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Abstract
Effect systems have the potential to help software developers, but
their practical adoption has been very limited. We conjecture that
this limited adoption is due in part to the difficulty of transition-
ing from a system where effects are implicit and unrestricted to a
system with a static effect discipline, which must settle for con-
servative checking in order to be decidable. To address this hin-
drance, we develop a theory of gradual effect checking, which
makes it possible to incrementally annotate and statically check
effects, while still rejecting statically inconsistent programs. We
extend the generic type-and-effect framework of Marino and Mill-
stein with a notion of unknown effects, which turns out to be sig-
nificantly more subtle than unknown types in traditional gradual
typing. We appeal to abstract interpretation to develop and validate
the concepts of gradual effect checking. We also demonstrate how
an effect system formulated in Marino and Millstein’s framework
can be automatically extended to support gradual checking.

Categories and Subject Descriptors D.3.1 [Software]: Program-
ming Languages—Formal Definitions and Theory

Keywords Type-and-effect systems; gradual typing; abstract in-
terpretation

1. Introduction
Type-and-effect systems allow static reasoning about the compu-
tational effects of programs. Effect systems were originally in-
troduced to safely support mutable variables in functional lan-
guages [11], but more recently, effect systems have been developed
for a variety of effect domains, e.g., I/O, exceptions, locking, atom-
icity, confinement, and purity [1–3, 12, 13, 17, 18].

To abstract from specific effect domains and account for ef-
fect systems in general, Marino and Millstein (M&M) developed
a generic effect system [15]. In their framework, effect systems are
seen as granting and checking privileges. Genericity is obtained
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by parameterizing the type system and runtime semantics of a lan-
guage with two operations, called adjust and check, which respec-
tively specify how the set of held privileges is adjusted and checked
during type checking. A particular effect system is instantiated by
providing a syntax for effects and a definition of the check and ad-
just operations. They demonstrate that several effect systems from
the literature can be formulated as instantiations of the generic
framework.

The generic effect system underlies the design of the Scala
effect checker plugin, which extends the M&M framework with
a form of effect polymorphism [17]. Several specific effect systems
for this plugin include IO effects, exceptions, and more recently,
state effects [18].

Despite their obvious advantages in terms of static reasoning,
the adoption of effect systems has been rather limited in practice.
While effect polymorphism supports the definition of higher-order
functions that are polymorphic in the effects of their arguments
(e.g.,map), writing fully-annotated effectful programs is complex,
and is hardly ever done.1

We conjecture that an important reason for the limited adoption
of effect systems is the difficulty of transitioning from a system
where effects are implicit and unrestricted to a system with a fully
static effect discipline. Another explanation is that effect systems
are necessarily conservative and therefore occasionally reject valid
programs. We follow the line of work on gradual verification of
program properties (e.g., gradual typing [22, 23], gradual owner-
ship types [21], gradual typestate [10, 26]), and develop a theory of
gradual effect systems. Our contributions are as follows:

• We shed light on the meaning of gradual effect checking, and its
fundamental differences from traditional gradual typing, by for-
mulating it in the framework of abstract interpretation [4]. Ab-
stract interpretation allows us to clearly and precisely specify
otherwise informal design intentions about gradual effect sys-
tems. Key notions like the meaning of unknown effects, consis-
tent privilege sets, and consistent containment between them,
are defined in terms of abstraction and concretization opera-
tions.

• We extend the generic effect system of Marino and Millstein
into a generic framework for gradual effects. As with gradual
typing, our approach relies on a translation to an internal lan-
guage with explicit checks and casts. The nature of these checks
and casts is, however, quite different. We prove the type safety
of the internal language and the preservation of typability by
the translation.

• We demonstrate how an effect system formulated in the M&M
framework can be immediately extended to support gradual

1 Pure functional languages like Haskell and Clean are notable exceptions.
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checking by lifting existing adjust and check functions to the
gradual setting.

• We present a concrete instantiation of the generic framework
to gradually check exceptions. The resulting system is compact
and provides a tangible and self-contained example of gradual
effect checking.

We believe this work can help effect system developers extend
their designs with support for gradual checking, thereby facilitating
their adoption.

2. Background and Motivation
In this section, we introduce the idea of static effect checking, and
give an intuition for how gradual effect checking is related. We
finish with a brief introduction to the M&M generic framework for
specifying type-and-effect systems.

2.1 Effect Systems
Effect systems classify the computational effects that an expression
performs when evaluated. To illustrate this idea, consider a simple
functional language with integers, booleans, and references. We
focus on three mutable state effects: alloc, read and write.

A value such as 7 or (λx : Int . x) has no effect; neither does an
arithmetic expression whose sub-expressions have no effect, such
as 7 + 12. Conversely, creating a reference such as ref 6 has type
Ref Int and effect alloc. Similarly, an assignment expression
such as x := 2 has type Unit and effect write, and dereferencing
a reference !x has the type of the reference content, and effect read.

Since functions are values they have no effects, but they may
perform effects when applied. To modularly check effects, then,
function types are annotated with the effects of the function body.
For instance, the function f :

f = λx : Ref Int . ! x

has type (Ref Int)
{read}−→ Int because a read effect happens during

the application of the function. Note that the effect may not hap-
pen during some applications of a function, for instance (assuming
y : Bool is in scope):

g = λx : Ref Int . if y then x := 3; 0 else 1

has type (Ref Int)
{write}−→ Int because its applications may perform

a write effect.
Of course, an expression can induce more than one effect, hence

the use of effect sets in the annotations. Though the language does
not define any notion of subtyping on types themselves, effect sets
leads to a natural notion of subtyping [25]. Consider the following
higher-order function:

h : ((Ref Int)
{read,alloc}−→ Int)

...−→Int

This function restricts the effects of its function argument to
{read, alloc}. Intuitively, it is valid to apply h to f , whose effect
set is {read}, because that would not violate the expectations of
h. In other words:

(Ref Int)
{read}−→ Int <: (Ref Int)

{read,alloc}−→ Int

because the effects of the former are a subset of the latter. Con-
versely, it is invalid to apply h to g.

From effects to privileges. Following Marino and Millstein [15],
we interpret effect systems in terms of privilege checking: to each

effectful operation corresponds a privilege required to perform it.
For instance, we can view alloc, read and write as the privileges
required to respectively allocate, dereference and assign a refer-

ence. In this framework, the function type (Ref Int)
{read}−→ Int is

interpreted as the type of a function that requires the read privi-
lege in order to be applied. Effect checking ensures that sufficient
privileges have been granted to perform effectful operations.

2.2 Towards Gradual Effect Checking
Programming in the presence of a statically checked discipline
brings stronger guarantees about the behavior of programs, but
doing so is demanding. In addition, one is limited by the fact
that the checker is conservative. Recently, several practical effect
systems have been applied to existing libraries, and the empirical
findings highlight the need to occasionally bypass static effect
checking [12, 17].

For instance, the JavaUI effect system [12], which prevents
non-UI threads from accessing UI objects or invoking UI-thread-
only methods, cannot be used to verify libraries that dynamically
check which thread they are running on and adapt their behavior
accordingly. As explained by the authors, the patterns of dynamic
checks they found in existing code go beyond simple if-then-else
statements and so cannot be handled simply by specializing the
static type system. While JavaUI lives with this limitation, the Scala
effect plugin [17] has recently been updated with an @unchecked
annotation to simply turn off effect checking locally. The use of
this annotation however breaks the guarantees offered by the effect
system, since there are no associated runtime checks.

In the realm of standard type systems, gradual typing [23] is
a promising approach that alleviates the complexity and conserva-
tiveness issues by integrating static and dynamic checking seam-
lessly and safely. The appeal of gradual typing has inspired the de-
velopment of gradual approaches to a variety of type disciplines,
including objects [14, 22, 24], ownership types [21], typestates [10,
26], and information flow typing [6].

This paper develops gradual effect checking, following the core
design principles that are common to all gradual checking ap-
proaches: (a) The same language can support both fully static and
fully dynamic checking of program properties. (b) The program-
mer has fine grained control over the static-to-dynamic spectrum.
(c) The gradual checker statically rejects programs on the basis that
they surely go wrong; programs that may go right are accepted stat-
ically, but subject to dynamic checking. (d) Runtime checks are
minimized based on static information. (e) Violations of properties
are detected as runtime errors—there are no stuck programs.

