte-
code coverage, namely JVM bootstrapping and infinite regres-
sion, requires a specific dispatch (respectively state-based and flow-
based). In order to support complete bytecode coverage properly,
both dispatch logics must be composed, as follows:

computeCV() ≡ return BootstrapState.bootstrapCompleted() &&
!ControlFlow.inCFlow() ? 1 : 0;

4. EXECUTION LEVELS FOR AspectJ
An aspect observes the execution of a program through its point-

cuts, and affects it with its advice. An advice is like a method, and
therefore its execution also produces join points. Similarly, point-
cuts as well can produce join points. For instance, in AspectJ, one
can use an if pointcut designator to specify an arbitrary Java expres-
sion that ought to be true for the pointcut to match. The evaluation
of this expression is a computation that produces join points. In
higher-order aspect languages like AspectScheme [16] and others,
all pointcuts and advice are standard functions, whose application
and evaluation produce join points as well.

The fact that aspectual computation produces join points raises
the crucial issue of the visibility of these join points. In all lan-
guages, by default, aspectual computation is visible to all aspects—
including themselves. This of course opens the door to infinite
regression and unwanted interference between aspects. These is-
sues are typically addressed with ad-hoc checks (e.g., using cflow
checks in AspectJ) or primitive mechanisms (like AspectScheme’s
app/prim). However, all these approaches eventually fall short for
they fail to address the fundamental problem, which is that of con-

flating levels that ought to be kept separate [11].

Execution levels In order to address this issue, a program com-
putation is structured in levels. Computation happening at level 0
produces join points observable at level 1. Aspects are deployed at
a particular level, and observe only join points at that level. This
means that an aspect deployed at level 1 only observes join points
produced by level-0 computation. In turn, the computation of an as-
pect (i.e. the evaluation of its pointcuts and advice) is reified as join
points visible at the level immediately above: therefore, the activity
of an aspect standing at level 1 produces join points at level 2.

An aspect that acts around a join point can eventually invoke the
original computation. For instance, in AspectJ, this is done by in-
voking proceed in the advice body. The original computation ought
to run at the same level at which it originated!8 In order to address
this issue, it is important to remember that when several aspects
match the same join point, the corresponding advice are chained,
such that calling proceed in advice k triggers advice k+1. There-
fore, the semantics of execution levels guarantees that the last call

to proceed in a chain of advice triggers the original computation at
the lower original level.

This is shown in Figure 5. A call to a move method in the pro-
gram produces a call join point (at level 1), against which a pointcut
pc is evaluated. The evaluation of pc produces join points at level 2.
If the pointcut matches, it passes context information ctx to the ad-
vice. Advice execution produces join points at level 2, except for
proceed: control goes back to level 0 to perform the original com-
putation, then goes back to level 1 for the after part of the advice.

8This issue is precisely why using control flow checks in AspectJ
in order to discriminate advice computation is actually flawed.
See [33] for more details.
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pc(          )

..p.move(..)..

call

..this.setX(..)..

call

ctx
adv(..ctx..) ...before... proceed(p); ...after...

call call call... ...

...

call ...

L0

L1

L2

Figure 5: Execution levels in action: pointcut and advice are

evaluated at level 1, proceed goes back to level 0 (from [33]).

Execution levels for AspectJ Execution levels have been for-
mulated and prototyped in aspect languages with dynamic weav-
ing [33]. In recent work, we have designed an extension of AspectJ
with execution levels, tailored to take into account the specifici-
ties of AspectJ, like static aspect weaving with partial evaluation
of pointcuts [27, 22]. The detailed motivation, design, and applica-
tions of this extension are presented elsewhere [34]. Our previous
implementation of level switching is done in an ad-hoc manner;
here, we describe how PBI can be used for that sake. Section 8
also provides a much more detailed performance evaluation of the
implementation.

Semantically, the execution of a method produces join points.
These join points may be seen by pointcuts that may match them;
if so, the corresponding pieces of advice are triggered. In aspect
languages that perform weaving statically, join point production is
partially evaluated [27]: based on the static properties of code, it
is determined whether or not a given expression can produce a join
point that will be matched at runtime [22]. If so, such a join point
shadow is transformed so as to invoke advice appropriately. If it can
be statically determined that the pointcut however never matches
join points corresponding to the shadow, then no transformation
happens. The matching of the pointcut may also depend on runtime
information not available at compile time: in that case, the shadow
is woven together with a residue, i.e. a conditional expression that
guards the invocation of the advice.

With execution levels, the join points produced by the execution
of a method vary. If base program code, running at level 0, invokes
a method, it produces join points at level 1, that may be matched by
aspects deployed at that level. If an aspect deployed at level n calls
this same method, then it produces join points at level n+1, visible
only for aspects deployed at level n+ 1. We use PBI to check the
execution level upon method entry and dispatch appropriately to a
particular code version. More precisely, there is one code version
per execution level, and each code version corresponds to the code
with the instrumented shadows of the aspects deployed at the level
directly above it. For instance, execution at level 0 uses code ver-
sion 0, which is the result of weaving aspects deployed at level 1.
Execution at level N (the highest level in the configuration) uses
code version N, which is set to be the original, non-instrumented
code version. A code version is obtained by invoking the standard
AspectJ weaver with the aspects deployed at a given level.

