
74 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

TesT-driven developmenT has
promoted the practice of writing test
cases first, before implementing the
actual system that will fulfill these
tests.1 New features are specified by
their corresponding test cases. Pro-
gramming then consists of defining
and completing the system such that
all the tests pass. Similarly, in tradi-
tional top-down programming, you
write a procedure to address a given
problem by relying on smaller auxil-
iary procedures that might not yet be
implemented.

In both top-down programming
and test-driven development, pro-
gramming is incremental. Program-
mers write code that uses entities that
are either not yet defined or only par-
tially defined. Considering that these

approaches are part of software devel-
opment’s daily practice—a Web sur-
vey of nearly 300 practitioners reports
that more than half use test-driven
development2 and that agile and itera-
tive approaches to software develop-
ment have become very popular3—you
might expect modern integrated devel-
opment environments (IDEs) to prop-
erly support this programming style.

However, modern IDEs are mostly
unable to support a pure incremental
programming style. If a program uses
an entity that’s undefined—a proce-
dure, method, class, interface, and so
on—the only feedback the IDE pro-
vides is an error. Sure enough, you
usually get the opportunity for the
IDE to automatically create a match-
ing code skeleton, but this feature—as

we will see—is tedious, obtrusive, and
limited. Several recent IDE enhance-
ments and third-party plug-ins are de-
voted to better supporting incremen-
tal programming, further hinting at
the practical relevance of the problem.
However, we will show that even these
state-of-the-art tools don’t provide a
seamless experience.

We propose a very simple idea to
address this issue. Instead of only re-
porting error messages, we propose
that IDEs transparently and nonin-
trusively build a reification of unde-
fined entities according to their usage,
progressively refined as the program
is elaborated. The developer can then
concentrate on the task at hand while
reasoning about undefined entities
through useful feedback on the con-
straints and dependencies that their
usage implies. Once the programmer
is ready to implement these entities,
the IDE can provide an appropriate
code skeleton that matches all the in-
ferred dependencies. We call these rei-
fied, undefined entities ghosts, and we
argue that IDEs should support them
to assist developers in incremental
development.

The state
of the practice in ides
To fully grasp the problem, let’s first
look closely at the state of the practice
with modern IDEs. We first focus on
Eclipse because it’s arguably the most
widely used Java IDE,4 and it illus-
trates the issues related to incremental
programming.

Errors, Errors, Errors ...
Suppose we have to provide a class Point
such that point objects are located on a
plane and their distance to the origin is
computable. We can start by writing a
first test case, as in Figure 1a.

Programming
with Ghosts
Oscar Callaú and Éric Tanter, University of Chile

// To support incremental programming, integrated

development environments should support ghosts:

reifications of undefined entities built automatically

and nonintrusively, based on their usage. //

Feature: Programming Tools

 January/fEbruary 2013 | IEEE SoftwarE 75

Because class Point isn’t yet defined,
the IDE marks two errors on line 8.
In the margin, the IDE provides an
icon that links to a suggestion for fix-
ing the error; in this case, the IDE of-
fers to create class Point. If the developer
follows this suggestion, the IDE reports
yet more errors (Figure 1b). These er-
rors, on lines 8–11, report undefined
constructors and members of class Point.
Here again, the IDE suggests generat-
ing code skeletons. However, these sug-
gestions must be accepted one by one.
The IDE doesn’t “understand” from
the test-case definition that we want to
define a single class with a constructor
and three methods.

Options for Handling Errors
Attending to each and every error mes-
sage related to an undefined entity
breaks the flow of programming. It
requires the programmer to explicitly
trigger and validate the suggestion of
generating a code skeleton. Addition-
ally, it invariably triggers a context
switch in the editor, bringing the file in
which the skeleton is generated to the
forefront, and so taking the program-
mer away from the original code she
was writing. Even worse, if the pro-
grammer elects to generate a class or
interface, it not only triggers an editor-
context switch but also first shows a
wizard window.