2.3 Gradual Effects in Action
Recall the function g defined in Sec. 2.1, which requires {write}
privileges. The program h g is rejected because h only accepts
functions that require {read, alloc} privileges. Even if the pro-
grammer knows that for a particular use of g, the if condition y is
false—and thus needs no write privilege after all—the program is
rejected.

In direct analogy to the unknown type ? introduced by Siek
and Taha [23] for gradual typing, we introduce statically unknown
privileges, denoted ¿, to our language. One can ascribe unknown
privileges to any expression e, using the notation e :: ¿. For in-
stance, if g is defined as:

g = λx : Ref Int . if y then (x := 3; 0) :: ¿ else 1

then it is given the type (Ref Int)
{¿}−→Int. The application h g is

now statically accepted by the gradual effect system. At runtime,
if only the else branch is ever executed, then no error occurs. If,
on the other hand, the programmer wrongly assumed that g would
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not require the write privilege and the then branch is executed,
an effect error is raised, preventing the assignment to x.

The ascription expression e :: ¿ introduces dynamic checking
semantics. Statically, it hides the privileges required by e from the
surrounding context, and allows the subexpressions of e to attempt
effectful operations. At runtime, checks occur to ensure that the
static privileges that e requires are available as needed.

One can partially expose (and hence dynamically check) re-
quired privileges by ascribing specific privileges in addition to ¿.
For instance, e :: {read, ¿} statically reveals that e requires the
read privilege, but hides other potential requirements.2

The static-to-dynamic spectrum We have illustrated the use of
gradual effect checking from the point of view of “softening static
checking”—introducing islands of dynamicity in an otherwise
static verification process. Gradual verification is about supporting
both ends of the static-to-dynamic spectrum as well as any middle
ground. We now discuss gradual effect checking from the point of
view of “hardening dynamic checking”—introducing static checks
in an otherwise dynamic verification process.

A fully-dynamic effectful program corresponds to a gradually-
typed program without any effect-related annotations in which all
effectful operations are wrapped by a :: ¿ ascription.3 Static check-
ing trivially succeeds because all expressions hide their required
privileges. Forbidden effects will only be detected at runtime. Then,
the programmer can progressively introduce static privilege anno-
tations (function argument types, ascriptions) and remove :: ¿ as-
criptions, statically revealing required privileges. The static checker
may reject the program if inconsistencies are detected, or it may
accept the program and runtime errors may occur. As more static
information is revealed, fewer dynamic checks are required. The
effect discipline is hardened.

2.4 Generic Effect Systems
To avoid re-inventing gradual effects for each possible effect disci-
pline, we build on the generic effect framework Marino and Mill-
stein (M&M) [15], which we briefly describe in this section.

The M&M effect framework defines a parameterized typing
judgment Φ; Γ; Σ ` e : T . It checks an expression under a set
of privileges Φ, representing the effects that are allowed during
the evaluation of the expression e. For instance, here is the generic
typing rule for functions:

T-Fun
Φ1; Γ, x : T1; Σ ` e : T2

Φ; Γ; Σ ` (λx : T1 . e)ε : {ε}(T1
Φ1−→T2)

Since a function needs no specific permissions, any privilege set
Φ will do. The function body itself may require privileges Φ1 and
these are used to annotate the function type. We explain the tag ε
shortly.

A given privilege discipline (mutable state, exceptions, etc.) is
instantiated by defining two operations, a check predicate and an
adjust function. The check predicate is used to determine whether
the current privileges are sufficient to evaluate non-value expres-
sion forms. To achieve genericity, the check predicate checkC is
indexed by check contexts C, which represent the non-value ex-
pression forms. The adjust function is used to evolve the available
privileges while evaluating the subexpressions of a given expres-
sion form. This function takes the current privileges and returns the

2 In a static effect system, an effect ascription e :: {read} is directly anal-
ogous to a type ascription [16]. Static effect ascriptions were introduced by
Gifford and Lucassen [11].
3 This corresponds to the translation of terms from the untyped λ-calculus
to the gradually-typed λ-calculus, which lifts all functions to the ?→? type
to introduce runtime checks [23].

privileges used to check the considered subexpression. To achieve
genericity, the adjust function adjustA is indexed by adjust con-
texts A, which represent the immediate context around a given
subexpression.

To increase its overall expressiveness, the framework also in-
corporates a notion of tags ε, which represent auxiliary static in-
formation for an effect discipline (e.g. abstract locations). Expres-
sions that create new values, like constants and lambdas, are in-
dexed with tags. The check and adjust contexts contain tag sets π
so that checkC and adjustA can leverage static information about
the values of subexpressions. To facilitate abstract value-tracking,
type constructors are annotated with tagsets, so types take the form
T ≡ πρ. For more precise control, effect disciplines can associate
tags to privileges e.g., read(ε1), read(ε2), etc. 4

For example, a check predicate for controlling mutable state is
defined as follows:

check!π(Φ) ⇐⇒ read ∈ Φ

checkrefπ(Φ) ⇐⇒ alloc ∈ Φ

checkπ1:=π2(Φ) ⇐⇒ write ∈ Φ

checkC(Φ) holds for all other C

In this case, only state-manipulating expression forms have inter-
esting check predicates, which simply require the corresponding
privilege; the rest always hold.

Since the assignment expression involves evaluating two subex-
pressions (the reference and the new value), there are two adjust
contexts. The ↓:=↑ context, which corresponds to evaluating the
reference to be assigned, and the π :=↓ context, which corresponds
to evaluating the assigned value. The ↓ denotes the subexpression
for which privileges should be adjusted. The tagset π represents
statically known information about any subexpressions that would
be evaluated before the current expression. The ↑ denotes a subex-
pression that would be evaluated after the current expression.

For certain disciplines, like mutable state, the adjust function
is simply the identity for every context. But one could, for exam-
ple, require that all subexpressions assigned to references must be
effect-free by defining adjust as follows:

adjustπ:=↓(Φ) = ∅
adjustA(Φ) = Φ otherwise

All typing rules in the generic system use check and adjust
to enforce the intended effect discipline. For instance, here is the
typing rule for assignment:

T-Asgn

adjust↓:=↑(Φ) ; Γ; Σ ` e1 : π1Ref T1

adjustπ1:=↓(Φ) ; Γ; Σ ` e2 : π2ρ2

checkπ1:=π2(Φ) π2ρ2 < : T1

Φ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

The subexpressions e1 and e2 are typed using adjusted privilege
sets. Their corresponding types have associated tagsets πi that are
used to adjust and check privileges. Note that in accord with left-
to-right evaluation, adjustπ1:=↓ knows which tags are associated
with typing e1. Finally, checkπ1:=π2 verifies that assignment is
allowed with the given permissions and the subexpression tag sets.
Subtyping is used here only to account for inclusion of privilege
sets between function types.

4 Gradual effects are compatible with effect systems that do not need tags.
See Sec. 5.
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For maximum flexibility, the framework imposes only two con-
straints on the definitions of check and adjust:

Property 1 (Privilege Monotonicity).

• If Φ1 ⊆ Φ2 then checkC(Φ1) =⇒ checkC(Φ2);
• If Φ1 ⊆ Φ2 then adjustA(Φ1) ⊆ adjustA(Φ2).

Property 2 (Tag Monotonicity).

• If C1 v C2 then checkC2(Φ) =⇒ checkC1(Φ);
• If A1 v A2 then adjustA2

(Φ) ⊆ adjustA1
(Φ).

Privilege monotonicity captures the idea that once an expression
has sufficient privileges to run, one can always safely add more.
This corresponds to effect subsumption in many particular effect
systems. In contrast, tag monotonicity captures the idea that more
tags implies more uncertainty about the source of a runtime value.
Thev relation holds when contexts have the same structure and the
tagsets of the first context are subsets of the corresponding tagsets
of the second context. For example, refπ1 v refπ2 if and only if
π1 ⊆ π2. In summary, check and adjust are order-preserving with
respect to privileges and order-reversing with respect to tags.

The framework can be instantiated with any pair of check and
adjust functions that satisfy both privilege and tag monotonicity.
The resulting type system is safe with respect to the corresponding
runtime semantics: no runtime privilege check fails, so no program
gets stuck.

