
Supporting Incremental Programming with Ghosts
Oscar Callaú

PLEIAD Lab Computer Science Department (DCC) University of Chile
oalvarez@dcc.uchile.cl

Abstract—Best practices in programming typically imply cod-
ing using classes and interfaces that are not (fully) defined yet.
However, integrated development environments (IDEs) do not
support such incremental programming seamlessly. Instead, they
get in the way by reporting ineffective error messages. Ignoring
these messages altogether prevents the programmer from getting
useful feedback regarding actual inconsistencies and type errors.
But attending to these error messages repeatedly breaks the
programming workflow.

In order to smoothly support incremental programming,
we propose to extend IDEs with support of undefined entities,
called Ghosts. Ghosts are implicitly reified in the IDE through
their usages. Programmers can explicitly identify ghosts, get
appropriate type feedback, interact with them, and bust them
when ready, yielding actual code.

I. INTRODUCTION

Best practices in programming typically imply coding using
modules, such as classes or functions that are not (fully)
defined yet. Two typical examples of these practices are test-
driven development [1] and top-down programming. In those
two, programmers use entities that are either not yet defined
or partially defined, i.e. programming is incremental.

Although incremental programming style is a daily practice
of software development [2], modern IDEs do not properly
support such a programming style. By-default most IDEs
reference undefined entities as common errors, such as missing
modules, however those IDEs offer the possibility to generate
a code skeleton. Nevertheless, this feature is very limited and
requires full programmer attention. Currently, there are several
state-of-the-art tools (IDE enhancements and Plugins) [3]–
[6] that are focused on solving this problem, however their
solutions are partial and usually focus on a particular issue
and not the whole problem.

To properly address this problem, we propose to extend
the IDE in order to automatically and progressively build a
reification of undefined entities, based on their usage. We
call these reified entities Ghosts [7], [8]. With Ghosts, the
IDE can provide a structured and condensed view of these
entities with useful instant feedback, e.g. exposing possible
inconsistent usages, based on their interactions. Then, the
programmer can concentrate on one task at a time, without
ending up on attending to disruptive messages. Furthermore,
once the programmer finishes her main task, she can generate
a whole code skeleton for one or all ghosts that satisfy all
their dependencies.

II. THE STATE OF THE PRACTICE

To better understand the problem and as a point of reference,
we use the Eclipse IDE to illustrate average IDE approaches

on supporting incremental programming. Later on, we expose
outstanding solutions presented in some other popular IDEs
and Plugins currently available.

Figure 1 (a) shows a starting point of coding for a pro-
grammer: the declaration and instantiation of two objects from
undefined classes Person and Address. The IDE shows these
instructions as errors, and as a solution, offers the possibility
to generate an empty class skeleton for each missing class.
However the programmer must manually trigger them, one by
one. Even worse, each generation implies a context switch to
the newly created class. Once the programmer generates these
classes and continues coding, she soon will end up with more
and more errors, see Figure 1 (b). The only feedback from the
IDE is that those errors represent missing entities: constructors
and methods. The IDE is unable to understand that the
programmer is writing a series of methods and constructors
that belong to classes Person and Address. Even worse, those
errors are tangled and scattered, making it difficult to see real
errors, such as in L26, or to distinguish between members
of class Person and class Address. Furthermore, the IDE
cannot detect inconsistencies between missing members until
they are generated, e.g. inconsistent return type of method
getPostalCode in L31 and L32. The only offered solution to
this problem by the IDE is to generate, one by one, all missing
entities to start to get useful feedback. As demonstrated in
this example, the programmer ends up attending to a series of
disrupted errors, one by one, resulting in a constant context
switches.

Instead of attending to error messages, some programmers
ignore all of them until they reach a stable point. Nevertheless,
this approach does not solve any of above problems. In fact,
both strategies, attending to errors and ignoring them, are not
real solutions. In both cases:

1) Undefined entities are reported as errors.
2) Undefined entities from different classes cannot be dis-

tinguished easily.
3) Real errors, e.g. L26, go unnoticed.
4) The IDE cannot detect inconsistencies between unde-

fined entities until they are generated, e.g. L31 & L32.
5) Undefined entities need to be generated one by one.
6) Each generation action implies a context switch.

Along with Eclipse 3.7.1, we analyze three major IDEs:
Microsoft Visual Studio 2010, IntelliJ IDEA 11, and Oracle
NetBeans 7.0.1. We also include two Plugins for Visual
Studio: ReSharper 6.1 and CodeRush 12. The list of issues
perviously reported can partially apply to these IDEs and



(a)

(b)

(c) (d)

Fig. 1. (a) Programmer starts writing two instances of undefined classes Person and Address on the IDE. (b) Once programmers attend to initial errors and
continue writing code on the IDE. (c) Ghost view and instant inconsistency feedback. (d) Same code as (b) after Ghosts clean up and check.

Plugins, however there are remarkable exceptions:
• IDEA, ReSharper and CodeRush report undefined entities

in a specific manner.
• IDEA and ReSharper perform partial and simple type

checking.
• NetBeans, IDEA, Visual Studio and ReSharper can gen-

erate a class with a single constructor. Visual Studio
can include generation of fields based on constructor
arguments. CodeRush can generate members, but only
if they appear in the current file.