To illustrate, this implies the follow-
ing steps in the test case of class Point:

•	 from the test-case buffer, request
the generation of class Point;

•	 fill in the creation wizard;
•	 end up in the buffer of class Point;
•	 navigate back to the test-case

buffer;
•	 request the generation of the

constructor;
•	 end up in the buffer of class Point;
•	 navigate back to the test-case

buffer;
•	 request generation of method setX;
•	 end up in the buffer of class Point;
•	 navigate back to the test-case buf-

fer; and
•	 repeat the process similarly for the

setY and distanceToOrigin methods.

The cognitive burden of these context
switches often invites programmers
to the alternative of ignoring all er-
ror messages until they reach a stable
point in their implementation, when
they can address them all in a batch.
IDEs even include an option to deac-
tivate the error markers altogether so
that programmers can effectively con-
centrate on the main task before both-
ering with the definition of auxiliary
classes and methods.

The problem with both these op-
tions is that actual type errors go un-

noticed, defeating the purpose of type
feedback in the IDE. Consider, for in-
stance, the code of Figure 2. There are
many errors reported in this code, due
to the use of undefined classes Line and
Canvas. Turning off error markers (ei-
ther by deactivating them in the IDE
or by not paying attention to them)
means that the actual type error on
line 10 remains unnoticed.

Apprehending Undefined Entities
Figure 2 also reveals another limita-
tion of current IDEs. There are two
undefined classes used in this exam-
ple and 11 marked errors, yet only
one is an actual type error. Of the 10
remaining errors, some are related
to Line and the others are related to
Canvas. Because all errors are marked
similarly, it’s hard to correlate them
appropriately. Moreover, errors re-
lated to a single undefined entity, such
as Line, are scattered across several
methods.

Similarly, within a given method,
all error markers are tangled to-
gether: init has markers related to Line,
to Canvas, and to the actual type error.
Scattering and tangling make it hard
to apprehend the dependencies on an
undefined entity such as Line. Typical
tasks such as reasoning about an en-
tity’s interface are impossible while
that entity is undefined.

(a)

Point p = new Point(1.0,2.0);
p.setX(3.0);
p.setY(4.0);
double dis = p.distanceToOrigin();
assert(dis == 5.0);

8
9

10
11
12

(b)

Point p = new Point(1.0,2.0);
p.setX(3.0);
p.setY(4.0);
double dis = p.distanceToOrigin();
assert(dis == 5.0);

8
9

10
11
12

×

×

×

×

×

Figure 1. Defining a test case for undefined class Point: (a) The icon on the margin of line 8 flags two errors and links to a suggestion for fixing

them; (b) the same test case after generating a skeleton of class Point now includes three more lines with errors.

76 IEEE SoftwarE | www.computEr.org/SoftwarE

Feature: Programming Tools

What about Consistency?
Considering undefined entities only
as isolated errors brings some more
problems in practice: IDEs don’t detect
type inconsistencies until they gener-
ate skeletons. Consider the code in Fig-
ure 3a. The undefined method move on
class Point is twice used consistently: in
both cases, arguments are of type dou-
ble and the return type is boolean.

Now consider the extension shown
in Figure 3b. Method move is used
again, but this time it’s expected to
return a double. The IDE can only de-
tect that move isn’t defined and offer the
possibility to generate it. It can’t report
that these three usages aren’t consis-

tent with each other. If the program-
mer chooses to generate move using
the marker of m3, then move is gener-
ated with return type double. Of course,
this causes two error messages for the
other methods, indicating that double
can’t be converted to boolean. The IDE
can’t relate errors associated to unde-
fined entities.