3. Gradual Effects as an Abstract Interpretation
In this section we present a formal analysis of gradual effects,
guided by the design principles presented in Sec. 2.2. We use
abstract interpretation [4] to define our notion of unknown effects,
and find that as a result the formal definitions capture our stated
design intentions, and that the resulting framework for gradual
effects is quite generic and highly reusable.

3.1 The Challenge of Gradual Effects
The central concept underlying gradual effects is the idea of un-
known privileges, ¿. This concept was inspired by the notion of
unknown type ? introduced by Siek and Taha [23], but this concept
is not as straightforward to understand and formalize.

First, gradual types reflect the tree structure of type names. Siek
and Taha treat gradual types as trees with unknown leafs. Two
types are deemed consistent whenever their known parts match up
exactly. For instance, the types ? → Int and Bool → ? are
consistent because their → constructors line up: ? is consistent
with any type structure. In contrast, privilege sets are unordered
collections of individual effects, so a structure-based definition of
consistency is not as immediately apparent.

Second, under gradual typing, the unknown type always stands
for one type, so casts always associate an unknown type with
one other concrete type. On the contrary, the unknown privileges
annotation ¿ stands for any number of privileges: zero, one, or
many.

Third, simple types are related to the final value of a compu-
tation. In contrast, privileges are related to the dynamic extent of
an expression as it produces a final value. As such, defining what it
means to gradually check privileges involves tracking steps of com-
putation, rather than wrapping a final value with type information.

Finally, as we have seen in Sec. 2.1, effect systems naturally in-
duce a notion of subtyping, which must be accounted for in a grad-
ual effect system. In general, subtyping characterizes substitutabil-
ity: which expressions or values can be substituted for others, based
on static properties. In prior work, Siek and Taha demonstrate how
structural subtyping and gradual typing can be combined [22], but

the criteria for substitutability differ substantially between struc-
tural types and effects, so it is not straightforward to adapt Siek and
Taha’s design to suit gradual effects.

Our initial attempts to adapt gradual typing to gradual effects
met with these challenges. We found abstract interpretation to be
an informative and effective framework in which to specify and
develop gradual effects. The rest of this section develops the notion
of unknown effect privileges and consistent privilege sets. The
rest of the paper then uses the framework as needed to introduce
concepts and formalize gradual effect checking.

3.2 Fundamental Concepts
This subsection conceives gradual effects as an instance of abstract
interpretation. We do not assume any prior familiarity with abstract
interpretation: we build up the relevant concepts as needed.

For purpose of discussion, consider again the effect privileges
for mutable state from Sec. 2.1:

Φ ∈ PrivSet = P({read, write, alloc})
Ξ ∈ CPrivSet = P({read, write, alloc, ¿})

We already understand privilege sets Φ, but we want a clear un-
derstanding of what consistent privilege sets Ξ—privilege sets that
may have unknown effects—really mean. Consider the following
two consistent privilege sets:

Ξ1 = {read} Ξ2 = {read, ¿}

The set Ξ1 is completely static: it refers exactly to the set
of privileges {read}. The set Ξ2 on the other hand is gradual:
it refers to the read privilege, but leaves open the possibility of
other privileges. In this case, the ¿ stands for several possibilities:
no additional privileges, the write privilege alone, the alloc
privilege alone, or both write and alloc.

Thus, each consistent privilege set stands for some set of possi-
ble privilege sets. To formalize this interpretation, we introduce a
concretization function γ, which maps a consistent privilege set Ξ
to the concrete set of privilege sets that it stands for.5

Definition 1 (Concretization). Let γ : CPrivSet → P(PrivSet)
be defined as follows:

γ(Ξ) =

{
{Ξ} ¿ /∈ Ξ

{(Ξ \ {¿}) ∪ Φ | Φ ∈ PrivSet} otherwise .

Reconsidering our two example consistent privilege sets, we
find that

γ(Ξ1) = {{read}}

γ(Ξ2) =

{
{read, write}, {read, alloc},
{read}, {read, alloc, write}

}
Since each consistent privilege set stands for a number of possible
concrete privilege sets, we say that a particular privilege set Φ is
represented by a consistent privilege set Ξ if Φ ∈ γ (Ξ).

If we consider these two resulting sets of privilege sets, it is
immediately clear that Ξ1 is more restrictive about what privilege
sets it represents (only one), while Ξ2 subsumes Ξ1 in that it also
represents {read}, as well as some others. Thus, Ξ1 is strictly more
precise than Ξ2, and so γ induces a precision relation between
different consistent privilege sets.

Definition 2 (Precision). Ξ1 is less imprecise (i.e. more precise)
than Ξ2, notation Ξ1 v Ξ2, if and only if γ(Ξ1) ⊆ γ(Ξ2)

Precision formalizes the idea that some consistent privilege sets
imply more information about the privilege sets that they represent

5 We introduce an abstraction function α in Sec. 3.4
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than others. For instance, {read} is strictly more precise than
{read, ¿} because {read} v {read, ¿} but not vice-versa.

3.3 Lifting Predicates to Consistent Privilege Sets
Now that we have established a formal correspondence between
consistent privilege sets and concrete privilege sets, we can sys-
tematically adapt our understanding of the latter to the former.

Recall the checkC predicates of the generic effect framework
(Sec. 2.4), which determine if a particular effect set fulfills the re-
quirements of some effectful operator. Gradual checking implies
that checking a consistent privilege set succeeds so long as check-
ing its runtime representative could plausibly succeed. We formal-
ize this as a notion of consistent checking.

Definition 3 (Consistent Checking). Let checkC be a predicate
on privilege sets. Then we define a corresponding consistent check
predicate c̃heckC on consistent privilege sets as follows:

c̃heckC(Ξ) ⇐⇒ checkC(Φ) for some Φ ∈ γ(Ξ).

Under some circumstances, however, we must be sure that a
consistent privilege set definitely has the necessary privileges to
pass a check. For this purpose we introduce a notion of strict
checking.

Definition 4 (Strict Checking). Let checkC be a predicate on priv-
ilege sets. Then we define a corresponding strict check predicate
strict-checkC on consistent privilege sets as follows:

strict-checkC(Ξ) ⇐⇒ checkC(Φ) for all Φ ∈ γ(Ξ).

By defining both consistent checking and strict checking in
terms of representative sets, our formalizations are both intuitive
and independent of the underlying checkC predicate. Furthermore,
these definitions can be recast directly over consistent privilege sets
once we settle on a particular checkC predicate (cf. Sec. 5).

3.4 Lifting Functions to Consistent Privilege Sets
In addition to predicates on consistent privilege sets, we must also
define functions on them. For instance, the M&M framework is pa-
rameterized over a family of adjust functions adjustA : PrivSet→
PrivSet, which alter the set of available effect privileges (Sec. 2.4).
Using abstract interpretation, we lift these to consistent adjust func-
tions ãdjustA : CPrivSet → CPrivSet. To do so we must first
complete the abstract interpretation framework.

Consider our two example consistent privilege sets. Each rep-
resents some set of privilege sets, so we expect that adjusting a
consistent privilege set should be related to adjusting the corre-
sponding concrete privilege sets. The key insight is that adjust-
ing a consistent privilege set should correspond somehow to ad-
justing each individual privilege set in its represented collection.
For example ãdjustA({read, alloc}) should be related to the set
{adjustA({read, alloc})}, and ãdjustA({read, ¿}) should be
related to the following set:{

adjustA({read, write}) , adjustA({read, alloc}) ,
adjustA({read}) , adjustA({read, alloc, write})

}
To formalize these relationships, we need an abstraction function
α : P(PrivSet) → CPrivSet that maps collections of privilege
sets back to corresponding consistent privilege sets. For such a
function to make sense, it must at least be sound.

Proposition 1 (Soundness).Υ ⊆ γ(α(Υ)) for all Υ∈ P(PrivSet).

Soundness implies that the corresponding consistent privilege
set α(Υ) represents at least as many privilege sets as the original

collection Υ. A simple and sound definition of α is α(Υ) = {¿}.
This definition is terrible, though, because it needlessly loses infor-
mation. For instance, α(γ(Ξ1)) = {¿}, and since {¿} represents
every possible privilege set, that mapping loses all the information
in the original set. At the least, we would like α(γ(Ξ1)) = Ξ1.

