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ABSTRACT
Can access control be fully modularized as an aspect? Most pro-
posals for aspect-oriented access control are limited to factoring
out access control checks, still relying on a non-modular and ad
hoc infrastructure for permission checking. Recently, we proposed
an approach for modular access control, called ModAC. ModAC
successfully modularizes both the use of and the support for ac-
cess control by means of restriction aspects and scoping strategies.
However, ModAC is only informally described and therefore does
not provide any formal guarantee with respect to its effectiveness.
In addition, like in many other proposals for aspect-oriented access
control, the presence of untrusted aspects is not at all considered,
thereby jeopardizing the practical applicability of such approaches.
This paper demonstrates that it is possible to fully modularize as-
pect control, even in the presence of untrusted aspects. It does so
by describing a self-protecting aspect that secures ModAC. We
validate this result by describing a core calculus for AspectScript,
an aspect-oriented extension of JavaScript, and using this calculus
to prove effectiveness and non-interference properties of ModAC.
Beyond being an important validation for AOP itself, fully mod-
ularizing access control with aspects allows access control to be
added to other aspect languages, without requiring ad hoc support.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.1 [Formal Definitions and Theory]: Semantics

General Terms
Languages, Design

Keywords
Access control, aspect-oriented programming, restriction aspects,
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1. INTRODUCTION
Access control [24] is a cornerstone of every security architec-

ture: it is the component in charge of ensuring that sensitive re-
sources are accessed only by the entities authorized to do so. In
modern runtime environments such as the JVM [16] and the CLR [4],
access control architectures rely on a fine-grained specification based
on permissions. Permissions represent the ability to access and use
a particular resource (e.g. a file) in a certain manner (e.g. read-only
or read-write). Fine-grained access control in these architectures
allows one to assign different sets of permissions to different en-
tities. Furthermore, stack inspection [15] is used to dynamically
examine if a sensitive operation can be performed or not. This is
known as basic permission checking.

The Java access control architecture also includes two other mech-
anisms: privileged execution and first-class permission contexts.
Privileged execution allows a trusted entity to take responsibility
for a certain action. This makes it possible for untrusted entities
to access sensitive resources—such as the screen—in a controlled
manner. First-class permission contexts allow the programmer to
capture the set of permissions at a certain point and restore it later
on, for instance to incrementally perform a long task—such as
classloading—in different threads safely.

While these three mechanisms together provide a very powerful
access control system, they also introduce modularity issues. In-
deed, using basic permission checking is a crosscutting concern: in
order to trigger stack inspection, explicit calls to the access control
architecture are necessary. As a consequence, code related to per-
mission checking ends up scattered at each and every place where
sensitive resources are accessed, tangled with other concerns. In
addition to the crosscutting nature of the use of access control, the
implementation of access control is itself non-modular in the sense
that it does not only lie in standard libraries, but depends on na-
tive support from the runtime environment. For instance, the Java
VM provides specific support for reifying the stack and permission
contexts. This native support in the VM is specific to (and can
only be used for) access control enforcement. This tends to suggest
that access control needs to be supported as a primitive in the lan-
guage, and that therefore, access control is not something that can
be plugged into an existing language without having to modify its
semantics.

Considering the fact that security has long been considered a typ-
ical aspect, this work addresses the following research question:

Can access control be fully modularized as an aspect?

Here, we are concerned not only with modularizing basic permis-
sion checking—a somewhat easy and well-explored problem [9,
19, 21, 23, 25, 34, 35]. We want to express the whole access con-
trol infrastructure as an aspect, including the support for advanced
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features ignored in the literature, namely privileged execution and
capturable permission contexts. Also, we aim at answering the
question: is it possible to leave the programming language seman-
tics completely oblivious to the presence of access control? If so,
can we ensure that malicious code, including other aspects, do not
interfere with the access control aspect, and how? What are the
requirements on the underlying general-purpose aspect language?

Importantly, a positive answer to these questions should also
contribute the formulation of a general-purpose aspect model that
can be used to add access control to languages that do not include
any (or very limited) support for it, like JavaScript. Indeed, in pre-
vious work [31], we have explored how it is possible to aspectize
stack-based access control with support for privileged execution
and capturable permission contexts. The approach, called ModAC
(for Modular Access Control) consists of expressing access control
using restriction aspects scoped with an appropriate scoping strat-
egy [26]. Restriction aspects modularize the use of access control
whereas scoping strategies replace the need for a native VM mech-
anism specific to access control, making it possible to modularly
provide basic permission checking, privileged execution, and cap-
turable permission contexts.

The ModAC approach was instantiated in AspectScript, an aspect-
oriented extension of JavaScript that supports scoping strategies [30].
The resulting implementation (hereafter called ModAC/AS) was
used to provide an extensible access control library for JavaScript,
called ZAC [33]. However, previous work on ModAC answers part
of the above research question. First, the formulation of ModAC
is informal; its actual effectiveness in controlling accesses to sen-
sitive resources has not been proven. Second, it leaves open the
possibility for untrusted aspects to interfere with access control as-
pects, thereby ruining its effectiveness.

Contribution. This work extends previous work on ModAC [31]
with three contributions:

• We show that it is possible to fully modularize access control
as an aspect, even in the presence of untrusted aspects, thanks
to a self-protecting restriction aspect that impedes untrusted
aspects to interfere with critical access control components
(Sect. 3).

• We develop λAS , a core calculus for AspectScript based on
λJS [17] for modeling JavaScript, and a variation of the se-
mantics of LAScheme [28] for aspect weaving (Sect. 4).

• We state and prove the effectiveness and non-interference
properties of an instantiation of ModAC in λAS , ModAC/λAS .
The formulation of these results is detailed in Sect. 5; the
proofs are available online [32]. We discuss the extension
of the results to ModAC/AS and other aspect languages in
Sect. 6.

Section 2 briefly introduces access control, and aspect-oriented ap-
proaches to it, in particular ModAC. Section 7 describes related
work and Section 8 concludes.

Implementation. This work is implemented in the ZAC library for
AspectScript. Also, the executable semantics of λAS are imple-
mented in PLT Redex [13]. Both artifacts are available online [32].

2. BACKGROUND & MOTIVATION
We briefly introduce stack-based access control, illustrating its

main features (Section 2.1). We then describe aspect-oriented ap-
proaches to access control, including ModAC (Section 2.2). Sec-
tion 2.3 classifies various threats to modular access control.

2.1 Access control by example
In this section we describe the three access control features based

on stack inspection: basic permission checking, privileged execu-
tion, and permission contexts. We illustrate each one with real-
world examples from the JavaScript realm.

Basic permission checking.
When a sensitive resource is about to be accessed, a call to the ac-

cess control infrastructure triggers a stack inspection algorithm [15],
which checks whether all the entities in the current stack of execu-
tion (starting from the top of the stack) possess the necessary per-
mission to access the resource. If not, an exception is thrown. Stack
inspection is triggered by calling SecurityManager.checkPermission in
Java, passing the required permission; in C#, this is done by invok-
ing Demand() on a permission object. In both systems, the entities
to which permissions are assigned to are classes. In the follow-
ing examples, permissions are assigned to individual objects, since
JavaScript is prototype based.

This basic behavior prevents the confused deputy problem [18]
from happening: an untrusted entity cannot lead a trusted one to ac-
cess a sensitive resource on its behalf by simply invoking a method,
because the stack inspection algorithm will eventually notice the
presence of the untrusted entity on the stack. This is exempli-
fied in the following piece of code, in which accessing a sensitive
resource—the network—is forbidden:

var trusted = {
newRequest: function(url){

return new XMLHttpRequest(url);
} };

var untrusted = {
m: function(){

var req = trusted.newRequest("...");
} };

untrusted.m();

XMLHttpRequest
create(url)

untrusted
m()
...

stack

stack
inspectiontrusted

newRequest(url)

(top)

CP

When m is executed, the untrusted object invokes newRequest on
trusted to create a new XMLHttpRequest object. Assuming that the
stack inspection algorithm is triggered as in Java with a call to
checkPermission (signaled by the CP gray square in the figure above),
the instantiation is prevented by throwing an exception. This is so
because the stack inspection algorithm eventually checks the per-
missions of untrusted and discovers that it does not hold the neces-
sary permission to access the network.