IDE Support
for Incremental Programming
We studied several other major IDEs
besides Eclipse for Java to determine
how well they support incremental pro-
gramming: Microsoft’s Visual Studio
2010 (C#), IntelliJ’s IDEA 11 (Java),

and Oracle’s NetBeans 7.0.1 (Java).
We also looked at some popular IDE
plug-ins—namely ReSharper (www.
jetbrains.com/resharper) and Code-
Rush,5 both for Visual Studio—be-
cause of their interesting features.

Considering the programming work-
flow with undefined entities, we formu-
lated several questions related to the
definition, verification, and generation
of undefined entities. Table 1 summa-
rizes our findings. For each question,
we give the default answer and high-
light the notable exceptions. More de-
tails, including specific code snippets
and snapshots for each IDE and plug-in,
can be found online.6

(a) (b)

Line line;
Canvas canvas;
boolean flag;
void init(){
 line = new Line();
 canvas = new Canvas();
 flag = Ø;
 line.setThick(5);
 canvas.setDisplay(Ø)
}
void draw(){
 canvas.setVisible(true);
 //.. more code
 line.draw();
}

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

×

×

×

×

×

×

×

×

×

Line line;
Canvas canvas;
boolean flag;
void init(){
 line = new Line();
 canvas = new Canvas();
 flag = Ø;
 line.setThick(5);
 canvas.setDisplay(Ø)
}
void draw(){
 canvas.setVisible(true);
 //.. more code
 line.draw();
}

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

(a) (b)

void methodA(Point p){
 if (p.move(1.0,1.0))
 /*some code*/}

3
4
5

×

void methodB(Point p){
 if (p.move(1.0,1.0)){
 /*some code*/}

3
4
5

×

void methodZ(Point p){
 double distance = p.move(1.0,1.0);
 //.. some code
}

12
13
14
15

×

Figure 2. IDE error reporting options. Actual type errors, such as the one on line 10, are hard to distinguish whether the error markers are (a)

activated or (b) deactivated.

Figure 3. Inconsistent type usages: (a) two consistent usages of method move and (b) an inconsistent usage. The error markers only refer to

the fact that the method isn’t defined.

 January/fEbruary 2013 | IEEE SoftwarE 77

This study shows that program-
ming with undefined entities is cur-
rently not well supported. Even new
features, such as Visual Studio’s Gen-
erate From Usage7,8 or plug-ins like Co-
deRush and its support for Consume-
First Development,5 fall short of ad-
dressing the whole picture, even
though they explicitly target incremen-
tal programming.

programming with Ghosts
We propose to make undefined enti-
ties explicit in the IDE, calling them
ghosts and exploiting them through
the IDE metaphors that programmers
are used to. This simple idea turns out
to address all the issues raised earlier.
Ghosts are nonintrusive. They can
be defined on the fly, used to reason

about partially defined code, checked
for type consistency early, and used
to generate full code skeletons when
needed.

Ghosts: Reifying Undefined Entities
Instead of letting undefined entities
manifest in the IDE in the form of er-
rors, we reify them as ghosts. A ghost
class is a class that’s used but not yet
defined. Similarly, the IDE can create
ghost interfaces, ghost methods, ghost
constructors, and ghost fields.

The IDE can display ghosts just as
it does defined entities. Figure 4 shows
the Ghost View of the Eclipse plug-in
we developed: class Point is being used
with a two-argument constructor and
methods setX, setY, and distanceToOrigin.
Because ghosts appear in their own

separate view, the IDE doesn’t have to
report their usages as errors. This ap-
proach avoids visual noise so that ac-
tual type errors clearly manifest.

Building Ghosts
Programmers create and refine ghosts
on the fly, as they write a program.
There’s no need for explicit (and dis-
ruptive) user actions. Figure 5 shows
how the Ghost View evolves with the
code. At first, only Point appears in the
view, as an interface. The testMethod is
marked to indicate that it relies on a
ghost. Once the programmer writes
code that instantiates Point, the view
updates. It’s clear that Point should be a
class, not an interface, and that it ought
to have a matching constructor. As the
programmer writes the test case, the

Ta
b

l
e

 1 How major IDEs support programming with undefined entities.

Questions Default answer Notable features

Definition

How are undefined types reported in the IDE? As errors

Can undefined types be distinguished easily? No IDEA, ReSharper, and CodeRush report all undefined entities in
a specific manner.

