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Abstract Static type systems play an essential role in contemporary programming lan-
guages. Despite their importance, whether static type systems impact human software
development capabilities remains open. One frequently mentioned argument in favor of
static type systems is that they improve the maintainability of software systems—an often-
used claim for which there is little empirical evidence. This paper describes an experiment
that tests whether static type systems improve the maintainability of software systems, in
terms of understanding undocumented code, fixing type errors, and fixing semantic errors.
The results show rigorous empirical evidence that static types are indeed beneficial to these
activities, except when fixing semantic errors. We further conduct an exploratory analysis
of the data in order to understand possible reasons for the effect of type systems on the three
kinds of tasks used in this experiment. From the exploratory analysis, we conclude that
developers using a dynamic type system tend to look at different files more frequently when
doing programming tasks—which is a potential reason for the observed differences in time.
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1 Introduction

The advantages and disadvantages of static and dynamic type systems in program-
ming languages have been long debated. While many authors state that static type
systems are important (see for example Bruce 2002; Pierce 2002; Cardelli 1997; Bird
and Wadler 1988), others hold opposing views (see for example Tratt 2009; Nierstrasz
et al. 2005). Typical arguments about the advantages of static type systems can be found in
many text books on programming and programming languages:

– “Strong typing is important because adherence to the discipline can help in the design
of clear and well-structured programs. What is more, a wide range of logical errors can
be trapped by any computer which enforces it”. (Bird and Wadler 1988, p. 8)

– “Types are also useful when reading programs. The type declarations in procedure
headers and module interfaces constitute a form of documentation, giving useful hints
about behavior.” (Pierce 2002, p. 5)

Some of the drawbacks typically mentioned include (see for example Tratt 2009; Nierstrasz
et al. 2005, pp. 149–159):

– A type system can be overly restrictive and forces the programmer to sometimes work
around the type system.

– They can get in the way of simple changes or additions to the program which would
be easily implemented in a dynamic type system but make it difficult in the static type
system because of dependencies that always have to be type correct.

A more provocative statement about the possible drawbacks that can be found in the
literature is:

– “Static type systems [...] are the enemy of change.”(Nierstrasz et al. 2005, p. 4)

The debate regarding the advantages and drawbacks of static or dynamic type systems is
ongoing in both academia and the software industry.1 While statically typed programming
languages such as C, C++, and Java dominated the software market for many years, dynam-
ically typed programming languages such as Ruby or JavaScript are increasingly gaining
ground—especially in web development.

The fact that the debate is still lively is not surprising, because settling it demands the
presence of a theory of the respective advantages and disadvantages of static and dynamic
typing, supported by empirical evidence. Unfortunately, such evidence is still lacking.
This paper contributes to the emerging body of work on empirically validating type sys-
tem research with controlled experiments (see Juristo and Moreno 2001; Wohlin et al.
2000; Sjøberg et al. 2005; Prechelt 2001 for introductions to controlled experiment) that
investigates the possible benefits of static type systems.

In particular, this experiment investigates the two main claims made by proponents of
static type systems: static type systems help in fixing programming errors, and type systems
act as effective documentation. As such, the main research question for this experiment is
whether a static type system is helpful to developers, given the following considerations:
1) a set of use cases involving new classes, and 2) in tasks involving fixing errors, both type

1The interested reader can find more arguments for both cases online, including the lively discussion available
at: http://programmers.stackexchange.com/questions/122205/

http://programmers.stackexchange.com/questions/122205/
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errors—which manifest as no-such-method-errors in the dynamic setting—and semantic
errors—which deal with correctness issues beyond the reach of simple type systems. The
programming languages used in the experiment are Java and Groovy. Groovy was used
as a dynamically-typed Java, i.e. additional language features in Groovy were not used
in the experiment. The measurements are based on the time developers needed to solve
a given programming task. The classes given to the subjects were either statically typed
(Java) or dynamically typed (Groovy). Our observations show evidence for the following
conclusions:

– Static type systems are an effective form of documentation: Subjects who used the
statically typed version of the classes exhibited a significant positive benefit for tasks
in which different classes had to be identified and used.

– Static type systems reduce the effort to fix type errors: Subjects who used the stat-
ically typed version of the classes showed a significant positive benefit for tasks in
which type errors had to be fixed.

– Static type systems may not be helpful in preventing semantic errors: No significant
differences between the statically and dynamically typed variants were found in regards
to development time for tasks that involved fixing semantic errors.

This paper extends our previous paper published at ICPC 2012 (Kleinschmager et al. 2012).
In comparison to the ICPC version, this paper adds: 1) an extended literature review of
programming language studies and experiments that have been performed so far; 2) a more
detailed description of the experiment itself; 3) a more complete description of the potential
threats to validity; 4) an extended discussion of the results; 5) an exploratory study in which
we look at additional data sources collected during the experiment; and 6) a comparison of
the exploratory study with a similar one, conducted in a previous experiment (Mayer et al.
2012). Our goal with this extended version is to shed light on how the static or dynamic
type system may impact the way a human interacts with the programming environment. The
additional data sources we recorded, beyond development time, include:

– Test runs: we monitored how often the code of a task was compiled and run against unit
tests.

– Number of opened files: we counted the number of files participants opened in order to
solve a given task.

– Number of file switches: we measured the number of times a participant switched from
file to file while solving a task.

In our previous experiment, the analysis of these aspects helped us develop a preliminary
working theory to explain the observed effects. Based on the additional evidence presented
in this experiment, we validate and refine this working theory.

Structure of the Paper Section 2 gives an overview of related work. Section 3 describes the
experiment by discussing initial considerations, the programming tasks given to the sub-
jects, the general experimental design, and threats to validity. Then, Section 4 describes the
results of the experiment, presenting the measured data, descriptive statistics, and perform-
ing significance tests on the measurements. After discussing the results of the analysis in
Section 5, we describe the exploratory study in Section 6, and compare it to our previous
exploratory study. Finally, we conclude in Section 7.
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2 Related Work

To date, the effect of static and dynamic type systems on software development has not been
the subject of sustained study and the data that exists is at least partially contradictory. Some
studies have found advantages for dynamic type systems, others for static type systems,
while others still were either inconclusive or had mixed results. Clearly, additional evidence
is needed.

Gannon’s early experiment (Gannon 1977) revealed an increase in programming reliabil-
ity for the subjects that used a statically-typed language. The experiment was a two-group
experiment, in which each subject solved a task twice, with both kinds of type systems in
varying order. The programming languages were artificially designed for the experiment.
In contrast, the experiment we report on in this paper uses two existing programming lan-
guages, Java and Groovy. The experimental design is overall similar, but ours includes many
more tasks.