Privileged execution.
In some scenarios, it is necessary for an entity to access a sensi-

tive resource on behalf of another—possibly untrusted—entity. For
this, the JVM supports privileged execution. For instance, suppose
that we want to provide a netService object that allows any client to
access the network, provided that the target site pertains to a list of
known sites. In this case, the creation of an XMLHttpRequest object
should be allowed even when there are untrusted objects participat-
ing in the current call stack.

var netService = {
newRequest: function(url){

if(shouldAllow(url)){
return this.doPrivileged(function(){

return new XMLHttpRequest(url);
});

}
return null;

} };
var untrusted = {

m: function(){
var req = netService.newRequest("...");

} };
untrusted.m();

XMLHttpRequest
create(url)

untrusted
m()
...

stack

stack
inspection

netService
newRequest(url)

(top)

netService
doPrivileged(..)

anonymous fun

CP



A self call to doPrivileged initiates a privileged action1. Conse-
quently, stack inspection only considers the permissions of objects
on the stack corresponding to the dynamic extent of the privileged
action, including the initiator of the action; i.e. the stack inspection
algorithm stops at the frame of the initiator of the call to doPrivileged.

Permission contexts.
When accessing a sensitive resource, it can be necessary for an

entity to use the permissions present at another point in the execu-
tion of the application. The JVM provides built-in means to capture
a permission context and restore it later on.

For instance, this can be used in JavaScript to capture the per-
mission context at the time a network connection is initiated, and
reinstall it when the response from the server is received (asyn-
chronously). This way, the response processing is performed with
the same permissions as the call, similarly to a synchronous com-
munication.

2.2 Access control with aspects
Due to its inherently crosscutting nature, access control has been

a repeated target for applying aspects. We briefly explain these
approaches in the following, and then dive into a recent proposal
for fully modularizing access control.

Permission aspects.
The most obvious source of crosscutting due to access control is

the necessity of explicitly triggering stack inspection upon access to
sensitive resources. Many approaches based on aspects have been
proposed in order to factor out these calls into advices [9, 19, 21,
23, 25, 34, 35]. In all these approaches, aspects follow the same
pattern: their pointcuts match accesses to sensitive resources, and
their advice triggers access control. For example, the following
aspect, declared in AspectScript [30], guards the accesses to the
network:
var netPermission = {

pointcut: function(jp){ return jp.kind == NEW &&
jp.fun === XMLHttpRequest; },

advice: function(jp){
checkPermission(new Permission(NETWORK)); //triggers stack inspection
return jp.proceed();

} };

This aspect2 successfully modularizes the triggering of basic per-
mission checking for network accesses. Aspects following this pat-
tern are classified as permissions aspects due to their use of the
permissions infrastructure and the stack inspection algorithm [31].

Restriction aspects.
While permission aspects modularize calls to check if the neces-

sary permissions are available, they do not fully modularize access
control, because they rely on native support from the runtime en-
vironment in order to perform stack inspection. Recently, we de-
scribed an approach for fully modular access control, ModAC [31],
based on restriction aspects and scoping strategies.

In contrast to permission aspects, restriction aspects do not rely
on any permission infrastructure or stack inspection algorithm. In-
stead, the scoping mechanism of the aspect language is used to en-
sure proper resource protection. A restriction aspect works by ad-
hering to a different, dual pattern: the pointcut selects accesses to
1In Java, a privileged action is started by calling the static method
AccessController.doPrivileged.
2Aspects are standard objects in AspectScript. They have one
pointcut and one advice, defined by the pointcut and advice attributes
respectively. Both pointcuts and advices receive a join point as pa-
rameter. All advices are around advices.

a sensitive resource (just like a permission aspect), but the advice
immediately aborts the access by not proceeding with the primitive
operation; scoping strategies are used to ensure that the aspect only
sees forbidden accesses. Consider the following restriction aspect:

var netRestriction = {
pointcut : function(jp){ return jp.kind == NEW &&

jp.fun === XMLHttpRequest; },
advice: function(jp){ throw "Cannot access the net."; }

};

This aspect forbids the access to the network. Its pointcut identifies
instantiations of XMLHttpRequest objects, and the advice throws an
exception with an informative message. Another possibility is not
to throw an exception but to silently abort the sensitive resource
access. For instance:

var alertRestriction = {
pointcut : function(jp){ return jp.kind == EXEC && jp.fun === alert; },
advice : function(jp){ /∗ do nothing ∗/ }

};

This restriction aspect simply skips the execution of the alert method,
in order to avoid popups.

A scoping strategy for access control.
Restriction aspects are limited to see only illegal resource ac-

cesses by means of scope control. However, scope control based
on control flow only, as provided by AspectJ, is insufficient to
directly support features like privileged execution and permission
contexts [31]. For this reason, ModAC relies on a more expressive
scoping control mechanism, scoping strategies [26, 27, 29].

A scoping strategy permits fine-grained control over the scope
of a deployed aspect. A scoping strategy itself is specified by two
propagation functions: a call stack propagation function c specifies
how an aspect propagates along with method calls, and a delayed
evaluation function d specifies whether or not an aspect is “cap-
tured” in objects when they are created.3 Intuitively, the former
allows controlling dynamic scoping of aspects, stopping propaga-
tion when a certain condition is met. The latter allows an aspect to
follow an object: the aspect sees all join points occurring lexically
within all methods of the object (and may potentially propagate
further in method calls done by the object depending on the call
stack propagation function). Propagation functions are predicates
over join points: the call stack propagation function matches call
join points for which the aspect should propagate, while the de-
layed evaluation propagation function matches object creation join
points.

Scoping strategies in AspectScript are provided as an (optional)
first argument to the aspect deployment constructs: deploy(s,asp,fun),
which deploys aspect asp on the body of fun; and deployOn(s,asp,obj),
which deploys asp on the object obj. In both cases, s is a scoping
strategy, and asp can be a single aspect or an array of aspects.

The scoping strategy for access control that supports basic per-
mission checking, privileged execution, and permission contexts is:

var acs = [ //access control strategy
function(jp){ return !(jp.fun === doPrivileged && jp.target === jp.context);},
function(jp){ return jp.target instanceof ACContext; }

];

The call stack propagation function expresses both basic permis-
sion checking and privileged execution. Essentially, it specifies
that a restriction aspect always propagates on the call stack, except
on privileged calls. A privileged call is a self call to doPrivileged.
This way, a restriction aspect propagating through the stack stops

3Scoping strategies also include a third component, called activa-
tion function. Activation is not used in this work, so we omit it.
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Figure 1: Propagation of aspects with the access control strat-
egy.

its propagation upon a privileged call, and hence does not see re-
source accesses that occur in the control flow of that call. Con-
sidering self calls for privileged execution permits to maintain the
aspects of the object initiating the action.

The delayed evaluation propagation function expresses the cap-
ture of permission contexts. It ensures that restriction aspects prop-
agate to instances whose prototype is ACContext; therefore, creat-
ing such an object is a means to take a snapshot of the restriction
aspects present at that point in time. Later on, it is enough to in-
clude these objects in the stack to restore the permission context.
This is done by an overloaded version of doPrivileged that accepts an
ACContext as extra parameter—more details can be found in [31].

Figure 1 depicts the propagation of an aspect asp deployed with
the access control strategy. If asp is currently deployed (i.e. it is in
the current aspect environment), it propagates on calls to newRequest
(jpnreq) but not on self-calls to doPrivileged (jppriv). Therefore asp
sees join points occurring during the execution of newRequest. Sim-
ilarly, asp gets captured in new ACContext objects (jpacc), and not
in new XMLHttpRequest objects (jpxhr). Hence, asp sees the subse-
quent activity of these ACContext objects.