In order to track execution levels, we define a class
ExecutionLevel that provides access to a thread-local variable
that indicates at which level the current thread is running (Fig-
ure 6). For that, we insert an integer instance field pbi_level in
class java.lang.Thread to keep track of the current level. Method
currentLevel() returns the current thread’s level, whereas methods
up() and down() increment respectively decrement it.

public class ExecutionLevel {

public static int currentLevel() {

Thread t = Thread.currentThread();

return t.pbi_level;

}

public static void up() {

Thread t = Thread.currentThread();

++t.pbi_level;

}

public static void down() {

Thread t = Thread.currentThread();

--t.pbi_level;

} }

Figure 6: Class ExecutionLevel provides access to the execution

level of the current thread.

Level shifting is done for the dynamic extent of both advice and
pointcut residues, following the given pattern9:

ExecutionLevel.up();

try {

... // advice and pointcut residues
} finally { ExecutionLevel.down(); }

A similar shift-down occurs for around advice, when the original
computation is finally called with proceed (see [34] for details).

Our PBI-based aspect weaver, MAJOR2, uses the standard
AspectJ weaver as a black box and post-processes its output to
automatically insert the above pattern in each advice method and in
each method corresponding to compiled if pointcuts.

The dispatch logic given to the PBI framework simply consults
the current execution level and dispatches to the corresponding ver-
sion. Finally, because execution levels generalize the solution we
presented in the previous section to avoid infinite regression, we
only need to combine the levels check with the JVM bootstrap
check in order to obtain execution levels for aspects with complete
bytecode coverage:

computeCV() ≡ return BootstrapState.bootstrapCompleted() ?
ExecutionLevel.currentLevel() : N;

The evaluation in Section 8 uses two different deployment con-
figurations with two aspects in order to assess the performance of
the PBI-based implementation.

5. ADAPTIVE DYNAMIC ANALYSIS
Adaptive dynamic program analysis allows the user to choose or

change the dynamic analysis to be performed at runtime. For ex-
ample, in adaptive profiling, the profiler code is adapted at runtime
based on user choices, in order to restrict profiling to only part of
an executing application or to enable and disable the collection of
certain dynamic metrics. Adaptive profiling helps reduce profiling
overhead, since only data of current interest is gathered.

A good example of an adaptive profiler is JFluid [15], which has
been integrated in the NetBeans Profiler10. JFluid measures execu-
tion time for selected methods and generates a Calling Context Tree
(CCT) [1] to help analyze the contributions of direct and indirect
callees to the execution time of selected methods. When the user
selects different methods for profiling at runtime, JFluid adapts the
profiling code accordingly with the aid of class redefinition.

Runtime instrumentation and class redefinition can be very ex-
pensive, in particular if many classes are to be instrumented and
if the instrumentation is specified in a high-level programming

9Explicit level shifting as proposed in [33] is done following the
same pattern.

10http://profiler.netbeans.org/
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Figure 7: Adaptive dynamic analysis with PBI.

model, such as AOP, which requires more complex tool support
(e.g., in the case of AOP, an aspect weaver is used). For exam-
ple, with the dynamic AOP framework HotWave [37], which relies
on runtime aspect weaving and on class redefinition, weaving an
aspect into all modifiable classes at runtime may take up to 60 sec-
onds on a recent machine (see Section 8).

If the set of bytecode instrumentations that may be needed is
known in advance, it is not necessary to resort to expensive class
redefinition techniques. Instead, we can use PBI to apply all the
instrumentations and decide at runtime which code version to exe-
cute. For example, Villazón et al. present an adaptive profiler built
with HotWave that may switch between two different instrumenta-
tions (implemented as aspects) at runtime [37]. The default instru-
mentation generates a plain CCT, whereas a second instrumenta-
tion additionally stores various dynamic metrics in the CCT nodes.
The second instrumentation introduces much higher overhead, and
therefore is applied at runtime only to the classes for which the user
desires detailed dynamic metrics. Instead of applying the two dif-
ferent instrumentations (possibly repeatedly) at runtime by redefin-
ing the affected classes, PBI allows us to merge the code versions
for both instrumentations, and to switch between them at runtime.

Figure 7 illustrates a case of adaptive dynamic analysis with PBI:
the user defines, and change dynamically, the scope of the profil-
ing; profiling data is then passed to a profiling agent that renders
it. Implementation-wise, all methods have two code versions, and
start with a dispatch that triggers the appropriate version, based on
the current scope definition.