Are members of undefined types also reported? No IDEA, ReSharper, and CodeRush do report them.

Is it possible to easily identify the current set
of undefined members associated to a single
(undefined) type?

No, all undefined
entities are signaled
similarly

How are undefined members of external libraries
reported?

Like any undefined
members

CodeRush reports them as actual errors, similar to type errors.

Verification

Is the use of undefined entities subject to type
checking?

No IDEA and ReSharper only check some argument types and
some local variable assignments

Generation

Can an undefined entity be fully generated in a
single click?

No NetBeans, IDEA, VisualStudio, and ReSharper can only generate
a class with a single constructor at once; Visual Studio can
generate fields for constructor arguments; CodeRush can
generate a type with several members at once, but only based
on the usages in the current file.

Does generation force a switch to the buffer of the
new entity?

Yes VisualStudio can generate in the background.

78 IEEE SoftwarE | www.computEr.org/SoftwarE

Feature: Programming Tools

IDE adds the methods used on Point to
the ghost, reflecting the programmer’s
intent in real time.

Creating ghosts implies performing
some analysis of the code as it’s writ-
ten. For instance, when a developer
introduces an undefined type, the IDE
assumes that it corresponds to an in-
terface. (It’s well-recognized that pro-
gramming against interfaces should be
favored over classes.9) But this decision
should be reverted if it turns out that

only a class makes sense—for instance,
if the entity is instantiated.

Similarly, defining ghost members
requires performing some local type in-
ference10 to deduce member signatures
from their usage context. Our imple-
mentation relies on an inference pro-
cess inspired by the algorithm of Weiyu
Miao and Jeremy Siek.11 The algorithm
type-checks code fragments on the fly,
creating constraints for each occur-
rence of a ghost entity. At usage sites,

the algorithm unifies the set of con-
straints associated to a ghost entity to
infer the most general type, if any.

Checking Ghosts
Inferring ghost member types accord-
ing to their usage context enables early
detection of type inconsistencies. For
instance, consider again the example
of Figure 3, in which the move method
is used in two incompatible ways: once
with a boolean return type and once with
a double return type. The Ghost View
shows two methods—each with a dif-
ferent return type—and reports an er-
ror because Java doesn’t allow methods
of the same name to have different re-
turn types (see Figure 6).

The programmer can exploit type
feedback flexibly. For instance, if
the programmer uses the setX method
sometimes with a double argument and some-
times with an int argument, two ghost
methods appear in the Ghost View. The
programmer can leave both methods—
it’s perfectly valid to have such over-
loaded methods—or correct some uses
to have a single ghost method.

Connecting Ghosts to Source Code
Navigating from a specific ghost to
all the code locations where it’s used
makes it easy to correct erroneous code
that creates an undesired ghost. For in-
stance, in the last example, program-
mers that want to fix the usages of move
to comply with return type double can
identify all the code locations that im-
ply the undesired ghost method (see
Figure 6c).

Busting Ghosts
After the programmer has completed
the main task and is happy with the cor-
responding ghosts, she can selectively
“bust” them into actual definitions us-
ing the ghostbuster button (see Figure 4).
This mechanism relies on the standard
capabilities of the IDE to generate skel-
etons. The difference is that ghosts per-

ghost-examples

Ghosts View SimpleTestCase.java

Point
 Point(double,double)
 distanceToOrigin() : double
 setX(double) : void
 setY(double) : void

Ghost buster action

void testMethod(){

 Point p = new Point(1.0,2.0);
 p,setX(3,0);
 p,setX(3,0);
 double dis = p.distanceToOrigin();
 assert(dis == 5.0);