Prechelt and Tichy studied the impact of static type checking on procedure arguments
using two programming languages: ANSI C, which performs type checking on arguments
of procedure calls; and K&R C, which does not (Prechelt and Tichy 1998). The experi-
ment featured four groups and 34 subjects in total, each having to solve two programming
tasks in each languages using each task—effectively a 2x2 design with four combinations.
The experiment revealed a significant positive impact of the static type system with respect
to development time for one task, but did not reveal a significant difference for the other.
Interestingly, all programs came with both documentation and type annotations, so the dif-
ference was whether the type annotations were effectively checked or not. Our experiment
draws inspiration from that of Prechelt and Tichy, as it uses two existing, similar languages,
in order to control for variations between the languages, but is different in that type anno-
tations are not present for the dynamically typed language, nor is documentation (in both
settings).

A qualitative pilot study on type systems by Daly et al. (2009) observed four program-
mers who used a new type system (with type inference) for an existing language, Ruby—the
resulting language is called DRuby. The programmers worked on two simple tasks. The
errors messages shown by DRuby where manually classified according to whether they were
“informative” or “not informative”. Since only 13.4 % of the error messages were classified
as “informative”, the authors concluded that the benefit of the static type system could not
be shown.

Denny et al. conducted an evaluation of syntax errors commonly encountered by novices
with a result relevant to type systems research (Denny et al. 2012). Specifically, Denny
et al. classified the amount of time spent fixing a variety of syntax errors in an introductory
computer programming course in Java. Their results showed that type mismatch errors (e.g.,
trying to assign a double value to an integer) accounted for approximately 18.4 % of the
time novices spend identifying and fixing compiler errors, second only to “cannot resolve
identifier” errors, in the amount of time taken. Our study focuses on the time taken for more
advanced programmers to write correct code, not introductory students’ time spent fixing
compiler errors.

An empirical evaluation of seven programming languages performed by Prechelt (2000)
showed that programs written in dynamically typed scripting languages (Perl, Python, Rexx,
or Tcl), took half or less time to write than equivalent programs written in C, C++, or Java.
The study was performed on 80 programs in seven different languages. However, this study
did not attempt to measure the performance of dynamic and static type systems and was not
a controlled experiment. This introduces confounding factors, making comparisons between
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the languages difficult. For example, Prechelt used data coming from both a controlled
experiment and a public call for voluntary participation, in which participants self-reported
timing information. Further, since programmers were free to use whatever tool support they
wanted, there was considerable variability in the tools used to perform the tasks.

Two additional experiments were performed measuring the differences in productivity
across several languages: Gat’s study (Gat 2000) compared C, C++ and Lisp; earlier, Hudak
and Jones (Hudak and Jones 1994) compared Lisp, Haskell and Ada. However, similarly
to Prechelt’s experiment, both of these experiments share the same issue: it is difficult to
assign the observed difference between the languages to a single characteristic, as the set
of languages varied substantially both in their design and how they were used in the exper-
iments. In contrast to these three studies, we carefully selected and controlled the usage of
two languages, Java and Groovy, so that the only difference is effectively the type system.
We did this to focus our observations on the differences that could be attributed between
static and dynamic type systems.

The study by Ko et al. analyzed how developers understand unfamiliar code (Ko et al.
2006). One of the outcomes of the experiment is that “developers spent, on average, 35
percent of their time with the mechanics of redundant but necessary navigations between
relevant code fragments” (Ko et al. 2006, p. 972). The relationship to our work is that the
study by Ko et al. gives a an indicator of where developers potentially waste development
time. The exploratory study which complements our experiment concurs with Ko et al., and
indicates that the choice of the type system has a direct impact on the resulting navigations
between code fragments.

The notion that type systems act as a form of documentation is well supported in practice.
Van Deursen and Moonen argue that “[Explicit types] can help to determine interfaces,
function signatures, permitted values for certain variables, etc” (van Deursen and Moonen
2006). They propose a type inference system for Cobol systems in order to enable hypertext
navigation and program comprehension of the system; validating it with a Cobol system of
100,000 lines of code.

The study presented here is part of a larger experiment series about static and dynamic
type systems (Hanenberg 2011). In Hanenberg (2010) we studied the effect of static and
dynamic type systems to implement a scanner and a parser. Forty-nine subjects were
recruited to perform these two large tasks; each subject took an average of 27 hours to work
on both tasks. Results showed that the dynamic type system had a significant positive time
benefit for the scanner, while no significant difference with respect to the number of ful-
filled test cases for the parser could be measured. However, the reasons for this result was
unclear. In contrast, this experiment features more tasks, which are also shorter, allowing
us to explore the impact of complexity on performance. This experiment also includes an
exploratory study of additional data recorded in order to shed more light on the observed
results.

In Stuchlik and Hanenberg (2011) we analyzed to what extent type casts, which occur
in statically typed programs, influence simple programming tasks. In contrast, a dynamic
type system makes type casts unnecessary. We divided twenty-seven subjects in two groups
according to a within-subject design: the subjects were exposed to both the dynamic type
system of Groovy, and the static type system of Java, varying the order of the tasks. We
found out that type casts did negatively influence the development time of trivial program-
ming tasks for users of the static type system, while longer tasks showed no significant
difference. If this experiment investigated a potential downside of static type systems (type
casts are used precisely at those places where the static type system is not expressive enough
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to accept the program), the present one investigates various potential benefits of static type
systems.

Finally, we previously performed two additional experiments that investigated similar
aspects to those addressed in this experiment:

– The first experiment (Steinberg and Hanenberg 2012) revealed that fixing type errors is
significantly faster with a static type system (in comparison to no-such-method errors
occurring at runtime with a dynamic type system). The study was performed with 31
subjects, using a similar two-group, within subject designs, where the two treatments
where Java and Groovy. There were 8 different tasks in the experiment, with variations
of difficulty, and additionally 3 of the tasks had semantic errors instead of type errors.
Java was found to be faster than Groovy for the discovery of type errors, but not for
semantic errors.

– In the second experiment (Mayer et al. 2012), we analyzed the impact of static or
dynamic type systems on the use of undocumented APIs. The study showed a positive
impact of the static type system for three out of five programming tasks, and a posi-
tive impact of the dynamic type system for two other tasks. The additional exploratory
study we performed seemed to indicate that the tasks with the larger number of types
to identify, or the tasks featuring complex type definition (e.g., generics with nested
types), were the tasks for which the static type system is the most beneficial. For simpler
tasks, the static type systems seemed to incur a higher cost compared to the dynamic
type system. The exploratory study suggested that the program comprehension strategy
employed by users of static type systems was more systematic, hence slower for simple
tasks, but paying off for larger tasks.