ModAC fully modularizes aspect control, by relying only on the
aspect language. As a matter of fact, scoping strategies replace the
need for an ad-hoc, VM-supported mechanism specific to access
control, as is the case of access control in the JVM and the CLR. For
sure, the aspect language must support scoping strategies; however,
scoping strategies are a general-purpose construct, with a range of
applications beyond access control [26, 27, 29].

Bootstrapping access control.
Since access control is fully modularized, it is just one more as-

pect. In order for it to be effective in a given system, it has to
be activated. In a language with dynamic aspect deployment, the
only way is to do so explicitly in the program (e.g. around the main
method, around the loading of a script, etc.). In a language with
static deployment, access control must still be equivalently acti-
vated (e.g. command line or configuration file).

In the case of ModAC/AS, the activation of access control is
performed by wrapping the main program in a deployment of the
ACDeployer aspect (Figure 2). ACDeployer ensures that the relevant
parts of the activity of all objects are under control of restriction
aspects. It does so by deploying these restriction aspects on newly-
created objects with the access control scoping strategy acs defined
previously. Crucially, the deployment of restriction aspects must be
done exactly in between the creation of an object and the beginning
of its initialization. This way, when the object initiates computa-
tion, the necessary restriction aspects are already deployed on it.

The ACDeployer aspect deploys restriction aspects on objects when
they are created. First, its pointcut matches all object creations (line

1 var ACDeployer = {
2 acs: ..., //access control strategy
3 pointcut: function(jp){ return jp.kind == NEW; }, // creation of objects
4 advice: function(jp){
5 var obj = jp.proceed();
6 var restrictions = getRestrictionsFor(obj);
7 deployOn(acs, restrictions, obj); //per−object deployment
8 return obj;
9 } };
10 deployOn([false,true],ACDeployer, function(){ /∗ main program ∗/ });

Figure 2: Deployer aspect for deploying restriction aspects.

3). Then, the advice (lines 4-8) deploys the corresponding restric-
tion aspects on the newly-created object (line 5), using deployOn
(line 7) and specifying the access control scoping strategy (line 2).
Finally, the object is returned (line 8). The set of restriction as-
pects that corresponds to a particular object is determined by the
getRestrictionsFor method (line 6). This method abstracts the process
of determining the needed restrictions. A possible implementation
is to mimic the access control architecture of the JVM by returning
the restriction aspects that correspond to the permissions declared
in a policy file. Another implementation is to return restrictions
based on dynamic conditions, such as the kind of user currently in-
teracting with the application, as in role-based access control [14].
Line 10 deploys ACDeployer such that it propagates in all created ob-
jects (delayed evaluation is set to true); this ensures that it sees all
object creations.

2.3 Threats to modular access control
ModAC seems to be a proof by existence that access control can

be fully modularized using aspects, provided the aspect language
supports a sufficiently expressive scoping mechanism. However,
our previous work does not provide any formal guarantee in this
respect. Most importantly, it does not consider threats posed by the
presence of other, possibly untrusted, aspects.

We consider a simple attack model where the attacker can de-
fine an aspect whose purpose is to defeat access control. The at-
tacker cannot alter the specifications of what entities are considered
trusted or untrusted. These policies, the aspect weaver, and ModAC
components themselves are part of the trusted computing base.

Inhibition.
Following the same attack model, De Borger et al. showed how

easy it is to interfere with access control by means of aspects [8].
For instance, this AspectJ aspect completely inhibits access control
in Java programs:

public aspect MaliciousAspect{
void around(): execution(void SecurityManager+.check∗(..)){ }

}

As opposed to the JVM and the CLR, ModAC does not exhibit the
previous vulnerability, simply because there are no explicit calls to
a stack inspection algorithm. However, there are other alternatives
for untrusted aspects to inhibit access control, to which ModAC is
vulnerable: i.e. to prevent access control components—restriction
aspects, the access control strategy, and the ACDeployer aspect—
from actually controlling accesses.

We introduce the distinction between implicit and explicit inhi-
bition. Implicit inhibition is based on using the aspect weaving
mechanism to inhibit access control, such as in the above AspectJ
example. Explicit inhibition consists of using other means provided
by the base language (e.g. side effects) to prevent the different com-
ponents of the access control system to fulfill their role.



Explicit inhibition.
There are many kinds of explicit inhibition, depending on the

considered programming language. In a purely functional language,
it is impossible to alter a function or mutate existing bindings and
data structures. But in a stateful world, risks exist if the state of the
access control components can be aliased and mutated. Such risks
are exacerbated in languages like JavaScript, where it is possible to
dynamically remove object members.

Fortunately, explicit inhibition requires the malicious entity to
perform explicit actions, which can be observed and prevented by
dedicated restriction aspects. For instance, the following restriction
forbids any action on netRestriction (e.g. modification of its proper-
ties, invocation of its methods):

var metaNetRestriction = {
pointcut: function(jp){ return jp.target === netRestriction; },
advice: function(jp){ throw "Cannot manipulate the netRestriction aspect"; }

};

For any kind of explicit inhibition, a dedicated restriction must be
defined. This shows how ModAC elegantly protects itself from
explicit inhibition.

Implicit inhibition.
Because explicit inhibition can be prevented by means of re-

striction aspects, this paper focuses on implicit inhibition. Indeed,
implicit inhibition is peculiar because it is directly enabled by the
use of an aspect-oriented language; also, implicit inhibition can be
achieved in any aspect language, regardless of whether or not the
language allows arbitrary effects.

In the case of ModAC, there are three kinds of implicit inhi-
bition: pointcut inhibition, advice inhibition, and scoping strategy
inhibition. Pointcut inhibition consists in preventing the pointcut of
an access control component from matching at relevant join points.
For instance, the following malicious aspect inhibits the pointcut pc
of a restriction aspect:

var maliciousAspect = {
pointcut: function(jp){ return jp.kind == PCEXEC && jp.fun === pc; },
advice : function(jp){ return false; }

};

The other kinds of inhibition follow a similar pattern: making a
pointcut return false as above, making an advice do nothing by
matching its execution but never proceeding, or impeding propa-
gation of restriction aspects by making their propagation functions
return always false, etc.

3. R̊: ONE ASPECT TO RULE THEM ALL

In this section we present R̊ (pronounced “ring”), a self-protecting
restriction aspect that prevents untrusted aspects from inhibiting
access control in ModAC. We first introduce some terminology
to discriminate different kinds of aspects (Section 3.1). We then
describe and justify our design goals for secure modular access
control (Section 3.2), and a general approach to control untrusted
aspects (Section 3.3). We finally present R̊ and explain how it pre-
vents inhibition of both access control and itself (Section 3.4).

3.1 Aspect classification
First, we refer to all aspects that are part of ModAC—restriction

aspects and the ACDeployer aspect—as access control aspects. We
then make the distinction between trusted aspects, which should
be given unrestricted freedom; and untrusted aspects, which are
potentially trying to inhibit acces control. Classifying aspects as
trusted or untrusted depends on the access control policy of a given

application. For example, a possible policy consists in considering
all aspects defined in local code as trusted, whereas aspects defined
in remote code are deemed untrusted. We do not commit to any
specific means to express this classification.

In addition, we introduce a set of protected aspects. By defi-
nition, this set contains all aspects whose inhibition must be pre-
vented. In order to secure ModAC, this set must include all access
control aspects (but is not restricted to those aspects).

3.2 Securing ModAC: design goals
Our design goals for secure and modular access control are as

follows:

G1 The base language must be completely oblivious to access con-
trol.

G2 Untrusted aspects must not inhibit protected aspects, but are
otherwise free to advise any join points.

G3 Trusted aspects should be able to advise any join point.