Our actual definition of α is far better than the one proposed
above:

Definition 5 (Abstraction). Let α : P(PrivSet) → CPrivSet be
defined as follows6:

α(Υ) =

{
Φ Υ = {Φ}
(
⋂

Υ) ∪ {¿} otherwise.

In words, abstraction preserves the common concrete privi-
leges, and adds unknown privileges to the resulting consistent set if
needed. As required, this abstraction function α is sound.

Even better though, given our interpretation of consistent privi-
lege sets, this α is the best possible one.

Proposition 2 (Optimality). Suppose Υ ⊆ γ(Ξ). Then α(Υ) v Ξ.

Optimality ensures that α gives us not only a sound consistent
privilege set, but also the most precise one7. In our particular
case, optimality implies that α(γ(Ξ)) = Ξ for all Ξ but one:
α(γ({read, write, alloc, ¿})) = {read, write, alloc}. Both
consistent privilege sets represent the same thing.

Using α and γ, we can lift any function f on privilege sets
to a function on consistent privilege sets. In particular, we lift the
generic adjust functions:

Definition 6 (Consistent Adjust).
Let ãdjustA : CPrivSet→ CPrivSet be defined as follows:

ãdjustA(Ξ) = α ({adjustA(Φ) | Φ ∈ γ (Ξ)}) .

The ãdjust function reflects all of the information that can be
retained when conceptually adjusting all the sets represented by
some consistent privilege set.

The c̃heck and ãdjust operators are critical to our generic pre-
sentation of gradual effects. Both definitions are independent of
the underlying concrete definitions of check and adjust. As we
show through the rest of the paper, in fact, the abstract interpreta-
tion framework presented here time and again provides a clear and
effective way to conceive and formalize concepts that we need for
gradual effect checking.

4. A Generic Framework for Gradual Effects
In this section we present a generic framework for gradual effect
systems. As is standard for gradual checking, the framework in-
cludes a source language that supports unknown annotations, an in-
ternal language that introduces runtime checks, and a type-directed
translation from the former to the latter.

4.1 The Source Language
The core language (Fig. 1) is a simply-typed functional language
with a unit value, mutable state, and effect ascriptions e :: Ξ. The
language is parameterized on some finite set of effect privileges
Priv, as well as a set of tags Tag. The Priv set is the basis for
consistent privileges CPriv, privilege sets PrivSet, and consistent
privilege sets CPrivSet. The Tag set is the basis for tag sets TagSet.
Each type constructor is annotated with a tag set, so types are

6 For simplicity, we assume Υ is not empty, since α(∅) = ⊥ plays no role
in our development.
7 Abstract interpretation literature expresses this in part by saying that α
and γ form a Galois connection[5].
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φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P(Priv) , Ξ ∈ CPrivSet = P(CPriv)

ε ∈ Tags . π ∈ P(Tags)

w ::= unit | λx : T . e | l Prevalues
v ::= wε Values
e ::= x | v | e e | e :: Ξ Terms

| (ref e)ε | !e | (e := e)ε
T ::= π ρ Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes
A ::= ↓↑ | π ↓| ref ↓ | ! ↓ Adjust Contexts

| ↓:=↑ | π :=↓
C ::= π π | ref π | !π | π := π Check Contexts

Figure 1. Syntax of the source language

annotated deeply. Each value-creating expression is annotated with
a tag so that effect systems can abstractly track values. The type of
a function carries a consistent privilege set Ξ that characterizes the
privileges required to execute the function body.

The source language also specifies a set of adjust contextsA and
check contexts C. Each adjust context is determined by an evalua-
tion context frame f (Sec. 4.2). They index ãdjustA to determine
how privileges are altered when evaluating in a particular context.
Similarly, the check contexts correspond to program operations like
function application. They index c̃heckC to determine which priv-
ileges are needed to perform the operation.

Fig. 2 presents the type system. The judgment Ξ; Γ; Σ ` e : T
means that the expression e has type T in the lexical environment Γ
and store typing Σ, when provided with the privileges Ξ. Based on
the judgment, e is free to perform any of the effectful operations de-
noted by the privileges in Ξ. If the consistent privilege set contains
the unknown privileges ¿, then e might also try any other effect-
ful operation, but at runtime a check for the necessary privileges is
performed.

Each type rule extends the standard formulation with operations
to account for effects. All notions of gradual checking are encapsu-
lated in consistent effect sets Ξ and operations on them. The [T-Fn]
rule associates some sufficient set of privileges with the body of the
function. In practice we can deduce a minimal set to avoid spurious
checks.

The [T-App] rule illustrates the structure of the non-value typing
rules. It enhances the M&M typing rule for function application
(similar to [T-Asgn] in Sec. 2.4) to support gradual effects. In
particular, each privilege check from the original rule is replaced
with a consistent counterpart: consistent predicates succeed as long
as the consistent privilege sets represent some plausible concrete
privilege set, and consistent functions represent information about
what is possible in their resulting consistent set. ãdjust and c̃heck
are defined in Sec. 3, and we use the same techniques introduced
there to lift effect subtyping to a notion of consistent subtyping. To
do so, we first lift traditional privilege set containment to consistent
containment:

Definition 7 (Consistent Containment). Ξ1 is consistently con-
tained in Ξ2, notation Ξ1 @∼ Ξ2 if and only if Φ1 ⊆ Φ2 for some
Φ1 ∈ γ(Φ1) and Φ2 ∈ γ(Ξ2)8.

8 We give @∼ a simple direct characterization in Sec. 4.2.

Ξ; Γ; Σ ` e : T

T-Fn
Ξ1; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε : {ε}T1
Ξ1−→T2

T-Unit
Ξ; Γ; Σ ` unitε : {ε}Unit

T-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε : {ε}Ref T
T-Var

Γ(x) = T

Ξ; Γ; Σ ` x : T

T-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

π1(T1
Ξ1−→T3) . π1(π2ρ2

Ξ−→T3) c̃heckπ1π2 (Ξ)

Ξ; Γ; Σ ` e1 e2 : T3

T-Eff
Ξ1; Γ; Σ ` e : T Ξ1 @∼ Ξ

Ξ; Γ; Σ ` (e :: Ξ1) : T

T-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : πρ

c̃heckref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ

T-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : πRef T

c̃heck!π(Ξ)

Ξ; Γ; Σ `!e : T

T-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

c̃heckπ1:=π2 (Ξ) π2ρ2 . T1

Ξ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

Figure 2. Type system for the source language

Consistent containment means that privilege set containment
may hold unless we guarantee that it cannot. Of course, this claim
must sometimes be protected with a runtime check in the internal
language, as discussed further in the next section. Consistent sub-
typing . is defined by replacing the privilege subset premise of
traditional effect subtyping with consistent containment.

π1 ⊆ π2

π1ρ . π2ρ

T3 . T1 T2 . T4

π1 ⊆ π2 Ξ1 @∼ Ξ2

π1T1
Ξ1−→T2 . π2T3

Ξ2−→T4

This relation expresses plausible substitutability. Consistent con-
tainment is not transitive, and as a result neither is consistent sub-
typing. This property is directly analogous to consistent subtyping
for gradual object systems [22].

All other rules in the type system can be characterized as consis-
tent liftings of the corresponding M&M rules. Each uses adjustA
to type subexpressions, and checkC to check privileges.

Finally, [T-Eff] reflects the consistent counterpart of static ef-
fect ascriptions, which do not appear in the M&M system. The rule
requires that the ascribed consistent privileges be consistently con-
tained in the current consistent privileges. Ascribing ¿ delays some
privilege checks to runtime, as discussed next.

4.2 The Internal Language
The semantics of the source language is given by a type-directed
translation to an internal language that makes runtime checks ex-
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e ::= . . . | Error | 〈T ⇐ T 〉e Terms
| has Φ e | restrict Ξ e

f ::= � e | v � | (ref �)ε Frames
|!� | (� := e)ε | (wε := �)ε

g ::= f | 〈T2 ⇐ T1〉� | has Φ � Error Frames
| restrict Ξ �

Figure 3. Syntax of the internal language

Ξ; Γ; Σ ` e : T

IT-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1π2 (Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ; Γ; Σ ` e1 e2 : T3

IT-Cast
Ξ; Γ; Σ ` e : T0 T0 < : T1 T1 . T2

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2

IT-Has
(Φ ∪ Ξ); Γ; Σ ` e : T

Ξ; Γ; Σ ` has Φ e : T
IT-Error

Ξ; Γ; Σ ` Error : T

IT-Rst
Ξ1; Γ; Σ ` e : T Ξ1 ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ1 e : T

IT-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : πρ

strict-checkref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ

IT-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : πRef T

strict-check!π(Ξ)

Ξ; Γ; Σ `!e : T

IT-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1:=π2 (Ξ) π2ρ2 < : T1

Ξ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

Figure 4. Typing rules for the internal language

plicit. This section presents the internal language. The translation
is presented in Sec. 4.3.