This experiment can be seen as a partial replication (Juzgado and Vegas 2011) of aspects of
these two experiments. A partial replication allows differences in the design of the experi-
ment in order to test variations of the original hypotheses. For the first experiment, we wish
to see whether the advantage in fixing type errors we found still holds in a different experi-
ment, and whether the lack of difference with respect to semantic errors holds as well. For
the second experiment, we also want to investigate if the findings on undocumented code
still hold, and additionally we want to investigate if the working theory issued from the first
exploratory study is also confirmed in this experiment, or whether other factors are at play.

3 Experiment Description

We start with initial considerations, then discuss our choices of programming languages,
programming environment, and measurement methodology. After introducing the experi-
mental design, discussing alternatives and the learning effect, we give a detailed description
of the programming tasks. Then, we describe the experiment execution and finally, we
discuss the threats to validity.

3.1 Initial Considerations for Experimental Design

The intent of the experiment is to identify in what situations static type systems impact
development time. The underlying motivation for this experiment is that previous exper-
iments already identified a difference between static and dynamic type systems for
programming tasks (Gannon 1977; Prechelt and Tichy 1998; Hanenberg 2010; Stuchlik and
Hanenberg 2011). According to previous experiments and the literature on type systems,
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our expectations were that static type systems potentially help in situations like 1) adding
or adapting code on an existing system, and 2) finding and correcting errors. Therefore we
examine three kinds of programming tasks:

1. Using the code from an existing system where documentation is only provided by the
source code;

2. Fixing type errors (no-such-method errors for dynamically typed applications) in
existing code;

3. Fixing semantic errors in existing code (e.g., not respecting the protocol when interact-
ing with an object).

We phrase our hypotheses formally as being neutral, indicating that static type systems have
no impact. The hypotheses followed by the experiment were:

1. Static type systems have no influence on development time if the classes that should be
used are only documented by their source code;

2. Static type systems have no influence on development time if type errors need to be
fixed;

3. Static type systems have no influence on the debugging time necessary to fix semantic
errors.

The programming tasks reflect the three hypotheses. We did not want to have a single task
for each hypothesis for two reasons: (1) we wanted to investigate variations in complexity
in the same type of tasks, and (2) the experiment’s result could be heavily influenced by
a confounding factor specific to a particular task, such as its description. Thus we defined
several tasks for each hypothesis.

3.2 Choice of Languages

Since we need statically and dynamically typed programming tasks, the choice of pro-
gramming languages is crucial. To further reduce confounding factors, our goal was to use
languages as similar as possible, and that do not require exhaustive additional training for
the subjects. All the subjects were already proficient with Java, making it a strong candi-
date for the statically typed language. Groovy is a dynamic language for the Java Virtual
Machine that is tailored for Java programmers and tries to be as compatible as possible with
Java. Although Groovy’s main interest is in the many advanced languages features that it
offers over Java, it can be used simply as a dynamically-typed Java, essentially writing Java
code where all type annotations are removed.2 As such, this language pair was an obvious
choice.

3.3 Environment and Measurement

We use the Emperior programming environment, which was used in previous experiments
(Endrikat and Hanenberg 2011; Mayer et al. 2012). It consists of a simple text editor (with
syntax highlighting) with a tree view that shows all necessary source files for the experi-
ment. From within the text editor, subjects are permitted to edit and save changes in the
code and to run both the application and test cases.

2For more information about Groovy and the differences it has with Java, the interested reader can consult
the following web page: http://groovy.codehaus.org/Differences+from+Java

http://groovy.codehaus.org/Differences+from+Java
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Subjects worked sequentially on each individual task, without knowing the next ones.
Every time a new programming task was given to the subject, a new IDE was opened
which contained all necessary files (and only those files). For each task, subjects were pro-
vided executable test cases, without their source code. We measured the development time
until all test cases for the current programming task passed; we do not need to measure
correctness, as we consider that passing all tests implies correctness. The programming
environment (IDE with programming tasks, test cases, etc.) including the operating system
(Ubuntu 11.04) was stored on an USB stick that was used to boot the machines used in the
experiment.

3.4 Experimental Design

The experimental design followed in this paper is a repeated measures, within-subject,
design that has been applied in previous experiments (Gannon 1977; Stuchlik and
Hanenberg 2011; Endrikat and Hanenberg 2011; Mayer et al. 2012). The motivation for
using such a design is that a relatively low number of participants are required to mea-
sure an effect. Indeed, while within-subject designs potentially suffer from the problem of
learning effects, an important issue that should not be brushed away lightly, they have the
benefit that individual differences in performance can be considered in the analysis by use
of a statistical procedure known as a repeated measures ANOVA. Given that it is known
that individuals exhibit a high variability in programming tasks (Curtis 1988) (with an order
of magnitude differences reported McConnell 2010), such a procedure mitigates potential
threats to statistical power.

The use of repeated measures within-subject designs can potentially take many forms and
a discussion of the exact procedure is important for the purposes of scientific replicability
and for identifying potential threats to validity. As such, we describe our exact procedures
here in more detail. First, because our design is within-subjects, developers are given two
treatments, one with static typing and another with dynamic. Second, for each treatment,
participants complete a set of tasks (e.g., a set of classes with type annotations), and then
complete the same tasks with the second treatment (e.g., a different set of classes, of similar
size and complexity, but without type annotations). In order to study whether there is a dif-
ference between both solutions, we divide the participants into two groups, letting one start
the development tasks with Java (that is, with type annotations and static type checking)
and the other start with Groovy (that is, without type annotations and without static type
checking). Having groups start in such a way is often termed counterbalancing, thus giv-
ing us a repeated measures, counterbalanced, within-subjects design, which is illustrated in
Table 1. This design helps to mitigate the issue of variability between subjects, but leaves the
potential threat of learning effects between treatments, which we discuss in the Section 3.6.

Table 1 General experimental design

Technique for all tasks

Round 1 Round 2

Group A Groovy Java

Group B Java Groovy
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3.5 Discussion of Alternatives in Experimental Design

While the design described above has been applied previously and has the benefit of find-
ing effects with small numbers of participants, all experimental designs have threats to
validity and we considered several alternatives. The chosen experimental design suffers
from two main problems: a potential between-treatments learning effect when subjects
switch treatments—i.e, from Groovy to Java or vice versa—and repeat the tasks (a within-
task learning effect); and a potential learning effect when subjects switch from one task
to another within the same type system treatment (a between-task learning effect). The
between-treatments learning effect is especially problematic because, when the subjects are
working on the same task for the second time, it is unclear how conducting the tasks a second
time impacts the developer’s scores. We discuss this effect in more detail in Section 3.6.