The first goal (G1) is the raison d’être of ModAC. Beyond be-
ing an important validation for AOP itself, fully modularizing ac-
cess control with aspects allows access control to be added to other
aspect languages, without requiring ad hoc support for it. The
other two design goals are concerned with securing ModAC with-
out overly restricting the programming model.

Design goal (G2) states that the non-inhibition property must be
achieved without simply ruling out untrusted aspects. Untrusted
aspects must be able to do whatever their access policies specify;
the only strong requirement is that they do not inhibit protected
aspects.

Design goal (G3) states that trusted aspects should be able to see
any join point. This goal discards a restrictive approach that pro-
hibits any kind of weaving (trusted or not) in certain core classes—
thereby strongly coupling access control and weaving.

For instance, the Aspect-Oriented Permission System (AOPS) [8]
ensures non-inhibition by disallowing any kind of weaving at join
points lexically located in access control aspects and other sensitive
components such as permission classes and the PermissionManager
class. Doing so impedes even trusted aspects to advise these classes.
In addition, it means that the weaver (and hence the aspect lan-
guage semantics) is specifically tailored to take access control into
account, something that we discard as of design goal (G1). There-
fore, AOPS violates two of our design goals, (G1) and (G3).

3.3 Preventive inhibition
In order to reconcile goals (G2) and (G3)—i.e. preventing the

inhibition of protected aspects by untrusted aspects, while allow-
ing trusted aspects to see any join point—we introduce a simple
technique: preventive inhibition. Preventive inhibition consists in
inhibiting untrusted aspects before they get a chance to inhibit pro-
tected aspects.

To achieve preventive inhibition, it is sufficient to ensure that
untrusted aspects do not apply at join points occurring in the con-
trol flow of protected aspects. For restriction aspects, this means
that untrusted aspects cannot interfere with the identification of re-
source accesses nor with the process of aborting these accesses.
For the ACDeployer aspect, this means that untrusted aspects can-
not interfere with the identification of object creations nor with the
calculation and deployment of restriction aspects.

3.4 The R̊ restriction
How can preventive inhibition be achieved while maintaining

(G1), i.e. without requiring modifications to the aspect language
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Figure 3: Pointcut inhibition prevented by R̊.

semantics? We describe a simple solution that is essentially just a
programming pattern of ModAC. The approach relies on using a
specific restriction aspect, called R̊. R̊ is in charge of preventive in-
hibition for all protected aspects, including itself, thereby fulfilling
goals (G2) and (G3). Because R̊ is a restriction like any other, goal
(G1) is fulfilled as well: there is no need to change the language
semantics to support it.

Inhibition with R̊ .
R̊ is deployed on untrusted objects at creation time, just like other

restriction aspects. Its definition is:

var R̊ = {
pointcut: function(jp){

return jp.kind == PCEXEC &&
cflow(function(jp){ return protectedAspects.contains(jp.target); });

},
advice: function(jp){ return false; }

};

R̊ inhibits every pointcut execution it sees, provided that the exe-
cution is in the control flow of a join point whose target is in the
protected aspects set. In consequence, all aspects in the protected
aspects set cannot be inhibited by untrusted aspects, simply because
untrusted aspects do not even get a chance to see the join points they
would potentially advise. Note that R̊ is the first-class equivalent of
the pointcut conjunction discussed in the previous section. Mak-
ing it a restriction aspect like any other is the key to enforce this
inhibition check without affecting the language semantics.

Illustration.
Figure 3 illustrates how R̊ avoids pointcut inhibition by an un-

trusted aspect MPC on the netRestriction aspect presented before. When
a new XMLHttpRequest instance is created, a join point is generated.
The netRestriction aspect sees this creation, and therefore, its point-
cut is evaluated. This generates a pointcut execution join point
(pcexec1), which is observed by MPC. Consequently, the MPC point-
cut is evaluated, which generates another pointcut execution join
point (pcexec2). Since MPC is untrusted, R̊ was deployed on it.
Hence, the pointcut of R̊ sees pcexec2, and matches it (it is a point-
cut execution join point and a protected aspect, netRestriction, is in
the control flow). In consequence, R̊ inhibits the pointcut of MPC.
Advice and scoping strategies inhibitions are prevented in a similar
way.

Self-protection.
Crucially, R̊ can protect itself from inhibition by untrusted as-

pects, following the exact same principle. To do so, R̊ is added to
the set of protected aspects. Self-protection of R̊ can be observed
in the same Figure 3, by replacing the reference to netRestriction on
the figure with R̊. An untrusted aspect can try to inhibit R̊ as many
times as it wants in the same flow of execution. If the interaction

is infinite, the program does not terminate4. If the interaction is fi-
nite, R̊ eventually rules the untrusted aspect. Self-protection of R̊
elegantly secures ModAC by not introducing any additional mech-
anism; R̊ is just a restriction aspect protecting access control as-
pects, including itself, and other protected aspects, from inhibition
by untrusted aspects.

Bootstrapping.
R̊ uses the protectedAspects set to identify the aspects it must pro-

tect from implicit inhibition. Naturally, untrusted entities must
not be allowed to interfere with this data structure. Inhibiting ac-
cess control by interfering with the protectedAspects set can either
be done implicitly via weaving, or through explicit manipulation.
Implicit inhibition is already prevented by R̊ itself (because the
protectedAspects is manipulated only by entities pertaining to the set
itself, like R̊). Explicit inhibition is avoided by using a dedicated
restriction aspect:

var paRestriction = {
pointcut: function(jp){ //any action on protectedAspects

return jp.target === protectedAspects; },
advice: function(jp){ throw "Cannot manipulate the protected aspects set"; }

};

This restriction follows the same pattern as the metaNetRestriction
presented before; it forbids any action over protectedAspects. This
restriction must be deployed on all untrusted entities at creation
time. Note that this restriction is just another restriction, and there-
fore (G1) is still fulfilled.

4. A CALCULUS FOR ASPECTSCRIPT
The previous section has informally explained how ModAC can

be made secure thanks to the R̊ restriction aspect. ZAC, a JavaScript
library based on ModAC [33], has been extended to include R̊.
However, ModAC itself has never been proven to be effective, even
in the absence of untrusted aspects; and it remains to be proven that
R̊ is effectively securing ModAC.

In order to do so, we focus on AspectScript and establish a for-
mal basis for it: the λAS calculus. Section 5 then states formally
that ModAC/λAS , the implementation of ModAC in the λAS cal-
culus, is correct and secure. Proofs and executable semantics are
provided online [32]. Note that Section 5 is also accessible to read-
ers who prefer not to dive into the formal semantics, as it includes
a precise description of the argumentation line.
λAS is a core calculus for AspectScript, and as such has to be

faithful to JavaScript. We use the λJS calculus [17] as a start-
ing point. The aspect-oriented part of AspectScript is based on
the calculus of LAScheme [28], which models first-class aspects
with dynamic deployment and execution levels in a higher-order
procedural language. ModAC however also requires (a form of)
scoping strategies, which are not part of the existing LAScheme
formalization. As a result, even though we simplify the treatment
of execution levels in the calculus, λAS is more complex. But
this complexity is directly drawn from the required characteristics
of the language (JavaScript-based, first-class aspects with dynamic
deployment, execution levels, and scoping strategies).

We now first give a brief overview of λJS , and then describe its
extension to support aspect weaving with dynamic aspect deploy-
ment and scoping strategies.
4Any untrusted piece of code is (a priori) given the power of the
base language (which is Turing-complete) and can therefore always
provoke non-termination. Different mechanisms (including restric-
tion aspects!) can be used to avoid this misbehavior (e.g. timeout,
limit on the number of produced join points), but this is out of the
scope of this work [33].