Fig. 3 presents the syntax of the internal language. It extends the
source language with explicit features for managing runtime effect
checks. The Error construct indicates that a runtime effect check
failed, and aborts the rest of the computation. Casts 〈T ⇐ T 〉e
express type coercions between consistent types. The has operation
checks for the availability of particular effect privileges at runtime.
The restrict operation restricts the privileges available while
evaluating its subexpression.

Frames represent evaluation contexts in our small-step seman-
tics. By using frames, we present a system with structural semantics
like the M&M framework while defining fewer evaluation rules as
in a reduction semantics.

Static semantics The type system of the internal language (Fig. 4)
mostly extends the surface language type system, with a few criti-

cal differences. First, recall that type rules for source language op-
erators, like function application [T-App], verify effects based on
consistent checking: so long as some representative privilege set is
checkable, the expression is accepted. In contrast, the internal lan-
guage introduces new typing rules for these operators, like [IT-App]
(changes highlighted in gray).

In the internal language, effectful operations must have enough
privileges to be performed: plausibility is not sufficient anymore.
As we see in the next section, consistent checks from source pro-
grams are either resolved statically or rely on runtime privilege
checks to guarantee satisfaction before reaching an effectful oper-
ation. For this reason, uses of c̃heck are replaced with strict-check
(Sec. 3.3, Def. 4). Consistent subtyping . is replaced with a no-
tion of subtyping <: that is based on ordinary set containment for
consistent privilege sets and tags:

π1 ⊆ π2

π1ρ < : π2ρ

T3 < : T1 T2 < : T4

π1 ⊆ π2 Ξ1 ⊆ Ξ2

π1T1
Ξ1−→T2 < : π2T3

Ξ2−→T4

The intuition is that an expression that can be typed with a given
set of consistent permissions should still be typable if additional
permissions become available. We formalize this intuition below.

In addition to ordinary set containment, the internal language
depends on a stronger notion of containment that focuses on stat-
ically known permissions. A consistent privilege set represents
some number of concrete privilege sets, each containing some
different privileges, but most consistent privilege sets have some
reliable information. For instance, any set represented by Ξ =
{read, ?} may have a variety of privileges, but any such set will
surely contain the read privilege. We formalize this idea in terms
of concretization as the static part of a consistent privilege set.

Definition 8 (Static Part). The static part of a consistent privilege
set, |·| : CPrivSet→ PrivSet is defined as

|Ξ| =
⋂
γ(Ξ).

The definition directly embodies the intuition of “all reliable
information,” but this operation also has a simple direct characteri-
zation: |Ξ| = Ξ \ {¿}.9

Using the notion of static part, we define the concept of static
containment for consistent privilege sets.

Definition 9 (Static Containment). Ξ1 is statically contained in Ξ2,
notation Ξ1 ≤ Ξ2, if and only if |Ξ1| ⊆ |Ξ2|.

The intuition behind static containment is that an expression can
be safely used in any context that is guaranteed to provide at least
its statically-known privilege requirements.

We need static containment to help us characterize effect sub-
sumption in the internal language. Privilege subsumption says that
if Φ is sufficient to type e, then so can any larger set Φ′ [25].
To establish this, we must consider properties of both strict-check
and ãdjust. Conveniently, strict-check is monotonic with respect to
consistent privilege set containment.

Lemma 3.
If strict-checkC(Ξ1) and Ξ1 ⊆ Ξ2 then strict-checkC(Ξ2).

To the contrary, though, ãdjust is not monotonic with respect
to set containment on consistent privilege sets. Instead, it is mono-
tonic with respect to static containment.

Lemma 4. If Ξ1 ≤ Ξ2 then ãdjustC(Ξ1) ≤ ãdjustC(Ξ2)

We exploit this to establish effect subsumption.

9 The γ-based definition is useful for proving Strong Effect Subsumption
(Prop. 5 below).
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E-Ref
checkref {ε1}(Φ) l 6∈ dom (µ)

Φ ` (ref wε1 )ε2 | µ→ lε2 | µ[l 7→ wε1 ]
E-Asgn

check{ε1}:={ε2}(Φ)

Φ ` (lε1 := wε2 )ε | µ→ unitε | µ[l 7→ wε2 ]

E-Deref
check!{ε}(Φ) µ(l) = v

Φ `!lε | µ→ v | µ
E-Frame

adjustA(f)(Φ) ` e | µ→ e′ | µ′

Φ ` f [e] | µ→ f [e′] | µ′
E-Error

Φ ` g[Error] | µ→ Error | µ

E-Has-T
Φ′ ⊆ Φ Φ ` e | µ→ e′ | µ′

Φ ` has Φ′ e | µ→ has Φ′ e′ | µ′

E-Has-V

Φ ` has Φ′ v | µ→ v | µ

E-Has-F
Φ′ 6⊆ Φ

Φ ` has Φ′ e | µ→ Error | µ

E-Rst-V
Φ ` restrict Ξ v | µ→ v | µ

E-Rst
Φ′′ = max {Φ′ ∈ γ(Ξ) | Φ′ ⊆ Φ} Φ′′ ` e | µ→ e′ | µ′

Φ ` restrict Ξ e | µ→ restrict Ξ e′ | µ′

E-App
check{ε1}{ε2}(Φ)

Φ ` (λx : T1 . e)ε1 wε2 | µ→ [wε2/x] e | µ

E-Cast-Frame
Φ ` e | µ→ e′ | µ′

Φ ` 〈T2 ⇐ T1〉e | µ→ 〈T2 ⇐ T1〉e′ | µ′

E-Cast-Id
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2ρ⇐ π1ρ〉wε | µ→ wε | µ

E-Cast-Fn
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22 ⇐ π1T11

Ξ1−→T12〉 (λx : T11 . e)ε | µ→ (λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [ (〈T11 ⇐ T21〉x)/x] e)ε | µ

Figure 5. Small-step semantics of the internal language

Proposition 5 (Strong Effect Subsumption).
If Ξ1; Γ; Σ ` e : T and Ξ1 ≤ Ξ2, then Ξ2; Γ; Σ ` e : T .

Proof. By induction over the typing derivations Ξ1; Γ; Σ ` e : T .

Corollary 6 (Effect Subsumption).
If Ξ1; Γ; Σ ` e : T and Ξ1 ⊆ Ξ2, then Ξ2; Γ; Σ ` e : T .

Proof. Set containment implies static containment.

We now turn to the new syntactic forms of the internal language.
Casts represent explicit dynamic checks for consistent subtyping
relationships. The has operator checks if the privileges in Φ are
currently available. Its subexpression e is typed using the consistent
set that is extended statically with Φ.10

The restrict operator constrains its subexpression to be ty-
pable in a consistent privilege set that is statically-contained in the
current set. Since ¿ does not play a role in static containment, the
set Ξ1 can introduce dynamism that was not present in Ξ. As we
will see when we translate source programs, this is key to how as-
cription can introduce more dynamism into a program.

As it happens, we can use notions from this section to simply
characterize notions that we, for reasons of conceptual clarity, de-
fined using the concretization function and collections of plausible
privilege sets. The concretization-based definitions clearly formal-
ize our intentions, but these new extensionally equivalent charac-
terizations are well suited to efficient implementation.

First, we can characterize consistent containment as an exten-
sion of static containment, and strict checking as simply checking
the statically known part of a consistent privilege set.

Proposition 7.

1. Ξ1 @∼ Ξ2 if and only if Ξ1 ⊆ Ξ2 or ¿ ∈ Ξ2.

2. strict-checkC(Ξ) if and only if checkC(|Ξ|).