In the general case, computeCV() dispatches between N differ-
ent instrumentations based on asynchronous user choices. These
user choices may be at the level of classes or packages. Depending
on the granularity at which the user can switch between instrumen-
tations, we assume there is some state (i.e. a public static volatile
field) for each class or package indicating the code version to be ex-
ecuted. The effect of a state change is similar to class redefinition in
current JVMs: all subsequently invoked methods will read the new
state and execute the corresponding code version, whereas methods
that already executed the dispatch logic before the state change are
not affected. The computeCV() function below is a template where
the meta-variable selectedCodeVersion refers to the corresponding
volatile field to be read:

computeCV() ≡ return BootstrapState.bootstrapCompleted() &&
!ControlFlow.inCFlow() ? selectedCodeVersion :

0;

This dispatch logic uses the bootstrapping state and the control
flow information in the same way as explained in Section 3, in order

to enable instrumentation of the Java class library. Code version 0
corresponds to the original method bodies in Corig. Note that for
methods in the base program, computeCV() can be optimized as
follows, assuming that the inserted code never invokes any method
of the base program:

computeCV() ≡ return selectedCodeVersion;

As mentioned in Section 3, reading a volatile variable upon
each method entry may introduce significant overhead. If the user
rarely changes his choice of the code version to be executed (by
writing to the meta-variable selectedCodeVersion), redefining the
class that holds the volatile variable (as explained in Section 3)
helps reduce the overhead of reading the volatile variable in state-
of-the-art JVMs. Due to the de-optimization and re-optimization
caused by class redefinition, changing the volatile variable does in-
troduce some temporary overhead. However, compared to a so-
lution based on runtime instrumentation and on possibly redefin-
ing (potentially) all previously-loaded classes, this approach only
redefines a single, trivial class. Furthermore, this approach sup-
ports the atomic change of a set of instances of the meta-variable
selectedCodeVersion (e.g., atomically changing the instrumenta-
tion for a set of classes or for a set of packages).

6. DYNAMIC MIXIN LAYERS
Many mechanisms have been proposed to express refinements of

classes, such as open classes, mixins, classboxes, inter-type decla-
rations, etc. Mixin layers [31] allow the definition of a set of re-
finements in a layer, which is the unit of large-scale refinement.
Layers gather a number of refinements to classes, such as new
methods and fields, as well as overridden methods. The notion of
mixin layers has also been recently used in a dynamically-scoped
fashion to implement Context-Oriented Programming (COP) lan-
guages [23]. COP is a paradigm concerned with providing explicit
language support for context-dependent adaptation of programs. A
largely adopted mechanism in COP is dynamic mixin layers, that
is, mixin layers that can be activated dynamically.

ContextL first introduced this mechanism [12]: it allows certain
classes to be defined as layered, meaning that they can be refined
and extended in so-called layers. For instance, the following de-
fines a layered class Person, refined in an Employment layer, where
a field is added and method display is refined:

class Person {

String name;

public String getName() { ... }

public void display () { ... }

}

layer Employment {

class Person {

Person employer;

public void display () { ... }

}

}

In order to support context adaptation, layers can be dynamically
activated for the dynamic extent of the body of with-active-layer
expressions. For instance:

with-active-layer(Employment){ processStaff(); }

During the dynamic extent of the processStaff call, Person objects
have an employer field and a refined display method.

Efficient layer activation in ContextL uses features of Common
Lisp that are not present in Java, like multiple inheritance and mul-
tiple dispatch [13]. Polymorphic bytecode instrumentation can
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public class Layers {

public static int currentLayers() {

Thread t = Thread.currentThread();

return t.pbi_layers;

}

public static void activate(int layerNr) {

Thread t = Thread.currentThread();

t.pbi_layers |= 1 << layerNr;

}

public static void deactivate(int layerNr) {

Thread t = Thread.currentThread();

t.pbi_layers &= ~(1 << layerNr);

}

}

Figure 8: Class Layers provides access to the binary represen-

tation of the set of active layers in the current thread.

be used to support efficient dynamic layer activation in a Java-
like language, without using inheritance. We focus on the core
mechanism—dynamic mixin layer activation—without consider-
ing many additional useful features supported by full-blown mixin
layers and COP languages, like invoking methods in upper layers,
embedding layer definitions within classes, and so on [31, 23]. The
purpose of this section is to describe how the PBI technique, and in
particular the dispatch mechanism, can also handle this scenario.

Dynamic mixin layers with PBI The general approach consists
in obtaining one class version per combination of layers from an
external layer compiler.11 More precisely, if k is the number of
layers that refine class C, we need 2k class versions. In merged
methods, the dispatch logic, which is now specific to the consid-

ered class, obtains the currently-active layers and switches to the
corresponding code version.

Concretely, all layers are given a number, and for this proof-
of-concept implementation, we limit the number of layers to 32,
so we can represent the set of currently-active layers with a 32-
bit integer. Class Layers in Figure 8 gives access to the thread-
local set of currently-active layers, stored in the pbi_layers fields of
threads, similarly to how execution levels are handled (Figure 6).
Its activate() and deactivate() methods actualize the binary repre-
sentation of the active layers. Activating a layer for a certain dy-
namic extent is done following the same pattern as for execution
level shifting (Section 4).

For each class, we know statically what layers can refine it (this
is explicit in layer definitions); therefore, we associate a bitmask
that specifies which layers may affect the class. The bit-wise &

operation between the currently-active layers and the class bitmask
gives us the appropriate version number. That is, for a class C, the
dispatch logic is:

computeCV() ≡ return Layers.currentLayers() & Mask_C;

where Mask_C is the bitmask where the bits are set that correspond
to the numbers of the layers that refine class C.