V alue v ::= c | fun(x · · · ){e} | o | l
Bool b ::= true | false
Const c ::= n | str | b | undefined | null
Object o ::= {str : v · · · }
Expr e ::= x | v | let (x = e) e | e(e · · · ) | e[e] |

e[e] = e | e = e | ref e | deref e
Store µ ::= ε | µ+ (l 7→ o)

n ∈ N , the set of numbers; str ∈ S , the set of strings;
x ∈ X , the set of variable names; l ∈ L , the set of locations.

Figure 4: Syntax of the λJS language (excerpt; slightly modi-
fied).

4.1 Core JavaScript: λJS
Guha et al. designed λJS as a core subset of JavaScript to which

JavaScript programs are desugared. The interest of λJS is its com-
pactness. We briefly describe the syntax of λJS , the desugaring
process, and a few reduction rules.

Syntax.
Figure 4 shows part of the syntax of λJS . The language has

primitive values such as numbers, strings, booleans, and two spe-
cial values null and undefined, in addition to functions (fun) and
objects o. Objects are a series of attribute-value pairs enclosed in
curly braces. Expressions include identifiers, values, a let con-
struct, function application, property access, and property write.
In order to support first-class mutable references, values are aug-
mented with store locations. Objects in the store are explicitly ref-
erenced and dereferenced using ref and deref, respectively. λJS
also includes typical control operators and primitive n-ary opera-
tors; we omit these for brevity.

Desugaring.
Several JavaScript constructs are specified via translation (called

“desugaring”) to λJS [17]. For example, the desugaring of function
creation is:

desugarJ function(x· · · ){e} K = ref {
"code": fun(this, fthis, x· · · ) { desugarJ e K },
"prototype": ref {"__proto__": (deref Object)["prototype"]}}

A function is desugared into an object (using the {...} notation) with
two attributes: code and prototype. The code attribute is the actual
function (note that function is a JavaScript term, and fun is a λJS
term). Also, this is an ordinary identifier: it is the first formal
parameter of a desugared function. In JavaScript, a method is a
function, which is a value, and can be shared between objects; this
refers to the currently-executing object. For the sake of properly
dealing with aspect environments in λAS , we slightly extend λJS
and pass a second parameter to every desugared function; the pa-
rameter, named fthis, is bound to the function object thus created
by the desugaring process. Note that desugaring reveals some of
JavaScript peculiarities: the prototype attribute of a function object
is an object whose prototype is the prototype attribute of Object.

The semantics of λJS is defined as a small-step reduction re-
lation ↪→. A program configuration 〈µ, e〉 consists of a store and
an expression. The reduction relation is standard. Evaluation con-
texts [36] are used to specify a call-by-value, left-to-right evalua-
tion semantics. E.g., the reduction rule for object creation is:

〈µ,E[ref {str : v · · · }]〉 ↪→ 〈µ′, E[l]〉 NEW
where l /∈ dom(µ) and µ′ = µ+ (l 7→ {str : v · · · })

ref simply allocates a new location in the store and returns it.

J ::= ε | j + J
j ::= dk, lo, lf , pe
k ::= new | call | exec | pc-exec | adv-exec

p ∈ T , the set of thunksJ ∈J , the set of join point stacks

Expr e ::= . . . | jp (j, α) | in-jp (e) |
c/asp k e e · · ·

EvalCtx E ::= . . . | in-jp (E) |
c/asp k v · · · E e · · ·

v ::= . . . | J

Figure 5: Join points

k new call / exec / pc-exec / adv-exec
lo object prototype target object
lf null target function
p primitive operation

Figure 6: Join point abstraction attributes per kind.

The function application rule is the standard βv reduction:

〈µ,E[fun(x · · · ){e}(v · · · )]〉 ↪→ 〈µ,E[e[v · · · /x · · · ]]〉 CALL

4.2 AspectScript Semantics
We now describe the syntax and operational semantics of λAS ,

a core calculus for AspectScript based on λJS . Its operational se-
mantics is defined via the reduction relation ↪→: M ×A ×J ×
E →M ×A ×J × E .

We extend the λJS configuration with two additional elements: a
λAS program configuration 〈µ, α, J, e〉 consists of a store µ ∈M ,
an aspect environment α ∈ A , a join point stack J ∈ J , and
an expression e ∈ E . The stack aspect environment α is used to
maintain the aspects propagated through the stack by means of the
call stack propagation function.5

In the following we describe the semantics of join points, as-
pects and their deployment, as well as the weaving semantics. The
formalism is based on the semantics of LAScheme [28], an aspect-
oriented Scheme-like language with execution levels, itself based
on a combination of Clifton and Leavens’s work [6] (modeling of
the join point stack) and Dutchyn et al. [10] (weaving semantics).
By convention, when we introduce new user-visible syntax (e.g. the
aspect deployment expression), we use bold font. Internal terms
are written in typewriter font.

4.2.1 Join Points
The join point stack J is a list of join point abstractions j, which

are tuples dk, lo, lf , pe (Figure 5). We introduce five kinds of join
points: new for object creation, call for function application and
method invocation, and exec, pc-exec, adv-exec for function,
pointcut, and advice execution, respectively. Figure 6 describes
the different values for the components of join point abstractions,
depending on their kind. For instance, p is always the primitive
operation (used to perform the original computation); lo denotes
the prototype of the object being created in a new join point, and
the target object for call and the three execution join points.

In order to keep track of the join point stack in the semantics
we introduce two internal expression forms. jp (j, α) introduces
5We also maintain the currently-executing object/function in the
program configuration, omitted here for simplicity. The online Re-
dex model includes the full configuration.



Expr e ::= . . . | deployOn[e, e](e, e)
EvalCtx E ::= . . . | deployOn[E, e](e, e) |

deployOn[b, E](e, e) |
deployOn[b, b](E, e) |
deployOn[b, b](v,E)

AspectEnv α ::= α+ (bc, bd, l) | ε
Store µ ::= ε | µ+ (l 7→ oα)

asps(l) = α, where µ(l) = oα

〈µ, α, J, E[deployOn[bc, bd](lasp, lobj)]〉 DEPLOYON

↪→ 〈µ′, α, J, E[lobj ]〉
where µ(lobj) = oα

′
and µ′ = µ(lobj 7→ oα

′+(bc,bd,lasp))

Figure 7: Aspects and deployment.

a join point j whose underlying computation via proceed will be
executed with aspect environment α. in-jp (e) keeps track of the
fact that execution of e is proceeding under a dynamic join point.
We extend the definition of evaluation contexts accordingly (Fig-
ure 5). The expression c/asp (which stands for “call/aspect”) is
used later to treat pointcut and advice execution join points simi-
larly. It is a function application annotated with the kind of join
point k that needs to be created; this expression form is generated
by the weaver, discussed later on.

A join point abstraction captures the minimum context informa-
tion necessary for ModAC to work (target object and function), as
well as to trigger its corresponding computation when necessary
(the p function). We write J to denote the reification of the join
point stack J as a λAS value. A number of introspection primi-
tives are provided; for instance, kind ( J ) is the λAS equivalent
of jp.kind in AspectScript. Similarly, tobj (resp. tfun) can be used
to retrieve the (location of the) target object (resp. function).

4.2.2 Aspects and Deployment
For the sake of conciseness and simplicity, we make the three

following simplifications to λJS in this paper: i) scoping strate-
gies have constant boolean components (instead of join point pred-
icates); ii) only per-object deployment (deployOn) is described;
iii) we do not account for context exposure (i.e. pointcuts simply
return true if they match, instead of an environment). These simpli-
fications do not affect the validity of our results: constant propaga-
tion functions are enough to state and prove the desired properties
of ModAC, deployOn is strictly more expressive than deploy [29],
and context exposure is an orthogonal feature for this work.

As described on Figure 7, an aspect environment α is a list of
tuples (bc, bd, l) where l denotes the reference to the aspect, and
the two boolean values corresponds to the c and d components of
the scoping strategy specified at deployment time. An aspect can
be any object whose pointcut attribute is a function that takes a join
point stack as input and produces either true or false. To compen-
sate for the absence of context exposure from pointcuts, an advice
function also receives as first argument the current join point stack.
An advice proceeds using the proceed ( J ) primitive.