10 Note that Φ ∪ Ξ is the same as lifting the function f(Φ′) = Φ ∪ Φ′, and
Φ @∼ Ξ is the same as lifting the predicate P (Φ′) = Φ ⊆ Φ′.

Furthermore, we can characterize consistent checking based on
whether the consistent privilege set in question contains unknown
privileges.

Proposition 8.

1. If ¿ ∈ Ξ then c̃heckC(Ξ) if and only if checkC(PrivSet).

2. If ¿ /∈ Ξ then c̃heckC(Ξ) if and only if checkC(Ξ).

Dynamic semantics Fig. 5 presents the evaluation rules of the
internal language. The judgment Φ ` e | µ→ e′ | µ′ means that
under the privilege set Φ and store µ, the expression e takes a step
to e′ and µ′. Effectful constructs consult Φ to determine whether
they have sufficient privileges to proceed.

The has expression checks dynamically for privileges. If the
privileges in Φ are available, then execution may proceed: if not,
then an Error is thrown. Note that in a real implementation, has
only needs to check for privileges once: the semantics keeps has
around only to support our type safety proof.

The restrict expression restricts the privileges available in
the dynamic extent of the current subexpression. The intuition is
as follows. Ξ represents any number of privilege sets. At least
one of those sets must be contained in Φ or the program gets
stuck: restrict cannot add new privileges. So restrict limits
its subexpression to the largest subset of currently available privi-
leges that Ξ can represent. In practice, this means that if Ξ is fully
static, then Ξ represents only one subset Φ′ of Φ and the subexpres-
sion can only use those privileges. If ¿ ∈ Ξ, then Ξ can represent
all of Φ, so the privilege set is not restricted at all. This property of
restrict enables ascription to support dynamic privileges.

Since function application is controlled under some effect dis-
ciplines, the [E-App] rule is guarded by the checkapp predicate in-
herited from the M&M framework. If this check fails, then the pro-
gram is stuck. More generally, any effectful operation added to the
framework is guarded by such a check. These checks are needed to
give intensional meaning to our type safety theorem: if programs
never get stuck, then any effectful operation that is encountered
must have the proper privileges to run. This implies that either the
permissions were statically inferred by the type checker, or the op-
eration is guarded by a has expression, which throws an Error if
needed privileges are not available. It also means that thanks to
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type safety, an actual implementation would not need any of the
checkC checks: the has checks suffice. This supports the pay-as-
you-go principle of gradual checking.

Higher-order casts incrementally verify at runtime that consis-
tent subtyping really implies privilege set containment. In particu-
lar they guard function calls. First, they restrict the set of available
privileges to detect privilege inconsistencies in the function body.
Then, they check the resulting privilege set for the minimal priv-
ileges needed to validate the containment relationship. Intuitively,
we only need to check for the statically determined permissions
that are not already accounted for.

To illustrate, consider the following example:{read, alloc} @∼
{read, ¿} because alloc could be in a representative of {read, ¿},
but {read, alloc} 6⊆ {read, ¿} since that is not definitely true.
Thus, to be sure at runtime, we must check for
|{read, alloc}| \ |{read, ¿}| = {alloc}. Note that the rule
[E-Cast-Fn] uses the standard approach to higher-order casts due
to Findler and Felleisen [8]. As a formalization convenience, the
rule uses substitution directly rather than function application so
as to protect the implementation internals from effect checks and
adjustments. In practice the internal language would simply use
function application without checking or adjusting privileges.

Type safety We prove type safety in the style of Wright and
Felleisen [27]. Program execution begins with a closed term e as
well as an initial privilege set Φ. The initial program must be well
typed and the privilege set must be represented by the consistent
privilege set Ξ used to type the program. Under these conditions,
the program will not get stuck.

Our statements of Progress and Preservation introduce the rep-
resentation restrictions between consistent privilege sets and the
privilege sets used as contexts for evaluation. These restrictions can
be summarized in that typing ensures that evaluation does not get
stuck in any particular context represented statically.11

Theorem 9 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is
a value v, an Error, or Φ ` e | µ→ e′ | µ′ for all privilege sets
Φ ∈ γ(Ξ) and for any store µ such that ∅ | Σ ` µ.

Proof. By structural induction over derivations of Ξ; ∅; Σ ` e : T .

Theorem 10 (Preservation). If Ξ; Γ; Σ ` e : T , and
Φ ` e | µ→ e′ | µ′ for Φ ∈ γ(Ξ) and Γ | Σ ` µ, then
Γ | Σ′ ` µ′ and Ξ; Γ; Σ′ ` e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof. By structural induction over the typing derivation. Preserva-
tion of types under substitution for values (required for [E-App])
and for identifiers (required for [E-Cast-Fn]) follows as a standard
proof since neither performs effects.

4.3 Translating Source Programs to the Internal Language
Fig. 6 presents the type-directed translation of source programs to
the internal language (the interesting parts have been highlighted).
The translation uses static type and effect information from the
source program to determine where runtime checks are needed
in the corresponding internal language program. In particular, any
consistent check, containment, or subtyping that is not also a strict
check, static containment, or static subtyping, respectively, must be
guarded by a has expression (for checks and containments) or a
cast (for subtypings).

Recall from Sec. 4.2 that the has expression checks if some
particular privileges are available at runtime. The translation sys-
tem determines for each program point which privileges (if any)

11 We also proved soundness for a minimal system with neither tags nor
state.

Ξ; Γ; Σ ` e⇒ e : T

C-Fn
Ξ1; Γ, x : T1; Σ ` e⇒ e′ : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε ⇒ (λx : T1 . e′)ε : {ε}T1
Ξ1−→T2

C-Unit
Ξ; Γ; Σ ` unitε ⇒ unitε : {ε}Unit

C-Var
Γ(x) = T

Ξ; Γ; Σ ` x⇒ x : T

C-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε ⇒ lε : {ε}Ref T

C-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2

e′′1 = ( 〈〈π1(π2ρ2
Ξ−→T3)⇐ π1(T1

Ξ1−→T3)〉〉 e′1)

π1(T1
Ξ1−→T3) . π1(π2ρ2

Ξ−→T3)

c̃heckπ1π2 (Ξ) Φ = ∆π1π2 (Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has?(Φ, e′′1 e
′
2) : T3

C-Eff
Ξ1; Γ; Σ ` e⇒ e′ : T Ξ1 @∼ Ξ Φ = (|Ξ1| \ |Ξ|)

Ξ; Γ; Σ ` (e :: Ξ1)⇒ insert-has?(Φ, restrict Ξ1 e
′) : T

C-Ref
ãdjustref ↓(Ξ) ; Γ; Σ ` e⇒ e′ : πρ

c̃heckref π(Ξ) Φ = ∆ref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε ⇒ insert-has?(Φ,
(
ref e′

)
ε
) : {ε}Ref πρ

C-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e⇒ e′ : πRef T

c̃heck!π(Ξ) Φ = ∆!π(Ξ)

Ξ; Γ; Σ `!e⇒ insert-has?(Φ, !e′) : T

C-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2

c̃heckπ1:=π2 (Ξ) π2ρ2 . T1 Φ = ∆π1:=π2 (Ξ)

Ξ; Γ; Σ ` (e1 := e2)ε ⇒ insert-has?(Φ,
(
e′1 := e′2

)
ε
) : {ε}Unit

Figure 6. Translation of source programs to the internal language

must be checked. Since the generic framework imposes only priv-
ilege and tag monotonicity restrictions on the check and adjust
functions, deducing these checks can be subtle.

Consider a hypothetical check predicate for a mutable state
effect discipline:

checkC(Φ) ⇐⇒ read ∈ Φ or write ∈ Φ.

Though strange here, an effect discipline that is satisfied by one
of two possible privileges is generally plausible, and in fact satis-
fies the monotonicity restrictions. When, say, the consistent check
c̃heckC({¿}) succeeds in some program, which privileges should
be checked at runtime?

The key insight is that the internal language program must check
for all privileges that can produce a minimal satisfying privilege set.
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In the case of the above example, we must conservatively check for
both read and write. However, we do not need to check for any
privileges that are already known to be statically available.

We formalize this general idea as follows. First, since we do not
want to require and check for any more permissions than needed,
we only consider all possible minimal privilege sets that satisfy
the check. We isolate the minimal privilege sets using the mins
function:

mins(Υ) =
{

Φ ∈ Υ | ∀Φ′ ∈ Υ.Φ′ 6⊂ Φ
}
.