For instance, if 10 layers are defined (0 to 9) and class C is re-
fined in layers 0 and 3, the bitmask of C is 1001 (or, 0x9). With
the layer compiler, we obtain the class versions 1 (where layer 0
is woven), 8 (where layer 3 is woven) and 9 (where both layers 0
and 3 are woven). Given these versions, as well as class version 0
(the original class definition) and the class-specific dispatch, the
generated switch is as follows:

11We use a simple BCEL instrumentation in our proof-of-concept
implementation.

int version = Layers.currentLayers() & 0x9;

switch (version) {

case 0: goto CV0; // no layer is active
case 1: goto CV1; // layer 0 is active
case 8: goto CV8; // layer 3 is active
case 9: goto CV9; // layers 0 and 3 are active
default: goto Error;

}

Obviously, the point of this case study is not to present a full-
fledged dynamic mixin layers mechanism (an interesting perspec-
tive that is left for future work). Rather, it shows that the customiz-
able dispatch mechanism of PBI can be based not only on global or
thread-local state, but also on class-specific information. Of course,
it could also be based on object-specific state, although we have not
explored this possibility yet.

In terms of efficiency, the cost of the dispatch used in this study
is the same as that of execution levels (see Section 8), plus the cost
of the bit-wise & operation, which turns out to be negligible.

7. CODEMERGER: DETAILS
In this section we describe some technical details and limitations

of CodeMerger, our implementation of PBI for Java. In particu-
lar, we explain the overall process of applying PBI with complete
bytecode coverage, and discuss issues regarding the initialization
of inserted fields.

Build-time and load-time instrumentation With CodeMerger,
the Java class library is instrumented at build-time before running
an (instrumented) application, whereas all other classes are in-
strumented at load-time. Load-time instrumentation in pure Java
is supported by the java.lang.instrument API. CodeMerger does
not instrument the Java class library at load-time, because this
would require either native code (using the JVMTI) or redefini-
tion (hotswapping) of the classes loaded during JVM bootstrap-
ping. The former approach would compromise portability, while
the latter approach would seriously restrict the possible bytecode
instrumentations, because in current standard JVMs, class redefini-
tion may only replace method bodies, but must not introduce any
new methods or fields.

Initialization of static fields According to the code pattern illus-
trated in Figure 2, exactly one code version is executed upon each
invocation of a merged method. If an instrumentation inserts fields
and initializes them to a value different from the default value of
the corresponding type, the code pattern in Figure 2 would result
in skipping the initialization of some inserted fields depending on
the executed code version. On the one hand, skipping initialization
of inserted fields can break invariants, e.g., if final fields are not
initialized. On the other hand, requiring instrumentations to leave
all inserted fields initialized to their default values would be too
restrictive, because many existing bytecode instrumentations ini-
tialize inserted fields, in particular static fields. For example, the
standard AspectJ weaver inserts static fields and initializes them to
hold instances of type JoinPoint.StaticPart, holding reflective infor-
mation of join points [22].

CodeMerger supports the initialization of inserted static fields
with the special private static void method pbi_initClass(). If a class
version needs to initialize inserted static fields, it must do so in its
pbi_initClass() method, which in turn must be invoked at the end
of its static initializer; the pbi_initClass() method must not be in-
voked from any other call site. Upon merging, the pbi_initClass()
methods and the static initializers in the class versions are treated
specially by CodeMerger. First, the pbi_initClass() methods are re-
named by appending the class version number to the method name.
In this way, the bodies of the pbi_initClass() methods will not be
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merged. Second, in each class version the static initializer is ex-
tended to invoke the pbi_initClass() methods of all class versions
in the end (if there is no static initializer in a class version, it is
created). Consequently, after merging of the static initializers, the
pbi_initClass() methods of all class versions will be executed, in-
dependently of the executed code version of the merged static ini-
tializer. That is, all inserted static fields will be properly initialized.

In Section 3 we pointed out that during JVM bootstrapping, in-
serted code—and therefore also the pbi_initClass() method—must
not be executed. CodeMerger solves this issue by treating inserted
static fields and pbi_initClass() methods in the Java class library
specially. For each instrumented class Ci

instr, the inserted static
fields are moved into an extra class in the same package (private
visibility is replaced with package visibility), the pbi_initClass()
method becomes the extra class’ static initializer, the invocation of
pbi_initClass() in the static initializer of Ci

instr is removed, and ac-
cess to the inserted static fields by inserted code in methods in Ci

instr
is redirected to the static fields in the extra class. Consequently,
during JVM bootstrapping, inserted code is not executed and the
static fields in the extra classes are therefore not accessed. Because
the JVM initializes classes lazily [26], it is guaranteed that the extra
classes will not be initialized during JVM bootstrapping. Note that
the introduction of extra classes is trivial for build-time instrumen-
tation of the Java class library (the extra classes are simply added
to the archive of the instrumented Java class library), whereas in
general it may not be possible to introduce extra classes at load-
time, because custom class-loaders may not be able to find or may
refuse to load the extra classes. However, for load-time instrumen-
tation, CodeMerger does not introduce any extra classes (load-time
instrumentation does not happen before JVM bootstrap completes).