An aspect is deployed with deployOn. Because deployOn em-
beds an aspect within an object, the stack aspect environment of the
program configuration is not enough; each object needs to have its
own aspect environment as well. To do so, we annotate an object

〈µ, α, J, E[ref {str : v · · · }]〉 NEW

↪→ 〈µ, α, J, E[jp(dnew, proto, null, pe, α)]〉
where
proto = vi if stri = "__proto__"
α′ = (asps(cobj())⊕ asps(cfun())⊕ α)|d
p = fun(){ new/prim {str : v · · · }α

′
}

〈µ, α, J, E[fun(x · · · ){e}(l0 l1 v · · · )]〉 CALL

↪→ 〈µ, α, J, E[jp(dcall, l0, l1, pce, α′)]〉
where
α′ = (asps(cobj())⊕ asps(cfun())⊕ α)|c
pe = fun(){ app/prim fun(x · · · ){e} l0 l1 v · · · }
pc = fun(){ app/prim fun(){jp(dexec, l0, l1, pee, α′)}}

〈µ, α, J, E[c/asp k fun(x · · · ){e} l0 l1 v · · · ]〉 C/ASP

↪→ 〈µ, α, J, E[jp(dk, l0, l1, pe, α)]〉
where p = fun(){ app/prim fun(x · · · ){e} l0 l1 v · · · }

Figure 8: Join point creation.

o with its aspect environment α as oα. By construction, an object
is annotated with its aspect environment as soon as it is allocated
in the store (with ref). We therefore extend the definition of the
store, and introduce an internal function asps in order to access
the aspects of an object in the store.

The DEPLOYON rule shows the semantics of per-object deploy-
ment: the aspect (at location) lasp is added at the end of the aspect
environment of the object (at location) lobj , along with the specified
scoping strategy components.

4.2.3 Join Point Creation & Disposal
We change the NEW rule of λJS to account for the creation of
new join points (Figure 8). The join point abstraction components
are filled according to Figure 6. The primitive operation p is a
thunk that returns a fresh reference to the newly-created object.
Actual object creation is done using new/prim, an internal expres-
sion that performs creation without generating any join point. Note
that the object value passed to new/prim is annotated with its ini-
tial aspect environment, α′. This environment is calculated as the
order-preserving union (⊕) of three aspect environments: the ones
deployed on the currently-executing object and function (obtained
with cobj () and cfun (), respectively); and the stack aspect envi-
ronment. Only aspects that propagate in newly-created objects are
included in α′. The notation α|d refers to the aspects in α whose d
component is true.

To account for the creation of call and exec join points, we
change the λJS evaluation rule for function application/method in-
vocation as well. The new CALL rule generates a call join point
whose components are filled according to Figure 6. The primi-
tive operation pc is a thunk that generates an exec join point when
applied. The primitive operation of this exec join point, pe, per-
forms the actual function execution by means of app/prim, an-
other internal expression that does not generate join points. Note
that the jp expressions associated to both join points specify that
the stack aspect environment must change to α′ when pc or pe are
applied in order to reflect the propagation of aspects through the
stack. This aspect environment is determined by taking the order-
preserving union of three aspects environments: the ones deployed
on the currently-executing object and function; and the stack aspect
environment; and filtering the resulting environment along the c



〈µ, α, j + J,E[in-jp (v)]〉 ↪→ 〈µ, α, J, E[v]〉 OUTJP

〈µ, α, j + J,E[in-jp (err v)]〉 ↪→ 〈µ, α, J, E[err v]〉 OUTJP-ERR

Figure 9: Join point disposal.

〈µ, α, J, E[jp(dk, lo, lf , pe, αp]〉 WEAVE

↪→ 〈µ, α, J ′, E[in-jp(swap(app/primW Jα′Kαp,J′ , ε))]〉
where
J ′ = dk, lo, lf , pe+ J
αs = ε if k ∈ {pc-exec, adv-exec}, α otherwise
α′ = asps(cobj())⊕ asps(cfun())⊕ αs

W JεKα,dk,lo,lf ,pe+J = fun(){swap(app/prim p, α)}

W Jαw + (bc, bd, lasp)Kα,dk,lo,lf ,pe+J =
app/prim
fun(next){

let(pc = (deref lasp)[”pc”])
if(c/asp pc-exec (deref pc)[”code”] lasp pc jp + J ){

let(adv = (deref lasp)[”adv”])
fun(){
c/asp adv-exec (deref adv)[”code”] lasp adv ja + J }
}else{ next }
}
W JαwKα,dk,lo,lf ,pe+J,p

where ja = dk, lo, lf , fun(){app/prim next}e
jp = dk, lo, lf , fun(){err "pc cannot proceed"}e

Figure 10: Aspect weaving.

component (written α|c), which determines the aspects that should
propagate on the call stack.

Rule C/ASP accounts for the creation of pc-exec and adv-exec
join points. This rule matches a function application/method invo-
cation, but receives a first argument (k) that specifies which join
point must be generated. Because invocations of pointcuts and
advices are implicit, C/ASP does not generate call join points.
Join point attributes are filled according to Figure 6; the primitive
operation p performs the pointcut/advice execution by means of
app/prim, just like in the case of exec join points.

Once the computation underlying a join point is reduced to a
value, the OUTJP rule gets rid of the join point and the in-jp ex-
pression (Figure 9). OUTJP-ERR does the same in the case of an
error.

4.2.4 Weaving
We now turn to the semantics of aspect weaving, specified by

the WEAVE rule (Figure 10). A jp expression reduces to an in-jp
expression (to signal the fact that the upcoming computation is as-
sociated to a join point), and the join point is pushed onto the stack
(we discuss the use of swap and αs later below). The list of aspects
in scope α′ is calculated as the order-preserving union of the aspect
environments of the object and function in context, and the aspects
propagated through the stack.

The weaving process is based on evaluating the function returned
by the W metafunction. W recurs on α′ and returns a composed
procedure whose structure reflects the way advice is going to be
dispatched. The base case, W JεK, corresponds to the execution of
the primitive operation. Otherwise, for each aspect (bc, bd, lasp)

Expr e ::= . . . | app/prim e e · · · | new/prim e
EvalCtx E ::= . . . | app/prim v · · · E e · · ·

| new/prim E

〈µ, α, J, E[app/prim fun(x · · · ){e} v · · · ]〉 APPPRIM

↪→ 〈µ, α, J, E[e[v · · · /x · · · ]]〉

〈µ, α′, J, E[new/prim oα]〉 ↪→ 〈µ′, α′, J, E[l]〉 NEWPRIM

where l /∈ dom(µ) and µ′ = µ+ (l 7→ oα)

Figure 11: Primitive function application and object allocation.

in the environment, W first applies its pointcut to the current join
point stack (which generates a pc-exec join point using the c/asp
construct). If the pointcut matches, then W returns a function that
applies the advice of ladv (and generates an adv-exec join point).
All this process is parameterized by the function to proceed with,
next. In order to allow an advice to call proceed to trigger either
the base computation or the next advice in the chain, rule WEAVE
creates an auxiliary join point ja whose p component is a thunk
that applies next. To be complete, an auxiliary join point jp is also
created and passed to the pointcut; its p component triggers an error
if proceed is called. Finally, If an aspect does not apply, then W
simply returns next.