6
7
8
9

10
11
12

A ghost class

Java EditorGhost View

ghost-examples

Ghosts View

Ghosts View

Ghosts View

Point

ghost-examples
Point
 Point(double,double)

ghost-examples
Point
 Point(double,double)
 distanceToOrigin() : double
 setX(double) : void
 setY(double) : void

Add constructor calls

Add method calls

SimpleTestCase.java

void testMethod(){

 Point p ;

6
7
8

6
7
8

1

2

3

void testMethod(){

 Point p = new Point(1.0,2.0);

6
7
8
9

10
11
12

void testMethod(){

 Point p = new Point(1.0,2.0);
 p,setX(3,0);
 p,setX(3,0);
 double dis = p.distanceToOrigin();
 assert(dis == 5.0);

Figure 4. Ghost View in Eclipse. Undefined entities used in the Java Editor appear in the

Ghost View. The user can select a ghost in the Ghost View and generate a full code skeleton

by selecting the Ghost buster action.

Figure 5. Creating and refining ghosts on the fly. First, the IDE infers Point as a ghost

interface; because Point is instantiated, it’s replaced by a ghost class with the corresponding

constructor signature; finally, the IDE adds methods as soon as they’re used.

 January/fEbruary 2013 | IEEE SoftwarE 79

mit the generation of the whole skel-
eton for a given class (including all its
members) or even all the skeletons for
all the current project’s ghosts. Ghost
generation happens in the background,
without switching context. Busted
ghosts simply disappear from the Ghost
View and appear as normal entities in
the project explorer view.

Undesired Ghosts
Sometimes, programmers accidentally
use undefined entities. Our approach is
conceptually limited by default, because
these unintentional uses are reflected as
ghosts, which then must be eliminated.
For instance, a spelling mistake like
movee instead of move manifests as a
ghost method; if it’s undesired, the pro-
grammer can navigate from the ghost
to its occurrence in the code and fix
it. Another example is missing import
statements. Using List without importing
java.util.List results in a ghost interface;

right-clicking the ghost offers the pos-
sibility of importing the interface from
the library instead.

To limit the number of undesired
ghosts, our tool doesn’t create ghost
members on classes that are external to
the current project. For instance, call-
ing leength on a string object yields an
error, not a new ghost method on String.
For imports, our tool also supports a
user-specified list of names that should
never give rise to ghosts, such as List or
Map, hence reverting the default behav-
ior selectively.

d espite being a simple idea,
ghosts offer significant con-
tributions to current IDE ca-

pabilities. The Ghost plug-in for Eclipse
and the Ghost extension for Smalltalk
Pharo—showing the potential of ghosts
for dynamic languages—are available
online, together with supplementary

material.6 The Eclipse plug-in is a proof
of concept that doesn’t yet support sev-
eral Java features, most notably gener-
ics and exceptions. The tool also does
not currently try to infer super types
of ghosts or reasoning about method-
call chains. These limitations ought to
be explored and addressed in produc-
tion-quality ghost implementations but
don’t represent fundamental restric-
tions of the ghost concept.

Ghosts are a simple and useful met-
aphor to better support incremental
development. Their potential is yet to
be fully exploited. In particular, IDE
features such as code completion and
refactoring can make productive use
of ghosts.

references
 1. K. Beck, Test-Driven Development: By Ex-

ample, Addison-Wesley, 2002.
 2. S.W. Ambler, “How Agile Are You? 2010

Survey Results,” Scott W Ambler & Assoc.,

(a) (b)