There are experimental designs that plausibly handle such situations, but they have sig-
nificant drawbacks. For example, one possibility would be to conduct a full-factorial design,
with different groups for each type system treatment and each programming task (Wohlin
et al. 2000, Chapter 8.5.3). While the benefit of this approach is that it alleviates poten-
tial learning effects, conducting such an experiment is highly impractical—the high number
of combinations of experimental configurations would require a considerable number of
subjects; far more than would be feasible for most research groups. While a full facto-
rial design is impractical, two potential alternatives are more realistic, namely the AA/AB
design (also known as pre-test/post-test control group design Gravetter and Wallnau 2009)
and the latin-square design (Gravetter and Wallnau 2009; Pfleeger 1995).

In the AA/AB design, the subjects are divided into two groups. One group (the AA group)
solves the programming tasks under one treatment only, but twice (for instance, using the
dynamically typed language). The other groups starts with the same treatment (e.g., the
dynamically typed language) and then crosses over to the other treatment (the statically
typed language). The intention of the design is to measure an interaction between both
rounds. While this design is simple and provides a clear way to measure learning, it suffers
from a different problem: when both groups are unbalanced, it is possible that the influence
of individual subjects on the result of the group is too strong. Given that not every subject
is measured under both treatments, this design also does not completely capture potential
learning effects. Further, since only half of the participants perform both kinds of tasks,
statistical power is lowered substantially and we can test fewer alternative tasks, limiting
our investigative ability—we are effectively “sacrificing” half of the subjects to measure the
interaction. Given the low number of subjects in our study, and since programming tasks
exhibit high variance, we did not choose this design in the experiment.

Another possible alternative is the latin-square design. In this design, different treatment
combinations of the variables programming task and type systems are assigned to different
subjects. Such designs are thus similar to full factorial designs, except that only specific
orderings are chosen to be run. For example, the first subject could receive a first program-
ming task with the static type system, a second task with the dynamic type system, etc. The
second subject might start with a second programming task using a dynamic type system.
The benefit of the latin-square design is that it provides most of the benefits of a full factorial
design (e.g., accounting for many possible experimental permutations, and helping to mea-
sure learning effects), due to the varying task and type system assignments. However, while
latin-square designs do reduce the number of needed subjects compared to a full-factorial
design, the tradeoff is, again, that the number of participants required is still larger than it
would be for a repeated measures-style experiment, due to the between-subject variation.
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One additional issue of using the latin-square design in our case is that it requires that
the number of subjects to be a multiple of the number of rows (each row ideally has the
same number of subjects). Our intention was to get as many subjects as possible in order
to increase the statistical power of the experiment, but reaching a perfect multiple of the
number of rows is usually difficult, forcing the design team to either choose to run the
statistics anyway, despite the design flaw, or to drop subjects. This is problematic in our
case, since we have 9 tasks in the experiment, which would translate to 9 rows. The risk
of discarding as many as 5 to 8 subjects was deemed too large. Given that the number of
participants in each row would also be very small, we further ran the risk of one subject
influencing the score to much for one particular row. Further, while Latin-square designs are
often considered a reasonable compromise from a full factorial design, there is no guarantee
that such a design really will capture all learning effect considerations for the exact set of
tasks and treatments we have used.

As one final issue with latin-square designs in our specific case, one issue is related
to assigning subjects to a specific combination: we cannot determine upfront how many
participants will finish the experiment (some may skip the experiment, others may not com-
plete all the tasks), much less pre-assign them to a given combination without processing
each participant sequentially. Processing participants sequentially would have significantly
lengthened the time needed to do the experiment and added additional logistical issues due
to the availability of the subjects.

Hence, we acknowledge readily that all experimental designs carry with them pros and
cons, each with competing risks. While we would encourage other research groups to re-test
our hypotheses under a variety of conditions, in our specific case, we considered our choice
for the experimental design to be imperfect, but less risky than common alternatives.

3.6 Data Analysis in the Presence of Learning Effects

Learning effects are a potential problem in any experimental design in which the same par-
ticipant completes more than one task. In our setting, the most problematic learning effect
is the within-task learning effect that happens when subjects cross over to the second treat-
ment: once a programming task is solved using language A, it becomes potentially easier
to solve a similar programming task with language B. However, there are several standard
statistical approaches for analyzing data in such studies. Indeed, this experimental design is
common enough in Psychology to be included in any undergraduate (Gravetter and Wallnau
2009) or graduate level textbook (Rosenthal and Rosnow 2008). Our analysis treats both
groups of subjects separately and combines the results in a subsequent step using a statis-
tical procedure known as a repeated measures ANOVA,. This statistical test is specifically
designed for such circumstances (Rosenthal and Rosnow 2008). We have successfully
applied this approach in the past (Stuchlik and Hanenberg 2011; Mayer et al. 2012).

In the present experiment, let G be the group of subjects starting with Groovy, and let J
be the group starting with Java. For demonstration purposes, we make the assumption that
there exists an advantage to using Java. We then apply the following data analysis strategy:

– Apply a statistical test to determine if there is a statistical difference between each
language in group G, and the same test in group J. There are four cases:

– Case A: If both tests find a statistical difference in favor of Java, we conclude that using
Java has a positive effect.
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– Case B: If one test finds a statistical difference (presumably group G), but the other does
not, we still conclude that Java has a positive effect, albeit smaller than the previous
case.

– Case C: If both tests find a statistical difference but in opposite directions (presumably
G in favor of Java, and J in favor of Groovy), the results are inconclusive. The language
effect, if present, is smaller than the learning effect.

– Case D: Both tests find no statistical difference; we can conclude that the language
effect is too weak to matter, regardless of the learning effect.

We explain the impact of the learning effect in Fig. 1. The figure is a set of scenarios
covering the relationship between language and learning effect. Each scenario is a column
in the figure, where we see a pair of subjects: one in group G, and one in group J. Each
subject performs a single task twice; hence there are two measurement bars, one for each
language. Black bars represent times for Java, gray bar times for Groovy. The striped bar
represents the learning effect: if it were absent, the measurement for the second language
would reach the end of the bar. The difference between the measurements is shown with the
dotted line. In group G, subjects start with Groovy, hence Java benefits from the learning
effect (Fig. 1, top row). In group J, subjects start with Java, hence Groovy benefits from the
learning effect (Fig. 1, bottom row). The three scenarios are:

– In the first scenario, the language effect is larger than the learning effect: subjects in
both groups show significant benefits when using Java. The small learning effect makes
the difference in measurements slightly more important for group G than for group J.