Primitive forms.
The semantics of λAS use internal primitive forms app/prim

and new/prim, described in Figure 11. app/prim is an application
that does not trigger a join point: rule APPPRIM simply performs
the classical βv reduction. app/prim is used to perform the actual
application of a function, as well as to hide “administrative” appli-
cation, i.e. the initial application of the composed aspect chain, and
its recursive applications. Similarly, new/prim allocates an object
in the store and reduces to the corresponding location without pro-
ducing a join point.6

Execution levels.
The weaving semantics explained previously is insufficient, be-

cause any aspect language must take precautions with infinite re-
gression. Indeed, if we omitted the use of swap andαs in Figure 10,
a λAS program would never terminate. Tanter addressed this issue
with execution levels [28], which ensure that pointcut and advice
computation by default always happen at a higher level than base
computation, avoiding infinite loops such as those due to pointcuts
matching against themselves. Recall that in λAS , pointcuts and ad-
vices are standard functions. With execution levels, pointcuts and
advices are always evaluated at the level above the expression that
generates a join point. When the last advice in the chain proceeds,
execution shifts back to the original level in order to run the base
computation.7

6These primitive forms are necessary for the semantics to allow ac-
tual computation to happen. The fact that they are internal means
that it is not necessary to protect them from untrusted aspects: they
cannot be used by any user code, and cannot be advised since they
do not produce join points. Recall that in a higher-order aspect lan-
guage, the use of execution levels is key to supporting these primi-
tive forms as internal only [28].
7Full-fledged execution levels include the possibility to explicitly
shift execution up and down if needed, as well as to define level-
capturing functions [28]. We do not include these advanced facili-
ties in this work.



Expr e ::= . . . | swap(e, α) | in-swap(e, α)
EvalCtx E ::= . . . | in-swap(E,α)

〈µ, α, J, E[swap(e, α′)]〉 IN-SWAP

↪→ 〈µ, α′, J, E[in-swap(e, α)]〉
〈µ, α′, J, E[in-swap(v, α)]〉 OUT-SWAP

↪→ 〈µ, α, J, E[v]〉
〈µ, α′, J, E[in-swap((err v), α)]〉 OUT-SWAP-ERR

↪→ 〈µ, α, J, E[err v]〉

Figure 12: Swapping aspect environments.

We introduce a simple modeling of execution levels, that does
not require having to explicitly track the current execution level in
the program configuration. Instead, we use the call stack with in-
ternal expressions so as to swap aspect environments and restore
them when appropriate (Figure 12). Swapping per se is a very sim-
ple process: given an expression e and an aspect environment α′,
swap installs the aspect environment, and evaluates the expression
(IN-SWAP). in-swap is used to restore the swapped aspect en-
vironment α when the expression is fully reduced (OUT-SWAP).
Additionally, αs is used to remove aspects in the stack aspect en-
vironment from scope when weaving pc-exec and adv-exec join
points. This prevents the aspects deployed on the currently execut-
ing object/function from seeing their own activity. Note that this
approach does support multiple levels of execution.

Weaving (Figure 10) uses swap exactly where the original levels
semantics [28] uses up and down shifting. The whole weaving pro-
cess is wrapped by a swap, so that the current aspect environment
is swapped with an empty environment ε that represents the upper
level environment . This environment is used to evaluate pointcuts
and advices. Of course, the fact that the stack aspect environment
starts empty does not prevent aspects that have been deployed in
objects and functions from taking effect. If the last advice proceeds
(the base case of W ), aspect environments are swapped again, in
order to restore the original environment to evaluate the base com-
putation. The environment in which weaving is carried out is re-
stored once the base computation has completed. Finally, when
the whole weaving is complete, the original aspect environment is
restored.

5. PROPERTIES OF MODULAR
ACCESS CONTROL

In this section we state two theorems corresponding to the fol-
lowing properties of ModAC:

Basic effectiveness. ModAC is effective in absence of untrusted
aspects. This means that restriction aspects are actually de-
ployed on untrusted objects, see illegal resource accesses,
and effectively prevent them.

Non-inhibition. ModAC with R̊ is effective even in presence of
untrusted aspects. This means that R̊ effectively prevents un-
trusted aspects from inhibiting protected aspects.

More precisely, we show the results for ModAC/λAS . The exten-
sion of these results to ModAC/AS (and other aspect languages) in
Section 6. This section sketches the formal argument by describing
the main intermediate steps. Each step includes an informal expla-
nation, and a formal statement. The actual proofs, which rely on
the operational semantics above, are provided online [32].

First, we describe the properties that define basic effectiveness.

DEFINITION 1 (BASIC EFFECTIVENESS). An implementation
of ModAC is said to comply with basic effectiveness if the following
properties are fulfilled:

• Restrictions deployment. Restrictions are deployed on all the
corresponding objects before these objects can be used.

• Restrictions scope. A restriction aspect sees all the compu-
tation produced by the objects it is deployed on.

• Restrictions effectiveness. A restriction aspect always pre-
vents the resource accesses it identifies.

THEOREM 1 (MODAC/λAS BASIC EFFECTIVENESS).
ModAC/λAS complies with basic effectiveness.

This theorem is a direct consequence of Lemmas 1, 2, and 3,
exposed below, which address each property of basic effectiveness
separately.

Lemma 1 states that any aspect (referenced by ldepl), in partic-
ular ACDeployer, deployed with scoping strategy (false,true) propa-
gates to every new object in the store, and does so in the first po-
sition in the aspect environment of these objects. This ensures that
ldepl sees all object creations in the application and gets a reference
to these objects before any other entity. The only prerequisite is that
ldepl is already deployed in the first position on all objects at a given
point. This can be straightforwardly achieved in the bootstrapping
process by exhaustively deploying ACDeployer on every object.8

LEMMA 1 (RESTRICTIONS DEPLOYMENT). Let C = 〈µ, ·, ·, ·〉
be a program configuration where ∀ (l 7→ oα) ∈ µ,
α = (false, true, ldepl) + α′, for some α′, and ldepl ∈ dom(µ). If
C ↪→ 〈µ′, ·, ·, ·〉, then ∀ (l 7→ oα) ∈ µ′, α = (false, true, ldepl) +
α′′, for some α′′.

Lemma 2 states that all aspects in the stack aspect environment
deployed with c = true, propagate through the stack if the same level
of execution is considered; i.e. the stack inspection algorithm is
correctly implemented by means of scoping strategies.

LEMMA 2 (RESTRICTIONS SCOPE). Let C = 〈·, α, ·, ·〉 be a
program configuration and αs = α|c. If C ↪→∗ 〈·, α′, ·, ·〉, and the
sequence of reductions starts and ends at the same execution level,
then αs ⊆ α′.

Lemma 3 states that if a restriction aspect R matches a join point
j and does not proceed, then the primitive operation associated to
j is not evaluated. Consequently a restriction aspect fulfills its role
no matter in which position it is woven at the illegal resource access
join point.

LEMMA 3 (RESTRICTIONS EFFECTIVENESS). Let C =
〈µ, ·, J, E[e]〉 be a program configuration where J = d·, ·, ·, pe +
J ′, for some J ′, e = app/prim W JαK·,J , (·, ·, lR) ∈ α, and lR
is a valid aspect reference in µ to a restriction aspect that matches
J and does not proceed for J . If C ↪→∗ 〈·, ·, J, E[v]〉, for some v,
then p is not applied in these reductions.

Finally, we present the non-inhibition theorem. This theorem
states that if the evaluation of a pointcut whose aspect has R̊ de-
ployed on it reduces to a value, this value is either false or (err ·).
This holds whenever the join point stack contains a join point whose
target is in the set of protected aspects PA. Notice that the theorem
implicitly permits the existence of other untrusted aspects trying to
inhibit R̊ itself.
8Whenever an element of an entity (program configuration, join
point, tuple, etc.) is not required, we use · as a wildcard.



THEOREM 2 (NON-INHIBITION). If lasp is a valid aspect ref-
erence in µ, R̊ ∈ asps(lasp), and d·, s, ·, ·e ∈ J; where s ∈ PA,
then:
If 〈µ, α, J, E[jp(dpc-exec, lasp, ·, ·e, ·)]〉 ↪→∗ 〈·, α, J, E[v]〉, then
v = false or v = (err ·).