In order to use CodeMerger’s pbi_initClass() feature, existing
bytecode instrumentations need to be refactored so as to initialize
inserted static fields in the (inserted) pbi_initClass() method. As
an alternative, post-instrumentation transformations can be done:
for instance, in the case of the AspectJ weaver, we apply post-
weaving bytecode transformations to move the initialization code
for inserted static fields of type JoinPoint.StaticPart from the woven
static initializer into the pbi_initClass() method.

Initialization of instance fields CodeMerger does not support
initialization of inserted instance fields in the Java class library,
as it would be impossible to guarantee that such fields are initial-
ized during JVM bootstrapping. An inserted instance field must be
initialized to the default value of the corresponding type. When
CodeMerger is applied to AspectJ, this restriction implies that
AspectJ’s static crosscutting features cannot be fully supported. An
inserted instance field can be lazily initialized by inserted code ac-
cessing the field, although this incurs extra overhead because of the
necessary checks of whether the field has been initialized.

Code bloat The JVM specification [26] imposes several restric-
tions on class files. For instance, method bodies must not exceed
216 bytes (because indices in exception tables, line number tables,
and local variable tables are unsigned 16 bit values). While such
limitations affect any bytecode instrumentation tool, the merging
of code version into a single method body aggravates the issue.
This issue can be mitigated by placing code versions in separate
private methods when the method size limit is exceeded.

8. EVALUATION
In this section we evaluate PBI focusing on the first two case

studies (Section 4 and Section 5).

Settings Our evaluation is done with two bytecode instru-
mentations for dynamic program analysis implemented as as-

public aspect ProfAllocs {

after() returning(Object o) : call(*.new(..)) &&

ScopeProf.scope() {

profileAllocation(o.getClass()); // not shown here
}

...

}

public aspect ProfCalls {

pointcut allExecs() : (execution(* *(..)) ||

execution(*.new(..)));

before() : allExecs() && ScopeProf.scope() {

profileCall(thisJoinPointStaticPart); // not shown here
}

...

}

public aspect ScopeProf {

pointcut aspects() : within(ProfAllocs) ||

within(ProfCalls);

pointcut scope() : !aspects() && !cflow(aspects());

}

Figure 9: Simplified aspects for object allocation and method

call profiling.

pects, the object allocation profiler ProfAllocs and the method
call profiler ProfCalls (Figure 9). The allocation profiler col-
lects the number of object allocations for each type, and the
method call profiler collects the number of method calls for each
method. Both profilers maintain a thread-safe mapping from
identifiers to atomic integers (methods profileAllocation(...) and
profileCall(...), which are not shown in the figure). For ProfAllocs,
the identifiers are the types represented by java.lang.Class in-
stances, and for ProfCalls, the method identifiers are represented
by JoinPoint.StaticPart instances. We are using non-blocking
data structures from the java.util.concurrent package, concretely
ConcurrentHashMap and AtomicLong. We discuss the scoping
pointcuts defined in ScopeProf below.

We weave the ProfAllocs and ProfCalls aspects in the DaCapo
benchmarks (dacapo-2006-10-MR2), which serve as base pro-
grams. For the first case study, we use our new PBI-based re-
implementation of MAJOR2 [34] that relies on CodeMerger, which
provides support for execution levels and complete bytecode cov-
erage. For the second case study, we directly use CodeMerger. In
both case studies, aspects are woven with AspectJ 1.6.5 (MAJOR2
is also based on AspectJ).

Our measurement machine is a quad-core machine (Dell
Optiplex 760, 1 quad-core Intel CPU, 3.0 GHz, 4 GB RAM) run-
ning Fedora 13 and the Oracle JDK 1.6.0_18 Hotspot Server VM
(64 bit version with default settings). This JVM has one of the most
advanced just-in-time compiler performing various code optimiza-
tions at runtime, which helps reduce the overhead introduced by
PBI dispatch logic.

Execution levels We considered two scenarios for this evalua-
tion:

1. ProfAllocs and ProfCalls are applied to the base program (i.e.,
both aspects are deployed at level 1).

2. ProfCalls is applied to the base program (i.e. deployed at
level 1), and ProfAllocs is applied to ProfCalls (i.e. deployed at
level 2), thus profiling object allocation in ProfCalls.

Our first evaluation compares the performance of code woven
with AspectJ’s load-time weaver (henceforth called ajc-ltw) ver-
sus MAJOR2. In this comparison we use scenario 1, since this is
the only composition scenario that AspectJ can handle. We limit
the coverage of MAJOR2 to application classes in order to have
comparable settings. For each benchmark of the DaCapo suite,
we take the median of 15 runs executed in the same JVM process.
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Table 1: Overhead comparison between AspectJ and MAJOR2

in scenario 1. Aspects are woven only into application classes.