– The second scenario shows what happens when the learning effect is roughly equal to
the language effect: in that case one of the groups will show a difference, while the
second group will not, as both effects cancel out. We can see that the design will show
a conclusive result even if the language effect and the learning effect are roughly equal
as this would fall under case B. Of course, the evidence is less strong than in case A.

– The experimental design would fail if the learning effect is much larger than the
effect of the type system, as is shown in last scenario of Fig. 1. Both groups yield

Fig. 1 Impact of the learning effect on the conclusions drawn by the experiment
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opposite conclusions as the learning effect is what is effectively measured. If this was
the case in our experiment, we would arrive to opposite conclusions in both groups (case
C) in most of the tasks. The experiment would only show that subjects who perform
a programming tasks for the second time are quicker in the second round—which is
irrelevant for the research questions that this experiment aims to provide insight about.

Our goal is hence to reduce the impact of the learning effect as much as possible. We show
in Section 3.7 how we achieve this, by giving subjects tasks that are similar applications in
terms of size, complexity and structure, but with widely different application domains. We
take the position that if the remaining learning effect is large enough to counterbalance the
language effect, then the effect was not of enough practical significance to start with.

3.7 Base Application

The subjects worked on two base applications, one in Java, and another in Groovy. To limit
confounding factors, we want to make the base applications be as similar as possible. To
limit within-task learning effects, we want to make the applications appear as different as
possible. We do this by transforming one of the application into a structurally equivalent
one.

The software used by the participants was based on a small turn-based video game writ-
ten in Java for a previous experiment (Hanenberg et al. 2009), which was slightly extended.
This application consisted of 30 classes, with 152 methods, and contained approximately
1300 lines of code. To make the application suitable for this experiment, we applied three
transformations to its source code:

1. Translation to another language. We translated the application to Groovy, removing
all static type system information in the process.

2. Translation to another domain. To control for the complexity of the tasks and reduce
learning effects at the same time, we translated the application to another program
domain. While it is difficult to do so completely, we renamed all the classes, fields,
methods, and other code constructs in the Java application, so that they appear to be
from a different application domain, while having an identical structure. The end result
is an application structurally similar to the game, yet appearing to be a simple e-mail
client. The effectiveness of the translation can be seen by the visible differences in
the solutions presented in Tables 10 and 11. We admit readily that this is an imperfect
solution, as humans may pick up on the renaming. As such, while we think renaming is
a plausible approach, it remains a potential threat to validity.

3. Removing latent type information. Since we want to study the effect of type systems
as implicit documentation, we removed implicit type annotations. For both programs,
we renamed field and method parameter names so that they would not reflect the exact
type they contained. This was done to remove the documentation value of type names
from variables, and to make the program type free. Variables were renamed using
synonyms of the types they stood for.

3.8 Programming Tasks

The experiment consisted of 9 tasks, each of which had to be solved in both languages. In
addition to these regular tasks, a warm-up task (not part of the analysis) was provided to
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make the participants comfortable with the environment they had to use. The task descrip-
tions were provided as a class comment. Example solutions for each task can be found in the
Appendix (Tables 10 and 11). According to the hypotheses in the experiment we designed
three kinds of tasks:

– Class identification tasks (CIT), where a number of classes needs to be identified
(Table 11). The participants had to fill a method stub in the task.

– Type error fixing tasks (TEFT), where a type error needs to be fixed in existing code
(Table 10).

– Semantic error fixing tasks (SEFT), where a semantic error needs to be fixed in
existing code (see Table 10).

In the following we describe the characteristics of each task. The numbering of the tasks
corresponds to the order in which the tasks were given to the subjects. We explain the task
description for only one of the domains to conserve space.

3.8.1 CIT1 (Two Classes to Identify)

For this task two classes have to be identified, namely a Pipeline class which took a generic
type parameter and the ActionsAndLoggerPipe class. Instances of these have to be used by
initializing a type ActionsAndLoggerPipe with two Pipeline instances and then passing the
pipe along a method call.

3.8.2 CIT2 (Four Classes to Identify)

This task requires 4 classes to be identified. In Java, instances of MailStartTag and
MailEndTag have to be sent to an instance of the type EMailDocument, along with an
Encoding (which is an abstract class, but any of the provided subclasses was a correct
choice for instantiation). Additionally, both start and end tag have to be provided with a
CursorBlockPosition instance during their creation.

3.8.3 CIT3 (Six Classes to Identify)

For this task six classes need to be identified. A MailElement subclass of type Optional-
HeaderTag has to be instantiated, outfitted with several dependencies and then returned.

3.8.4 SEFT1

In this task, a semantic error needs to be fixed. Subjects are given a sequence of statements
that are executed during test runs and are given a starting point for debugging. An additional
consistency check shows what was expected from the program. In the code, when a cursor
reaches the last element of an e-mail, it should result in a job of type ChangeMailJob in
order to load the next mail. Because of the error, a SetCursorJob instance is wrongly used
instead, which reset the cursor back to the first element of the current mail. Note that this
does not result in a type error because the interfaces of the two job classes are compatible.
The consistency check provides a description of the error and tells the participants that the
current document has not changed after reaching the last element.
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3.8.5 SEFT 2

Subjects are given a code sample that interacts with the application and which contains a
consistency check. In this task, the goal is to identify a missing method call. Table 10 shows
both the wrong code and the correct solution for the Groovy video game. The problem is
that once a player moves from one field to the next, a move command should execute and
set the player reference to the new field and delete the reference from the previous field.
The missing call leads to duplicate player references, which are detected by the consistency
check. The participants had to insert the missing call.

3.8.6 CIT4 (Eight Classes to Identify)

This task requires instantiating the WindowsMousePointer class. This object has to be out-
fitted with dependencies on other objects (e.g., icons, cursors, theme). The task requires the
subjects to identify the class hierarchies and subclasses that are needed. Enumeration types
were used as well, although the specific values were not critical to the task.

3.8.7 TEFT1

This task contains a type error where the faulty code location is different from the program
run-time exception. Because of the nature of this error, they are easily detected by the static
type checker in Java. As such, only the Groovy tasks require explanation (see Table 10).
In the erroneous code in Groovy, a GameObject instance is inserted into a property that is
supposed to be a simple String. As such, when the consistency check runs, the properties
are concatenated, which leads to a run-time exception, because the GameObject does not
have a concatenate method. The solution is to remove the GameObject and keep the String.