(c) (d)

void methodA(Point p){
 if (p.move(1.0,1.0))
 /*some code*/}

3
4
5

×

void methodZ(Point p){
 double distance = p.move(1.0,1.0);
 //some code
}

12
13
14
15

×

void methodB(Point p){
 if (p.move(1.0,1.0)){
 /*some code*/}
}

7
8
9

10

×

ghost-examples

Ghosts View

Point
 Point(int,int))
 distanceToOrigin() : double
 move(double,double) : boolean
 move(double,double) : double
 setX(double) : void
 setY(double) : void

ghost-examples

Ghosts View

Point
 Point(int,int))
 distanceToOrigin() : double
 move(double,double) : bool
 move(double,double) : dou
 setX(double) : void
 setY(double) : void

in MovingPoints.java : L8
in DrawingPoints.java : L4

Figure 6. Reporting type errors. The IDE reports type errors (a) in code editors and (b) in the Ghost View, which supports (c) navigation to

the source location. There is no need to request generation of ghosts in order to get type feedback about them.

80 IEEE SoftwarE | www.computEr.org/SoftwarE

Feature: Programming Tools

2010; www.ambysoft.com/surveys/
howAgileAreYou2010.html.

 3. C. Larman, Agile and Iterative Development:
A Manager’s Guide, Addison-Wesley Profes-
sional, 2003.

 4. G. Goth, “Beware the March of this IDE:
Eclipse Is Overshadowing Other Tool Technol-
ogies,” IEEE Software, vol. 22, no. 4, 2005,
pp. 108–111.

 5. DevExpress, “CodeRush—Consume-First
Development,” tech. note, 2012; http://
devexpress.com/Products/Visual_Studio_
Add-in/Coding_Assistance/consume_first_
development.xml.

 6. O. Callaú and É. Tanter, “Ghosts,” project
website, 2012; http://pleiad.cl/ghosts.

 7. Microsoft Developer Network, “Generate
from Usage,” tech. note, 2012; http://msdn.
microsoft.com/en-us/library/dd409796.aspx.

 8. Microsoft Developer Network, “Walk-
through: Test-First Support with the Generate
From Usage Feature,” tech. note, 2012;
http://msdn.microsoft.com/en-us/library/
dd998313.aspx.

 9. J. Bloch, Effective Java, 2nd ed., Addison-
Wesley, 2008.

 10. B.C. Pierce, Types and Programming Lan-
guages, MIT Press, 2002.

 11. W. Miao and J. Siek, “Incremental Type-
Checking for Type-Reflective Metaprograms,”
Proc. 9th ACM SIGPLAN Int’l Conf. Gen-
erative Programming and Component Eng.
(GPCE 2010), ACM, 2010, pp. 167–176.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

oscar callaú is a PhD student at the University of Chile in the
Pleiad research laboratory. His research interests include type systems,
integrated development environments, and mining software reposi-
tories. Callaú received BSc degrees in both computer science and
computer engineering from Major University of San Simeon at Cocha-
bamba, Bolivia. He’s a member of the ACM. Contact him at oalvarez@
dcc.uchile.cl.

Éric TanTer is an associate professor in the computer science
Department of the University of Chile, where he co-leads the Pleiad
research laboratory. His research interests include programming
languages and tool support for modular and adaptable software. Tanter
received a PhD in computer science from both the University of Nantes
and the University of Chile. He’s a member of IEEE and the ACM. Con-
tact him at etanter@dcc.uchile.cl.a

b
o

u
T
 T

h
e

 a
u

T
h

o
r

s

Advertiser PAge
John Wiley & Sons, Inc. Cover 4

Advertising Personnel
Marian Anderson
Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139
Fax: +1 714 821 4010

Sandy Brown
Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 816 2144
Fax: +1 714 821 4010

Advertising Sales
Representatives (display)
Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe,
Middle East:
Ann & David Schissler
Email: a.schissler@computer.org,

d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070
Fax: +1 973 585 7071

Advertising Sales
Representative
(Classified Line, Jobs Board)
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070;
Fax: +1 973 585 7071

AdvertiSer informAtion • JAnUArY/feBrUArY 2013

Find Us on

Facebook
& TwiTTer!

facebook.com/
ieeesoftware

twitter.com/
ieeesoftware