Orig. ajc-ltw ajc-ltw (opt.) MAJOR2

[ms] [ms] Ovh. [ms] Ovh. [ms] Ovh.

antlr 798 12416 15.56 4926 6.17 5000 6.27

chart 2867 25906 9.04 10132 3.53 10650 3.71

fop 1129 3032 2.69 1799 1.59 1871 1.66

hsqldb 2614 28720 10.99 11570 4.43 10983 4.20

jython 2390 40183 16.81 19435 8.13 16380 6.85

luindex 3453 53212 15.41 21229 6.15 27921 8.09

lusearch 1370 21359 15.59 14368 10.49 14139 10.32

pmd 2373 37995 16.01 22420 9.45 14597 6.15

xalan 1100 15998 14.54 9360 8.51 9443 8.58

geo.mean 11.63 5.71 5.54

We also compute the geometric mean for all benchmarks except
bloat and eclipse, the first because it fails with ajc-ltw (in contrast
to MAJOR2) and the latter because ajc-ltw fails to weave a large
number of classes due to dependencies. That is, ajc-ltw depends on
classes that are also used by the eclipse benchmark. Such problem
does not exist with MAJOR2, which makes proper use of class-
loader namespaces.

Aspects in Figure 9 use a scope() pointcut in order to avoid infi-
nite regression caused by their own computation, as well as to avoid
seeing join points produced by the other aspect. Using control flow
checks for achieving this is the most robust pattern, as it ensures
that all join points in the dynamic extent of aspect executions are
ignored. This pattern is well-known [7] and is used in many as-
pect implementations [8]. In our MAJOR2 implementation, these
pointcuts are not needed at all because execution levels already ad-
dress the issues of infinite regression and mutual visibility. Our
benchmarks therefore enable us to compare the cost of these typi-
cal control flow checks and our implementation of execution levels.

For further comparison, we also benchmark an optimized version
of the aspects with ajc-ltw, where we skip the control flow checks,
and just leave the lexical !aspects() condition. This happens to be
safe in this particular case, because all potential sources of regres-
sion and interference are situated lexically in the aspect definitions,
no shared libraries are woven, and there are no callbacks from the
aspects to the base code.

Table 1 shows the measured execution times and overhead fac-
tors. MAJOR2 introduces significantly less overhead than ajc-ltw
(factor 5.54 for MAJOR2 versus factor 11.63 for ajc-ltw, on av-
erage). This confirms that PBI-based execution level dispatch can
be much more efficient than the use of control flow pointcuts for
avoiding regression and aspect interferences.

It is surprising that MAJOR2 introduces slightly less overhead
than the optimized ajc-ltw case (factor 5.71 on average). This re-
sult is due to non-determinism and heuristics used in the optimizing
just-in-time compiler. It is possible that some code pattern trig-
gers or prevents specific optimizations; this issue in benchmarking
Java software is well known [18]. Whether ajc-ltw (with optimized
pointcuts) or MAJOR2 performs better depends a lot of the con-
crete benchmark. For example, ajc-ltw is considerably faster than
MAJOR2 on luindex, whereas MAJOR2 outperforms ajc-ltw on
pmd. We validate soundness of MAJOR2 by comparing the pro-
files produced with ajc-ltw and with MAJOR2, which are almost
identical in most cases (relative difference of both the accumu-
lated object allocations and the method calls is below 0.5% for all
benchmarks, and even orders of magnitude smaller for most bench-
marks). Some differences are always possible because of non-
determinism in the application or in the Java runtime (e.g., iden-
tity hash-codes are random values on many JVMs and may change

Table 2: Overhead of dynamic analysis aspects woven with

MAJOR2 with complete bytecode coverage.

Orig. Scenario 1 Scenario 2

[ms] [ms] Ovh. [ms] Ovh.

antlr 798 10016 12.55 10123 12.69

bloat 2694 57537 21.36 59821 22.21

chart 2867 26072 9.09 25405 8.86

eclipse 14985 75137 5.01 93432 6.24

fop 1129 3809 3.37 3678 3.26

hsqldb 2614 15978 6.11 15484 5.92

jython 2390 31912 13.35 31851 13.33

luindex 3453 37655 10.91 37276 10.80

lusearch 1370 17258 12.60 17710 12.93

pmd 2373 29429 12.40 27352 11.53

xalan 1100 21110 19.19 20703 18.82

geo.mean 10.09 10.18

in each benchmark run, thread scheduling is non-deterministic,
etc.). In all cases where the relative difference exceeds 0.001%,
we also compared the profiles for consecutive runs with the same
tool (i.e. with ajc-ltw respectively with MAJOR2), and obtained
relative differences in the same order of magnitude.

In summary, these results are particularly encouraging for
execution levels, which provide much more stable semantics for
aspect composition [33, 34], as this shows that their efficient
integration in a practical aspect language is possible.

Our second evaluation measures the overhead introduced by the
two profiling aspects woven with MAJOR2 with complete method
coverage in both scenarios. That is, the complete Java class library
is also woven. A comparison with AspectJ is not possible, because
AspectJ is unable to weave the aspects in the Java class library,
and is incapable of handling scenario 2. For each benchmark, we
take the median of 15 runs within the same JVM process. Here,
the geometric mean is computed for the whole benchmark suite,
including bloat and eclipse, since MAJOR2 is able to handle both
correctly.