3.8.8 CIT5 (Twelve Classes to Identify)

This task requires subjects to identify twelve classes; the largest construction effort of all
type identification tasks. In Java, participants have to configure a MailAccount instance with
dependencies to other objects, which represent a part of the mail account configuration (e.g.,
user credentials). These objects also have dependencies to other objects, resulting in a large
object graph.

3.8.9 TEFT2

We suspect this task is one of the more difficult for Groovy developers. It contains a wrongly
assigned object leading to a run-time error, but the distance between the bug insertion and
the run-time error occurrence is larger than for tasks TEFT1. When a new TeleportCommand
is created, it is outfitted with dependencies to the player and the level. The bug is that the
order of the two parameters is wrong. The solution is to switch the order of the two types,
which may not be obvious.

3.8.10 Summary of Programming Tasks

Table 2 gives an overview of the characteristics of each programming task. Five program-
ming tasks required participants to identify classes; these tasks varied with respect to the
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Table 2 Summary of programming tasks for subjects in Group A (Groovy starters), G=Groovy, J=Java

Task number 1 2 3 4 5 6 7 8 9

Task name CIT1 CIT2 CIT3 SEFT1 SEFT2 CIT4 TEFT1 CIT5 TEFT2

#Identified classes 2 4 6 8 12

Language G G G G G G G G G

Task number 10 11 12 13 14 15 16 17 18

Task name CIT1 CIT2 CIT3 SEFT1 SEFT2 CIT4 TEFT1 CIT5 TEFT2

#Identified classes 2 4 6 8 12

Language J J J J J J J J J

number of classes to be identified. For both the type and semantic errors, we designed two
programming tasks.

For CIT Tasks, developers are given an empty method stub where parameters either need
to be initialized or used for the construction of a new object (which requires additional
objects as input). For TEFT Tasks, Java developers have code that does not compile due to
a type error. In contrast, for Groovy developers, a test case fails. In both cases, the subjects
have to change the code base. For SEFT Tasks, all subjects are given failing tests and the
code base must be modified until all pass.

3.9 Experiment Execution

The experiment was performed with 36 subjects, of which 33 finished the tasks. Of these
subjects, thirty were students, three were research associates, and three were industry prac-
titioners. All subjects were volunteers and were randomly assigned to the two groups. Two
practitioners started with Java and all three research associates started with Groovy. A more
detailed description of the subjects can be found in Kleinschmager (2011). The experiment
was performed at the University of Duisburg-Essen within a time period of one month. The
machines used by the subjects where IBM Thinkpads R60, with 1GB of RAM.

3.10 Threats to Validity

As with any scientific study, this study has a number of potential threats to validity—
and according to the literature, it is desirable to describe them (Kitchenham et al. 2006;
Wohlin et al. 2000). Here, we discuss those threats that are from our point of view most
problematic—and discuss to what extent these threats can bias the measurements and the
result of the experiment. Some of the threats are general for these kinds of experiments
(students as subjects, small programming tasks, artificial development environment), which
are already discussed in detail in other related experiments (see for instance Stuchlik and
Hanenberg 2011; Hanenberg 2010); we still discuss them here for completeness.

Multiple Learning Effects (Internal and External Validity) The experiment design is a
repeated measures design—a single subject is working on multiple programming tasks and
each task is repeated with both treatments. Due to this, there are probably multiple learning
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effects. The potential learning effects are within-tasks learning, between-tasks learning
and familiarness effect:

– First, there is obviously a within-task learning effect: once subjects have solved a
programming task, it is likely that they will solve the programming task the second
time faster. We tried to reduce this learning effect by changing the programming system
between the two tasks, i.e. the concrete class names that developers are familiar with
when they solve a programming task for the first time do not help, when they solve
the same task for the second time. We do not have quantitative data about whether the
subjects realized the similarity between the two systems, but during discussions with
subjects after the experiment we did not encounter subjects who were conscious of it.3

There may still be a learning effect, but it would have been much greater if the subjects
realized that the systems were similar.

– The between-tasks learning effect occurs when subjects solve a certain kind of pro-
gramming task repeatedly; they might be faster on subsequent occasions. In that case,
the concrete knowledge from one task does not help when solving a similar task for the
second time but the strategies that subjects might have developed for solving a certain
task might help them for a similar task. We tried to reduce this problem by interleaving
tasks of different kinds—for example, while the first three programming tasks are class
identification tasks, the following tasks are of a different kind before coming back to
class identification tasks (see Table 2).

– The familiarness effect is also a kind of learning effect, where subjects are getting used
to the programming environment and the way how programming tasks are delivered by
the experimenter. While we consider this learning effect as potentially problematic, we
did not see a way to reduce it besides the introduction of a warmup task at the start of
the experiment to absorb most of it.

In general, all of these effects could be removed by doing a completely different kind of
design, where one subject only solves one concrete programming task—without doing any
further tasks. This would imply, that a large number of different groups would be necessary
and consequently, a large number of subjects. Although this kind of design is in principle
possible, we did not consider this for practical reasons, since we were not able to recruit a
sufficiently large number of subjects (see Section 3.5).

Chosen Sample—Randomization (Internal Validity) The experiment made use of random-
ization: subjects were randomly assigned into the Java first or the Groovy first groups.
Randomization has, by definition, the potential problem that the groups are not balanced.
The larger the sample size, the less likely the problem. The experiment was explicitly
designed for (and performed on) a rather small sample size. Consequently, it is possible that
both groups are not balanced with respect to the subjects’ capabilities. However, the exper-
iment uses a within-subject comparison which significantly reduces this problem, because
the effect of static type systems is mainly detected by the effect it has on each individual
itself. Consequently, even if both groups are not balanced, the experiment can detect the
differences.

Chosen Sample—Experience (Internal and External Validity) One of the major problems
in empirical studies is that it is, in general, unclear to what extent the software development

3We plan to gather data on this aspect in future experiments.
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experience of subjects influences the results. While studies such as the one described in
Feigenspan et al. (2012) try to determine the development experience by using question-
naires, the current state of the art in empirical software engineering currently lacks a method
for meaningfully measuring developer experience. As a consequence, it is unclear to what
extent the chosen sample is similar to the population of all software developers—even if
professional developers are experimental subjects. Consequently, it is possible that the cho-
sen sample, which consisted mostly of students, is an internal threat (because students have
been considered in the experiment) as well as an external threat (because the results might
differ from those that an experiment that had additional professional developers may have
yielded). However, it should be noted that several studies show that in some circumstances
the use of students as subjects does not change the results of the studies (see for example
Höst et al. 2000 and Tichy 2000).