• Visual Studio can generate a code skeleton in the back-
ground.

A detailed comparison between these IDEs and Plugins,
including snapshots and code snippets, can be found online [8].

III. PROGRAMMING WITH GHOSTS

We extend Eclipse to automatically and progressively report
on undefined entities usages, we call this extension Ghosts.
This is accomplished by making undefined entities (ghosts)
explicit in the IDE. Therefore, programmers can see them in
a dedicated view. Furthermore, programmers can get useful
feedback through type checking ghosts usages. In addition,
programmers can interact with ghosts, e.g. navigating to all
ghost usages across the current projects. And finally, pro-
grammers can generate ghosts (including members) in the
background with a single step.

Ghosts can be inferred and refined on the fly from their
usages. They can be interfaces (as default), classes, construc-
tors, methods and fields. Once a ghost is reified, it is displayed
as a valid entity in the Ghost View, a specific and condensed
view for ghosts, see Figure 1 (c). From the point of view
of the IDE, ghosts are not errors any more, therefore all
error references are removed, avoiding visual noise. Creating
and refining ghosts requires some analysis, e.g. ghost method
signatures are inferred through a local type inference algorithm
inspired by Miao and Siek [9]. Ghosts permits the generation
(in the background) of a given ghost class with its members
or even all ghosts related to the current project.

In some cases, the automatic reification of a ghost could not
be useful for the programmer, e.g. a typo. Ghosts reduces this

natural disadvantage by avoiding reifying ghosts methods from
external projects or standard libraries; allowing programmers
to import a class from an external library that matches a ghost
class; and permitting programmers to define an explicit list of
non-ghosts.

Figure 1 (d) shows how our Ghosts Plugin for Eclipse
interact with the code defined in Section II, before the
generation of any code. In addition, the Ghosts view, see
Figure 1 (c), condenses all usage of ghosts classes and
members in the current project. All non-useful error markers
are removed highlighting real errors, such as L26. Ghost
usages are type checked revealing a type inconsistency in the
return type of method getPostalCode in L31 and L32. This
inconsistency is clearly marked on the Editor and the Ghost
view. Therefore, the listed issues in Section II are solved by
the introduction of Ghosts.

Related Concepts. Mock Objects [10] are similar to Ghosts
in the sense that mock objects are declarations of future object
interfaces. However, the programmer explicitly provides mock
objects, instead to an implicit reification in Ghosts. Prorogued
Programming [11] is a new programming paradigm that,
similar to ghosts, allows programmers to reify and generate
undefined entities. However, Prorogued Programming requires
that programmers explicitly mark what expressions will be
prorogued concerns, i.e. undefined entities.

IV. CONCLUSIONS

We exhibit that current IDEs cannot properly support in-
cremental programming. As a solution, we present a simple
concept, called Ghosts (available for Java and Smalltalk [8]).
Ghosts are non-intrusive reifications of undefined entities
that can be traced, structured and type checked on the fly.
Therefore, programmers can focus on their main task, and
when needed they can generate whole code skeletons for some
or all ghost entities in the current project.

As a next step, we will work on both making ghosts
more usable and compatible with current tools, such code
completion, and evaluating its benefits through a controlled
experiment.



REFERENCES

[1] K. Beck, Test-Driven Development: By Example. Addison-Wesley, 2002.
[2] S. W. Ambler, “How agile are you? 2010 survey results,” 2010.

http://www.ambysoft.com/surveys/howAgileAreYou2010.html.
[3] Microsoft Developer Network, “Generate From Usage.”

http://msdn.microsoft.com/en-us/library/dd409796.aspx.
[4] DevExpress, “CodeRush – consume-first development.”

http://devexpress.com/Products/Visual Studio Add-
in/Coding Assistance/consume first development.xml.

[5] JetBrains Inc, “ReSharper plugin for VisualStudio.”
http://www.jetbrains.com/resharper/.

[6] JetBrains Inc, “Intellij idea.”
http://www.jetbrains.com/idea/.

[7] O. Callaú and É. Tanter, “Programming with ghosts,” IEEE Software,
vol. 30, no. 1, pp. 74–80, 2013.

[8] O. Callaú and É. Tanter, “Ghosts.”
http://pleiad.cl/ghosts.

[9] W. Miao and J. Siek, “Incremental type-checking for type-reflective
metaprograms,” in Proceedings of the 9th ACM SIGPLAN International
Conference on Generative Programming and Component Engineering
(GPCE 2010), (Eindhoven, The Netherlands), pp. 167–176, ACM Press,
Oct. 2010.

[10] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock roles,
objects,” in Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications,
OOPSLA ’04, (New York, NY, USA), pp. 236–246, ACM, 2004.

[11] M. Afshari, E. T. Barr, and Z. Su, “Liberating the programmer with
prorogued programming,” in Proceedings of the ACM international sym-
posium on New ideas, new paradigms, and reflections on programming
and software, Onward! ’12, (New York, NY, USA), pp. 11–26, ACM,
2012.