6. DISCUSSION
We discuss how to extend our results from λAS to full-fledged

AspectScript, and the requirements for a general-purpose aspect
language to securely support ModAC.

From λAS to AspectScript .
Due to desugaring, results obtained in λJS do not immediately

apply to JavaScript [17]. This is because desugaring introduces
new behavior that was not present in the original code. When going
from λAS to AspectScript, the theorems remain valid because they
are based on the aspect-oriented features of the language, which
have no relation to the desugaring process. However, access control
aspects can be led to behave incorrectly if they use “exploitable”
features that introduce holes upon desugaring. For example, con-
sider a slight modification of the pointcut of the netRestriction aspect
in order to allow communication with safe.cl:

function(jp){ return /∗ same as before ∗/ && !(jp.args[0] == "safe.cl"); }

The equality operator == forces both operands to be of the same
type [11]. For this reason, jp.args[0] is transformed to a string by
an invocation of toString. The problem is that this extra method call
opens the opportunity for bypassing access control:

var req = netService.newRequest(
{ t: 0, toString: function(){return ["safe.cl", "evil.com"][this.t++]}});

The toString method of the argument to newRequest returns "safe.cl"
the first time it is invoked (in the pointcut of netRestriction) and
"evil.com" the second time (in the body of newRequest).

In order to avoid such holes, the first possibility is to simply
avoid using exploitable features in the definition of restriction as-
pects. For instance, it is safe to use reference equality === because
it does not perform any kind of type conversion [11] (notice that
all restriction aspects defined in this work follow this guideline). A
less drastic solution is to permit the use of exploitable features, but
to carefully examine access control aspects in order to check if their
particular usage of the feature is safe. For example, the equality
operator == is safe if both operands are of the same runtime type!
As detailed by Guha et al., this checking can be automated by a
specialized type system [17].

Finally, AspectScript uses a scoping strategy acs, which supports
privileged execution and capturable permission contexts; acs is ex-
pressed with propagation functions, c and d. We made a simplifica-
tion in λAS by supporting only constant boolean propagation val-
ues. As we said in Section 4.2.2, this simplification does not affect
our results. In fact, supporting propagation functions only requires
that R̊ prevents inhibition of these functions; this is achieved by
extending the pointcut of R̊:

function(jp){return ... || cflow(function(jp){return acs.contains(jp.fun);});}

This way, R̊ also inhibits untrusted aspects in the control flow of
acs components. Theorem 2 and its proof must be reformulated
accordingly, but this is direct.

Aspect languages for secure ModAC .
This paper focuses on AspectScript to be as close as possible to

our practical implementation, ZAC [33]. Still, both ModAC and the
approach for securing it using R̊ are independent of AspectScript.

They can be realized in any aspect language, provided it meets cer-
tain key conditions. First of all, the language must support scop-
ing strategies, or an equivalently expressive scoping mechanism.
Per-object aspects are only necessary if one wants to provide per-
object access control. Execution levels are necessary to avoid in-
finite loops whenever pointcut and/or advice execution join points
are exposed to weaving; in order to control implicit inhibition, R̊
relies on matching pointcut execution join points.

A crucial point in ModAC that is directly informed by the for-
mal framework and explicitly used in Lemma 1 is related to aspect
precedence: ACDeployer must always be the aspect with least prece-
dence in the aspect environment to be woven at a new join point.
This allows ACDeployer to deploy restriction aspects on objects be-
fore they get a chance to execute any piece of code. The semantics
of λAS ensures this premise because per-object aspects are “en-
grained” within the object following the semantics of dynamically-
deployed aspects in AspectScheme [10]. In AspectScheme this is
a design decision; here it is not—it is a requirement. If an aspect
language uses a different approach to ordering aspects, or permits
to undeploy aspects, then it must provide a mechanism to guar-
antee the above invariant related to the presence and position of
ACDeployer. For example, in AspectJ [20], aspects cannot be unde-
ployed, but manual ordering is provided. Therefore, some mecha-
nism must be added, as in AOPS [8]. On a related note, it is neces-
sary that ACDeployer can deploy the restrictions on a newly-created
object before any code is run on behalf of this object. In λAS , this
is obtained thanks to the desugaring, which creates an empty ob-
ject and then calls an initializer. In AspectJ, this can be achieved
thanks to the pre-initialization join points. If an aspect language
does not exhibit this specific event of an object life time, then it is
not possible to guarantee that restrictions see all the computation of
untrusted objects.

7. RELATED WORK
The relation between aspects and security has a long history. We

now discuss a number of related approaches. To the best of our
knowledge, AOPS is the only approach that supports untrusted as-
pects while preventing inhibitions of access control aspects.

Modularization of access control.
There are several proposals that modularize (part of) access con-

trol into aspects, particularly in Java [9, 19, 21, 23, 25, 34, 35].
However, these solutions implicitly assume that no other entities
can affect the behavior access control aspects. This implies that ac-
cess control is vulnerable to inhibition. Work on inlined reference
monitors [12] is also related. These monitors are used to maintain
access control state in the application, executing security actions
whenever certain events occur. Monitors are inlined in the appli-
cation code at appropriate places. Here again, it is assumed that
no further code transformations can change the semantics of the
security policies.

Limiting the effects of advice.
A number of static reasoning approaches deal with ensuring that

advice cannot have unwanted effect on the base program (e.g. Harm-
less Advice [7], EffectiveAdvice [22], Translucid Contracts [3]).
These proposals focus on control flow and side effects, and can
therefore express the fact some aspects cannot skip proceed. How-
ever, inhibition of access control as dealt with in this work requires
more fine-grained control, since it limits untrusted aspects only on
well-defined join points, leaving them otherwise unrestricted.



Treatment of permission contexts.
Caromel and Vayssière addressed the issue of correctly handling

permission contexts in the presence of metaobjects [5]. The issue is
to ensure that the permission context at the base level does not af-
fect that of the metalevel, and vice-versa. The proposed solution re-
lies on capturing the permission context when jumping to the met-
alevel, and restoring it when going back to the base level. Because
permission contexts are part of aspect environments in ModAC,
we generalize this approach to deal with aspect environments (us-
ing swap and in-swap); also, our execution-level based approach
properly deals with proceed.

Preventing access control inhibition.
The aspect-oriented permission system (AOPS) [8] is the most

related approach; it uses history-based access control (HBAC) [1],
in which the decision of allowing access to a sensitive resource is
taken based on all the entities that have participated in the execution
trace. This characteristic makes HBAC a good alternative for dis-
covering interferences produced by untrusted aspects. As discussed
in Section 3.2, AOPS sacrifices two of our design goals: the aspect
language semantics is customized to prevent weaving of crucial el-
ements of the access control architecture (G1), thereby impeding
even trusted aspects to apply at these points (G3). This being said,
history-based access control is more expressive than stack-based
access control. Extending or adapting our approach to HBAC is a
potentially fruitful perspective.

8. CONCLUSION
Access control has been a recurrent target for aspect-oriented

programming, mainly because of the obvious crosscutting nature
of basic permission checking. However, security is a delicate con-
cern, and therefore a correct aspectization cannot ignore potentially
malicious aspects.

We have shown that access control, including privileged execu-
tion and first-class permission contexts, can be fully modularized
as an aspect: the aspect language is oblivious to access control, un-
trusted aspects cannot inhibit access control, and trusted aspects are
able to see any join point. The approach relies on defining R̊, a self-
protecting restriction aspect in ModAC. R̊ is in charge of ensuring
non-inhibition of access control. We define λAS , a core calculus
for AspectScript, and use it for stating and proving the properties
of ModAC. Crucially, the language must provide some guarantee
with respect to aspect precedence.

The ZAC library for access control in JavaScript, implemented
in AspectScript and based on ModAC and R̊, is the first practical
realization of the proposed approach. Optimizing this implementa-
tion, and porting the approach to different languages are valuable
perspectives for further validating the benefits of modular and se-
cure access control with aspects.
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