Chosen Tasks and IDE (External Validity) We explicitly designed the programming tasks
so that they do not use complicated control structures such as loops, recursion, etc. The
rationale for this choice is that using those control structures probably increases the vari-
ability amongst subjects. Given this potential problem, the effects observed here may not
generalize to real-world programs in industry. The same is true for the chosen IDE. The
IDE can be considered as a text editor (which provides syntax highlighting) with the ability
to have a tree view of the files in the current software projects. However, typical features of
an industrial IDE, like code refactoring, quick fix, intuitive navigation, were not available.
As a consequence, the development times measured in the experiment cannot be considered
as representative development times in an industrial scenario. However, such tools com-
plicate the language comparison as the support accross languages varies—they introduce
confounding factors. For instance, the Eclipse IDE’s support for Java is much more mature
than its support for Groovy. Consequently, using these tools in the experiment would have
led to an unfair comparison of the languages and by extension their type systems—with the
risk that the measurements would have been mainly an indicator for the maturity of the IDE
instead of being usable for a comparison of type systems.

Type Annotations (Internal and External Validity) For practical reasons we decided to use
Java and Groovy as representatives for languages with static and dynamic type systems. The
type system of Java always requires explicit type annotations, as opposed to type systems
with inference such as ML, Haskell, or to a lesser extent, Scala. As a consequence, Java
source code requires more text. The downside is that writing code requires more keyboard
input, while the upside is that the type annotations represent a form of explicit documenta-
tion. If our experiment reveals a difference between Java and Groovy, it is possible that the
observed effect is not related to the type system, but is instead related to the syntactic ele-
ment type annotation. In other words, the effect of either syntax or our choice of languages
(e.g., Java and Groovy) on the experimental results is not clear from this study.

Expressiveness of the Type System (Internal and External Validity) The experiment consid-
ers Java as representative of a statically-typed language. However, the design space of type
systems is very wide, and a variety of more expressive type systems exist, such as that of
Haskell or Scala. Hence, it is possible that the results we obtain apply only for type systems
similar to that of Java (i.e., nominal object types with subtyping and generics). Another
possibility is that the experiment may not reveal any significant result due to the fact that
the impact of the type system of Java is less than that of a more expressive type system.
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Removing Latent Type Information (Internal Validity) The dynamically typed code was
artificially constructed in a way that the names of the parameters, variables, etc. did not
contain any direct hints concerning types. We may have introduced additional complex-
ity to the dynamically typed solutions in the process. In fact, to what extent (or for which
percentage or in what situation) parameter names in dynamically typed code reflect the
classes/types that are expected is unclear. An empirical investigation of dynamically typed
source code repositories could help answer this question (examples of such studies are
Callaú et al. 2013; Richards et al. 2011). Despite our best efforts, it is possible that some
indirect type information remains, as humans can recognize synonyms easily.

4 Experiment Results

We start with presenting descriptive statistics, before presenting the results of the analysis
of variance, and continue with our task-wise and group-wise analyses.

4.1 Measurements and Descriptive Statistics

Table 12 shows the observed development time for all tasks, and Table 3 shows the corre-
sponding descriptive statistics. The boxplot in Fig. 2 gives a more intuitive representation of
the data. Both the data and the descriptive statistics reveal several facts. First, for no subject
the total development time for Java was greater than the total development time for Groovy.
Second, for all tasks (including the total sum of times) the minimum time is always smaller
in Java than in Groovy. However, this tendency does not hold for the maximum times, the
arithmetic means, or the medians:

– Maximum: For the tasks CIT2, SEFT2 and CIT4 the maximum development time is
larger for the Java solution.

Table 3 Descriptive statistics of experiment results (time in seconds for all but standard deviation), J=Java,
G=Groovy

CIT1 CIT2 CIT3 SEFT1 SEFT2

J G J G J G J G J G

min 124 227 193 295 320 591 104 153 74 87

max 1609 2215 4285 1354 1983 2433 2910 3062 2264 2262

arith. mean 535 818 781 669 813 1182 1111 814 507 429

median 480 575 567 562 711 1010 1015 639 293 282

std. dev. 336 552 787 309 410 453 798 696 528 426

CIT4 TEFT1 CIT5 TEFT2 Sums

J G J G J G J G J G

min 323 537 78 149 293 564 44 246 1907 4072

max 3240 2505 900 2565 1514 2538 535 2285 14414 14557
arith. mean 827 1026 236 928 691 1112 147 849 5648 7827
median 716 880 197 813 671 1046 116 750 4892 7349

std. dev. 543 461 159 549 246 417 101 557 2925 2214
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Fig. 2 Boxplot for measured data (ordered by kind of task)

– Arithmetic mean: For the tasks CIT2, SEFT1, and SEFT2 the arithmetic mean is larger
for the Java solutions.

– Median: For the tasks CIT2, SEFT1, and SEFT2 the median for the Java solutions is
larger.

Consequently, the first impression that the Java development times are always faster than
the Groovy development times does not match closer inspection.

4.2 Repeated Measures ANOVA

We start the statistical analysis by treating each round of tasks separately. We first analyze
round 1 of programming tasks (tasks 1–9) with all developer scores in the statistical model
(i.e. those that solved the tasks in Java and those that solved the tasks in Groovy). Then,
we do the same for the second round. The analysis is performed by using a Repeated Mea-
sure ANOVA, with two factors—the programming task, which is within-subject, and the
programming language, which is between-subject. Since this analysis combines the differ-
ent languages in each round, it benefits from the within-subject effect that each individual
performs each task twice. Although developer performance is probably skewed, ANOVAs
are, in general, quite stable against violations and since the number of data points (15*9) is
relatively high, we simply apply this test here. Figures 3 and 4 show the boxplots for the two
rounds. Apart from the type error fixing tasks (TEFT), for which there seems to be hardly a
difference between both rounds, we see rather large differences for the other kinds of tasks
in both rounds.
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Fig. 3 Boxplot for first round (no repeated measurement of same tasks, ordered by kind of task)