Table 2 presents the results of our measurements. In both sce-
narios, the average overhead is about factor 10. The overhead with
complete bytecode coverage is almost twice the overhead when
weaving only application classes, because Java applications spend
much execution time in methods in the Java class library. While
overhead factor 10 is high, it must be considered that the applied
instrumentations are computationally expensive. ProfAllocs inter-
cepts each object allocation, and ProfCalls intercepts each method
call. Upon all these intercepted join points, a thread-safe data struc-
ture is updated.

This evaluation confirms that MAJOR2 allows us to create dy-
namic analysis tools with AOP that have practical value, because
of complete bytecode coverage. The overhead introduced by com-
plete bytecode coverage is significant but not prohibitive, and de-
pends on the concrete analysis.

Adaptive analysis We now evaluate PBI for adaptive dynamic
analysis and assess the cost of PBI-based dispatch compared to
class redefinition. Concretely, we compare CodeMerger with
HotWave [37], a dynamic AOP framework which is based on
runtime weaving and class redefinition. With CodeMerger, we
achieve complete bytecode coverage, whereas with HotWave a few
non-modifiable system classes cannot be redefined. We use the
ProfCalls aspect as dynamic analysis. We exclude results for the
eclipse benchmark, because HotWave excludes many benchmark
classes from weaving, similar to ajc-ltw. That is, execution time
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Figure 10: Adaptive dynamic analysis, activating the ProfCalls
aspect after 3 benchmark runs, and deactivating it after 6 runs.

The dark gray areas illustrate latencies due to runtime weaving

and class redefinition with HotWave.

for eclipse with HotWave would be too short and therefore mis-
leading.

We execute 9 runs of the benchmarks within a single JVM pro-
cess. The first 3 runs execute original code, then we activate the
dynamic analysis for all classes for 3 runs, and finally we execute
again original code for the last 3 runs. For CodeMerger, we present
two settings: PBI-V keeps the global state in a volatile field (which
is read by the computeCV() function), whereas PBI-R uses class
redefinition to change the accessor of that field to return a constant,
as discussed in Section 5.

Figure 10 shows the execution times as bars with 9 segments, one
for each run. White segments correspond to runs executed with-
out analysis, and green (or light gray) segments are runs with dy-

namic analysis. Dark gray areas represent the time spent in runtime
weaving and class redefinition. With HotWave runtime weaving
and class redefinition may take long time, because all modifiable
classes are processed. For instance, with fop, runtime weaving and
class redefinition take more than 50% of the overall execution time.
jython has the longest redefinition time of 61s.

In contrast, with CodeMerger the activation (and deactivation)
of the analysis is almost instantaneous, the maximum latency being
less than 100ms in all cases. However, PBI introduces some extra
overhead when running original code (without analysis), because
of the dispatch switch and code bloat in each method, whereas
HotWave introduces no overhead when executing original code.
With CodeMerger the first run is particularly slow because of load-
time weaving, which is not needed for HotWave. For some bench-
marks, particularly for luindex, the difference in execution time
with CodeMerger versus HotWave when executing original code
is surprisingly high. We are currently investigating why the just-
in-time compiler does not better optimize the code produced by
CodeMerger in these cases.

Note that both HotWave and CodeMerger in the PBI-R setting
make use of class redefinition. With Oracle’s HotSpot VM, this fea-
ture may trigger de-optimization of compiled native code (e.g., un-
doing method inlining). Consequently, the run that follows class
redefinition is often longer than the subsequent runs. Since the
HotSpot VM keeps information on hot methods upon class redef-
inition, the de-optimized code is quickly re-optimized after class
redefinition.

Comparing overall execution times for the 9 benchmark runs,
CodeMerger outperforms HotWave in 7 out of 10 benchmarks. For
CodeMerger, the PBI-R setting outperforms the PBI-V setting for 9
out of 10 benchmarks. In conclusion, our evaluation confirms that
PBI is well suited for building adaptive dynamic analysis tools. As
the latency incurred when switching between different code ver-
sions is small, adaptive tools built with CodeMerger can quickly
react to user choices.

9. DISCUSSION

Prior work PBI generalizes some previously developed tech-
niques. In this section we give a short overview of our prior re-
search that finally resulted in this proposal.

The FERRARI framework [6] takes any user-defined bytecode
instrumentation (which can be implemented with any bytecode ma-
nipulation library) and augments it with support for complete byte-
code coverage. To this end, FERRARI relies on code duplication
within method bodies, similar to the approach presented in Sec-
tion 3. However, as FERRARI lacks support for merging multiple
independent bytecode instrumentations, none of the case studies
presented in this paper can be implemented with FERRARI.

Based on FERRARI, the aspect weaver MAJOR [38] supports
most constructs of the AspectJ language and enables aspect weav-
ing with complete bytecode coverage. Thanks to MAJOR, aspect-
based dynamic analysis tools, such as profilers [30, 3] or data race
detectors [8, 2], are able to analyze all bytecode executed in a JVM.
The dynamic AOP framework HotWave [37] relies on the same im-
plementation techniques as FERRARI in order to achieve complete
bytecode coverage.