Given some consistent privilege set Ξ, we identify all of its plau-
sible privilege sets that satisfy a particular check, and select only
the minimal ones. In many cases there is a unique minimal set, but
as above, there may not.12 To finish, we coalesce this collection
of minimal privileges, and remove any that are already statically
known to be available based on Ξ. These steps are combined in the
following function.

Definition 10 (Minimal Privilege Check). Let C be some checking
context. Then define ∆C : CPrivSet→ PrivSet as follows:

∆C(Ξ) =
(⋃

mins({Φ ∈ γ(Ξ) | checkC(Φ)})
)
\ |Ξ|

The ∆C function transforms a given consistent privilege set
into the minimal conservative set of additional privileges needed
to safely pass the checkC function. For instance, the [C-App]
translation rule uses it to guard a function application, if need be,
with a runtime privilege check. These checks are introduced by the
insert-has? metafunction.

insert-has?(Φ, e) =

{
e if Φ = ∅
has Φ e otherwise

Note that the metafunction only inserts a check if needed. This
supports the pay-as-you-go principle of gradual checking.

Since [C-App] also appeals to consistent subtyping, a cast may
be introduced in the translation as well. For this, we appeal to a cast
insertion metafunction:

〈〈T2 ⇐ T1〉〉e =

{
e if T1 < : T2

〈T2 ⇐ T1〉e otherwise.

Once again, casts are only inserted when static subtyping does not
already hold.

The [C-Eff] rule translates effect ascription in the source lan-
guage to the restrict form in the internal language. If more priv-
ileges are needed to ensure static containment between Ξ1 and Ξ,
then translation inserts a runtime has check to bridge the gap.13

Crucially, the translation system preserves typing.

Theorem 11 (Translation preserves typing). If Ξ; Γ; Σ ` e ⇒
e′ : T in the source language then Ξ; Γ; Σ ` e′ : T in the internal
language.

Proof. By structural induction over the translation derivation rules.
The proof relies on the fact that ∆C(Ξ) introduces enough runtime
checks (via insert-has?) that any related strict-checkC(Ξ) predi-
cate is sure to succeed at runtime, so those rules do not get stuck.
The instance of insert-has? in the [C-Eff] rule plays the same role
there.

12 One could retain precision by extending our abstraction to support dis-
junctions of consistent effect sets, at the cost of increased complexity in the
translation and type system.
13 The formula for Φ is analogous to the ∆C operation for checkC .

e ::= . . . | raise sT (e) Terms
| try e handle sT (x) . e

f ::= f ′ | try � handle sT e Source Frames
f ′ ::= (Original Source Frames) Propagating Frames

| raise sT (�)
C ::= . . . | raise sT (π) Check Contexts

| try π handle sT ↑
A ::= . . . | raise sT (↓) Adjust Contexts

| try ↓ handle sT ↑

Figure 7. Syntax for a Gradual Effect System with Exceptions

E-Raise-Frame
checkraise sT ({•})(Φ)

Φ ` f ′[raise sT (v)] | µ→ raise sT (v) | µ

E-Try-V
checktry {•} handle sT ↑(Φ)

Φ ` try v handle sT (x).e | µ→ v | µ

E-Try-T
checktry ∅ handle sT ↑(Φ)

Φ ` try raise sT (v) handle sT (x).e | µ→ [v/x] e | µe

E-Try-F
checkraise sT1

({•})(Φ)

Φ ` try raise sT1
(v) handle sT2

(x).e | µ→ raise sT1
(v) | µ

Figure 8. Evaluation rules added to the operational semantics for
a system with exceptions

5. Example: Gradual Effects for Exceptions
In this section we show how to use our framework to define sys-
tems with richer language features. We extend the language with
exception handling and introduce an effect discipline that verifies
that every raised exception is caught by some handler. We intro-
duce new syntax; privilege and tag domains; adjust and check op-
erations and contexts; and typing, translation, and evaluation rules.
Note that the example system is general enough to allow different
effect disciplines for exceptions.

The language introduces an infinite set of exception construc-
tors sT , which are indexed on the type T of argument that they
carry as a payload. An exception is triggered by the raise sT (e)
expression, which indicates that the expression e should be evalu-
ated to a value of type T , wrapped in the exception constructor, and
raised. An exception handler, try e1 handle sT (x).e2, attempts to
evaluate the expression e1. If successful, its result is returned; if e1

raises a sT exception, it binds the payload to x and evaluates e2.
We also introduce new adjust and check contexts. These con-

texts are used to parameterize different effect disciplines over the
same constructs. They are used by the adjust and check functions
in the operational semantics, by the type system and the translation
algorithm. Following M&M, we define a new check context for
each new redex and a new adjust context for each new evaluation
frame.

Fig. 8 presents the semantics for exceptions in our system.
Exceptions propagate out of evaluation frames by rule [E-Raise-
Frame] until they are caught by a matching handler. Since handlers
are also evaluation frames, we must distinguish the rest of the
evaluation frames from handlers. As presented in Fig. 7, we call
non-handler frames “Propagating Frames”.

A try handler first reduces the guarded expression. If it is a
value, the exception handler is discarded through rule [E-Try-V]. If
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ãdjustraise sT (↓)(Ξ) ; Γ; Σ ` e : T

c̃heckraise sT ({•})(Ξ)

Ξ; Γ; Σ ` raise sT (e) : T ′

ãdjusttry ↓handle sT ↑(Ξ) ; Γ; Σ ` e1 : T1

Ξ; Γ, x : T ; Σ ` e2 : T2 T2 . T1

c̃hecktry {•}handle sT ↑(Ξ)

Ξ; Γ; Σ ` try e1 handle sT (x).e2 : T1

Figure 9. Source language typing rules for exceptions

the guarded expression reduces to an exception whose constructor
matches the handler, rule [E-Try-T] substitutes the payload value
in the handling expression. If the constructor does not match the
handler, the exception is propagated by rule [E-Try-F], and the
handler discarded.

Rule [E-Try-T] uses ∅ in the check context instead of a tagset
because the guarded expression produced an exception instead
of a value. The type system does not relate the type of the ex-
ception payload to the type of the guarded expression, so when
check is evaluated it cannot access tag information related to the
guarded expression. We followed the most conservative strategy
for this case. Thanks to the tag monotonicity property, we know
that check holds with ∅ if it holds for any particular π because
try ∅ handle sT ↑ v try π handle sT ↑.

The new source language typing rules are presented in Figure 9.
The corresponding typing rules for the internal language follow
the same pattern as for rules in the general framework: c̃heck is
replaced by strict-check and. is replaced by< : . In the translation
system, the rules introduce ∆C and insert-has?.

As presented so far, our gradual effect system with exceptions
does not enforce any particular effect discipline. To do so, we need
to define both a domain for privileges and concrete check and
adjust functions. We instantiate privileges Priv to be the exception
constructors (of the form sT ), and provide the following definitions
for check and adjust, which capture the standard effect discipline
for exceptions:

checkraise sT (π)(Φ)⇐⇒ sT ∈ Φ
checkC(Φ) holds for all other C

adjusttry ↓ handle sT ↑(Φ) = Φ ∪ {sT }
adjustA(Φ) = Φ otherwise

Note that this effect discipline does not require tags, so techni-
cally we use a singleton set for the universe of tags (ε ∈ {•}). In
practice the tags can be removed altogether.

Implementation With a concrete effect discipline, an instance of
the general effect system can be specialized to produce concrete
operational semantics, type system and translation algorithm rules,
inlining the calls to check and adjust. Figure 10 presents special-
ized translation rules for the concrete discipline we have chosen.
These rules directly incorporate the semantics of the insert-has?
function, separating its two cases across two separate translation
rules. Since the only non-trivial check context in the effect disci-
pline is raise sT (π), we provide separate rules only for raise
using the feasible values for ∆raise sT (π) in each case (∅ or {sT }).

Illustration By making the exception checking discipline grad-
ual, we achieve a more expressive language. Consider the following
function, which also uses conditionals and arithmetic expressions:

Ξ; Γ; Σ ` e⇒ e′ : T1{
sT1

}
⊆ Ξ

Ξ; Γ; Σ ` raise sT1
(e)⇒ raise sT1

(e′) : T2

Ξ; Γ; Σ ` e⇒ e′ : T1{
sT1

}
6⊆ Ξ

{
sT1

}
@∼ Ξ

Ξ; Γ; Σ ` raise sT1
(e)⇒ has

{
sT1

}
raise sT1

(e′) : T2

Ξ ∪ {sT }; Γ; Σ ` e1 ⇒ e′1 : T1

Ξ; Γ, x : T ; Σ ` e2 ⇒ e′2 : T2 T2 < : T1

e′ = try e′1 handle sT (x).e′2
Ξ; Γ; Σ ` try e1 handle sT (x).e2 ⇒ e′ : T1

Figure 10. Implementation version of the translation rules for a
system with exceptions

let squared = λf : Int
Ξ−→Int . (λx : Int . (f(x ∗ x)) :: ∅)

positive = λx : Int . if x ≥ 0 then x else raise sInt(x)
in (squared positive)

A key property of the positive function is that it never raises
an exception when applied to a non-negative argument. On the
other hand, function squared always calls f with x ∗ x as an
argument, which is never negative. We therefore know that the
function produced by evaluating (squared positive) never raises
an exception, so we would like to type it as Int ∅−→Int. A static
effect system is too restrictive to do so, but a gradual effect system
provides the flexibility to assign the desired type to the function.

The squared function’s parameter is declared to have type
Int

Ξ−→Int , for some Ξ. Without gradual effects, the only options
for Ξ are either Ξ = ∅, in which case the type system will reject the
application(squared positive) because the argument requires too
many privileges, or {sInt} ⊆ Ξ, which means the returned function
cannot be typed as Int ∅−→Int.

In the gradual exception system, we can annotate function
positive to hide its side effects, delaying privilege checking to
runtime, and annotate function squared to allow functions that
may throw exceptions, as in the following:

letsquared = λf : Int
{¿}−→Int . (λx : Int . (f(x ∗ x)) :: ∅)

positive = λx : Int . (if x ≥ 0 then x else raise sInt(x)) :: {¿}
in (squared positive)

The translation algorithm then produces the following program in
the intermediate language:

let squared = λ f : Int
{¿}−→Int.

λ x : Int.
restrict ∅
((〈Int ∅−→Int⇐ Int

{¿}−→Int〉f)(x ∗ x)))
positive = λ x : Int.

restrict {¿}
if x ≥ 0
then x
else has {sInt} raise sInt(x)

in (squared positive)

In this program, application (squared positive) can be typed as
Int

∅−→Int, as desired. Given the properties of integer numbers,
the else branch in the body of positive will never be executed.
The higher-order cast for f in the body of squared never fails be-
cause rule [E-Cast-Fn] only introduces restrict ∅ has ∅checks.
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Effect errors are not exceptions Gradual Effects for Exceptions
is more expressive than simply raising uncaught exceptions. Trig-
gering an Error instead of propagating the exception prevents the
system from following implicit exceptional control flows, where
an outer handler catches an exception that was locally forbidden.
The following example demonstrates how this behavior can affect
evaluation of a program:

let positive = λx : Int . (if x ≥ 0 then x else raise sInt(x)) ::{¿}
nonzero = λx : Int . if x = 0 raise sInt (x) else x

in try
nonzero ((positive −1) :: ∅)
handle sInt(x)
print “0 is an invalid argument”

The handler in the let body is designed to catch the exceptions
thrown by the body of nonzero. To this end, the code uses an effect
ascription to ensure that the argument to nonzero does not throw
any exception.

At the same time, the program reuses the positive function in-
troduced in the previous example, but applies the function to a neg-
ative number. Given this incorrect argument, positive attempts to
raise an exception. An effect ascription to the ∅ privilege set forces
the application to not raise any exception at all. This inconsistent
behavior is caught at runtime by the gradual effect discipline.

We purposely used the same label for exceptions in positive
and in nonzero. If the system simply threw the uncaught exception
in positive , the handler would take control even though it was
not designed for that exception. Instead, since positive has no
exception raising privileges, the system triggers an Error just before
it would have thrown the exception. Evaluation thus terminates
without control ever reaching the exception handler, which was
designed for failures of nonzero only.

6. Related Work
In the realm of effect systems, the most closely related work is the
generic framework of Marino and Millstein [15], which we have
extensively discussed in this paper, because we build upon it to
formulate gradual effect checking in a generic setting.

Rytz et al. [17] develop a notion of lightweight effect polymor-
phism, which lets functions be polymorphic in the effects of their
higher-order arguments. The formulation is also generic like the
M&M framework, although there are more technical differences;
most notably, the system is formulated to infer effects instead of
checking privileges. An implementation of the generic polymor-
phic framework has been developed for Scala, originally only with
IO and exceptions as effects. More recently, a purity analysis has
been integrated in the compiler plugin [18]. The effect system has
been applied to a number of Scala libraries. Interestingly, Rytz et
al. report cases where they suffer from the conservativeness of the
effect analysis, similar to the example of Sec. 2. To address this,
Rytz recently introduced an @unchecked annotation. Although it
is called a cast, it is an “unsafe cast”, since no dynamic checking is
associated to it; i.e. it is just a mechanism to bypass static checking.
We believe our work on gradual effect checking could be of direct
practical use in Scala, and intend to pursue that route.

While there is a long history in the area of combining static
and dynamic checking, the gradual typing approach of Siek and
Taha [23] has been particularly successful and triggered many de-
velopments. Its main contribution was to identify the notion of con-
sistency as a key to support the full spectrum of static-to-dynamic
typing. Originally developed for functional languages, it has been
extended in several directions, including structural objects [22] and
generics [14]. Most directly related to this work is the application
of the gradual typing principles to other typing disciplines, such as
ownership types, typestates, and information flow typing.

Wolff et al. [26] develop gradual typestate checking. Typestates
reflect the changing states of objects in their types. To support flex-
ible aliasing in the face of state change, the language provides ac-
cess permissions to support rely-guarantee reasoning about aliases,
and state guarantees, which preserve type information for distinct
aliases of shared objects.

Sergey and Clarke propose gradual ownership types [21]. Like
gradual typestates, gradual ownership expresses and dynamically
tracks heap properties. While typestate focuses on objects changing
state, ownership controls the flow of object references.

Disney and Flanagan [6] explore the idea of gradual security
with a gradual information flow type system. Data can be marked
as confidential, and the runtime system ensures that it is not leaked.
This dynamically-checked discipline is moved towards the static
end of the spectrum by introducing security labels on types.

Extensions to contract systems for higher-order functions [9],
such as computational contracts [19, 20] and temporal contracts [7],
have the ability to monitor for the occurrence of specific (sequences
of) execution events, in particular effectful operations. These ap-
proaches rely on full runtime monitoring; it is not clear if they could
be reconciled with the pay-as-you-go model of gradual checking.

As far as we know, none of the existing approaches to gradual
checking relies on abstract interpretation to develop an account of
uncertainty. While it remains to be studied, it seems that the abstract
interpretation approach we follow here could be used to investigate
existing and as-yet unexplored notions of gradual checking.

7. Conclusion
The primary contribution of this paper is a framework for devel-
oping gradually checked effect systems for any number of effect
systems that can be couched in the M&M framework. Using our
approach, one can systematically transform a static effect discipline
into one that supports full static checking, full dynamic checking,
and any intermediate blend. We believe that gradual effect check-
ing can facilitate the process of migrating programs toward a stati-
cally checked effect discipline, as well as bringing dynamic effect
checks to languages that have no such checks whatsoever, and leav-
ing wiggle room for programs that can only partially fit an effect
discipline. To empirically evaluate this claim, we intend to imple-
ment our framework in the Scala language, and extend it to support
the effect features that the language already provides.

Initially, we relied on the principles of gradual checking and our
intuitions to guide the design, but found it challenging to develop
and validate our concepts. We found abstract interpretation to be an
effective framework in which to develop and validate our intuitions.
Using it we were able to generically define the idea of consistent
functions and predicates, as well as explain and define auxiliary
concepts such as strict checking and static containment. We believe
that, in addition to gradual effects, other gradual checking notions
could be fruitfully investigated in this framework. In particular, we
intend to extend our system to support full gradual type-and-effect
systems, which depend on gradual effects as an initial step, and
define blame tracking for effect casts.
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