Tanter introduced the notion of execution levels as a means to
structure aspect-oriented programs so as to prevent infinite regres-
sion and unwanted interference between aspects [33]. Attracted
by the idea of having execution levels in AspectJ, we developed
a first ad-hoc implementation [34]. This implementation and the
commonalities with the techniques used in FERRARI and MAJOR
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progressively led us to the formulation of the PBI technique, and
the implementation of CodeMerger. As discussed in Section 4, PBI
enables a clean re-implementation of execution levels for AspectJ.
In addition, the PBI-based implementation discussed in this paper
enables a thorough evaluation with the complete DaCapo bench-
mark suite, where various compositions of aspects are woven with
complete bytecode coverage.

Related work To the best of our knowledge, there is not much
work that is directly related to this proposal of PBI. Altering pro-
gram semantics through bytecode transformations is a widely used
technique and has been explored and put in practice in many differ-
ent flavors in Java, from low-level tools like BIT [25], BCEL, and
ASM, to higher-level frameworks like Javassist [10] or Soot [36].
Similar toolkits have also been proposed for other languages based
on virtual machines that run intermediate bytecodes, like Squeak
Smalltalk [14] and .NET. PBI is a general-purpose technique that
allows to combine instrumentations possibly written with any of
these tools. Thus, it stands at a higher-level than specific instru-
mentation tools and cannot be directly compared. CodeMerger,
our PBI implementation for Java, is implemented using BCEL, al-
though other frameworks could be used as well.

On the other hand, there is a huge body of language-level pro-
posals for advanced dispatch, like mixin layers [31], dynamic layer
activation [13, 23], aspects [22], predicate dispatch [28], and so on.
Each of these has been realized using particular implementation
techniques, specific to the targeted semantics and the implementa-
tion tradeoffs that their authors were willing to make. Here again,
PBI does not stand at the same level as these proposals: PBI is not a
language-level mechanism, but rather an implementation technique
to combine various bytecode instrumentations with the possibility
to flexibly dispatch among them at runtime. It can be used to imple-
ment language-level constructs like mixin layers (Section 6) pro-
vided a tool is available to generate the different code versions, or
to extend aspect weaving with execution levels (Section 4), again
relying on another tool for the specific details of the implementa-
tion (in that case, the standard AspectJ weaver).

The Hyperspace approach [29] allows class fragments to be
composed in a coherent whole, using a set of composition oper-
ators [20]. The approach is therefore different from PBI because
each class version in PBI is a complete class, not a fragment of it;
dynamic dispatch selects the version that is active at a given point
in time, according to any criteria. In that sense, PBI is closer to
subject-oriented programming [21] where different views of a sin-
gle class can coexist; actually, implementing subject-oriented pro-
gramming with PBI is an interesting perspective.

Regarding instrumentation of shared libraries, the Twin Class
Hierarchy [17] replicates the full hierarchy of instrumented classes
into a separate package that coexists with the original one. How-
ever, in [35] the authors show that class replication limits the appli-
cability of bytecode instrumentation in the presence of native code.
Because native code is not modified, calls back into bytecode will
target methods in the unmodified class. Thus, this approach does
not allow transparent instrumentation of the complete Java class li-
brary. In contrast, PBI does not duplicate any class, but relies on
code replication within method bodies.

The Arnold-Ryder profiling framework presented in [4] uses
code duplication combined with compiler-inserted, counter-based
sampling. A second version of the code is introduced, which con-
tains all computationally expensive instrumentation. The original
code is minimally instrumented to allow control to transfer in and
out of the duplicated code in a fine-grained manner, based on in-
struction counting. This approach achieves low overhead, as most
of the time the slightly instrumented code is executed. Similarly to

PBI, this approach merges two different instrumentations. While
PBI is a general-purpose, high-level framework that can merge
any number of independent bytecode instrumentations, the Arnold-
Ryder framework is specialized for sampling profiling and imple-
mented directly within the Jikes RVM. Whereas in PBI the dispatch
logic that determines the code version is customizable and executed
only upon method entry, the dispatch logic in the Arnold-Ryder
framework is hard-coded and enables switching within method
bodies depending on the number of executed instructions.

10. CONCLUSION
Polymorphic bytecode instrumentation (PBI) is a simple yet ef-

fective technique to combine different instrumentations and select
among them dynamically. It is simple because it relies on a user-
specified, customizable dispatch logic that is in charge of selecting
code versions produced by the different instrumentations; a PBI
framework simply merges code versions and generates the appro-
priate switch. We have shown that PBI is an effective technique
by illustrating its applicability in a wide range of scenarios: to
achieve full bytecode coverage without disrupting VM bootstrap
and avoiding infinite regression, to implement execution levels for
AOP, to support adaptive dynamic analyses, and to allow dynamic
mixin layer activation. Thorough performance evaluation further
shows that PBI can be efficiently implemented. All case studies
have been carried out with CodeMerger, our PBI framework for
Java bytecode. We expect PBI to prove useful in many other cases,
such as for implementing other advanced language constructs; this
is one of the main venues for future work.
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