Before conducting statistical tests, we ran Mauchly’s sphericity test,4 which was sig-
nificant in both rounds. For those unfamiliar with a Mauchly test, it checks the condition
where a repeated measures ANOVA violates sphericity, the condition where all tasks exhibit
approximately the same variance. If this assumption is violated, a common correction,
known as Greenhouse-Geisser, must be used on the results. SPSS can be configured to run
such tests automatically when conducting a repeated measures ANOVA (e.g., across our
nine tasks with the independent variable of type system). While the Mauchly test is standard,
another way to think about this test is through a visual inspection of the boxplots for our
tasks. Analyzing the boxplots makes it clear that the variance is probably different across
many of the tasks, hence violating sphericity. Thus, analyzing the boxplots gives us a visual
double check that a Mauchly test would likely be significant. Given the visual inspection,
and the significant Mauchly, we used the standard Greenhouse-Geisser correction in report-
ing our Repeated Measure ANOVA results. Finally, the reader should realize that repeated
measures ANOVA tests are very robust to minor violations in sphericity. Even if we had not
followed standard procedure, using the Greenhouse-Geisser correction, the changes to the
F-ratios would have changed little in our case, thus not changing our conclusions. Given our
statistical procedures, results for our study show that:

1. The dependent variable of development time showed a significant difference in both
rounds (p< .001, partial η2 = .275 in the first round and p< 0.001, partial η2 = .246

4Mauchly’s sphericity test was performed using the standard packages implemented in SPSS. The used vari-
ables were the within-subject variable programming task and the between-subject variable programming
language.



Empir Software Eng

Fig. 4 Boxplot for second round (no repeated measurement of same tasks)

in the second round). In both cases the estimated effect size is comparable (.275 and
.246, respectively).

2. There is a significant interaction between the factor programming task and the chosen
programming language (in the first round p< .001, partial η2 = .181 and in the second
round p< .001, partial η2 = .172). In both cases the estimated effect size is comparable.
The significance indicates that the original motivation of this study holds—the effect
of the programming language does vary for different programming tasks.

3. The impact of the between-subject factor programming language is non-significant for
the first round (p> .76) and significant for the second (p< .001).

To summarize, different programming tasks influence the resulting development times.
Furthermore, the resulting development times depend on the tasks as well as on the pro-
gramming language. Hence, it is reasonable to analyze the different tasks and the languages
in separation, with a within-subject study of each task.

4.3 Task-Wise and Group-Wise Analysis

To perform a within-subject analysis of each task, we combine, for each subject, the devel-
opment times for both rounds. In other words, we separately compare the group starting
with Java and the group starting with Groovy.

Figures 5 and 6 show boxplots for both groups. The groups are quite different. For
the group starting with Groovy, Java has a clear positive impact. For the Java-first group,
the effect is more nuanced. In all cases, we performed the non-parametric Wilcoxon-test.
Table 4 gives the results of the test for the first group starting with Groovy (“Groovy first”)
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Fig. 5 Boxplot for group starting with Groovy

and the group starting with Java (“Java first”) as well as their combination; to ease reading,
the table reports the language with less development time instead of the raw rank sums.

We can see that for the group starting with Groovy, the effect of the programming
language is always significant: in all cases, Java required less development time. Likely
explanations are either the effect of the static type system or the learning effect from the
experiment. For the group starting with Java, we observe a different result. For CIT2,
SEFT1, and SEFT2 the subjects required less time with Groovy, while no significant impact
of the programming language was found for CIT1, CIT3 and CIT4.

According to the procedure described in Section 3.4, we combine the results of the tasks
for both groups. When one group reveals a significant result in favor of one type system, and
the other group agrees or shows no significant difference, we conclude there is a significant
difference. In case both groups show contradicting significant differences for one task, or
neither shows significant differences, it is not possible to conclude in favor of any treatment.
Combining both results, we obtain a positive impact of Java for: all Type Error Fixing Tasks
(TEFT); all Class Identification Tasks (except CIT2); and no impact on the semantic error
fixing tasks.

5 Discussion

The experiment revealed a positive impact of the static type system for six of nine pro-
gramming tasks: For all tasks where type errors needed to be fixed (TEFT) and for most
of the tasks where new classes need to be used (CIT), but no difference for semantic error
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Fig. 6 Boxplot for group starting with Java

fixing tasks (SEFT). From this perspective, the experiment provides evidence that static
type systems benefit developers in situations where a set of classes has to be used where
documentation is limited or not available (which we suspect is quite common). An impor-
tant implication of the experimental results is that no single task could be used to argue in
favor of dynamic type systems—the best human performance with Groovy statistically tied
human performance with Java.

Further, while no statistically significant differences were observed with regards to tasks
involving debugging semantic errors, it is possible that learning effects masked any potential
results.

In CIT2, the group starting with Groovy was faster with the statically typed solution,
while the group starting with Java was faster with the dynamically typed solution. Following

Table 4 Wilcoxon-Test for the within-subject comparison of measured times

Groovy first

Task CIT1 CIT2 CIT3 CIT4 CIT5 TEFT1 TEFT2 SEFT1 SEFT2

p-value .000 .001 .001 .000 .000 .000 .000 .028 .001

benefit Java Java Java Java Java Java Java Java Java

Java first

p-value .91 .034 .215 .679 .003 .001 .001 .001 .003

benefit – Groovy – – Java Java Java Groovy Groovy

Result

benefit Java – Java Java Java Java Java – –
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the same argumentation as before, this likely means that the learning effect was larger than
the (possibly) positive effect of the static type system. However, it was not obvious from
our observations why this would be the case. Ultimately, the principle for solving CIT2 was
the same as for CIT1, 3, 4, and 5. In all these cases, the developer had to use a number of
new classes that were not known upfront. In CIT2, a relatively small number of new classes
had to be identified (four types)—which is fewer than for CIT3, 4, and 5, but more than for
CIT1. Hence, it is not sufficient to argue that this task is different because of the number of
classes to be identified.

While we can not be certain of the reason, we offer several hypotheses that would explain
this behavior:

– The increase in difficulty between CIT1 and CIT2 is not as large as it seems: For task
CIT1, two types needed to be identified; for task CIT2, four. However, looking at the
source code of the solutions in Table 11, we see that CIT1 needs to instantiate two
slightly different Pipelines or GameQueues, while for CIT2, two of the types to instan-
tiate are very similar (MailStartTag and MailEndTag, respectively StartLevelField and
GoalLevelField). This means that CIT1 requires to identify more than strictly two types,
while CIT2 requires less than strictly four types, reducing the overall difference of dif-
ficulty between the two tasks. Additionally, we think that the method names in the
task might have given the developers too clear a hint about which classes to use. For
instance, the methods setStart and setGoal in the Groovy code for task 2 seem to be
more closely associated with the necessary types StartLevelField and GoalLevelField
in comparison to task one (where setTasksAndMessages required a Queue object).

– Part of the observed advantage in CIT1 may be due to the novelty effects of the subjects’
use of Groovy. Despite the presence of a warm-up task, we observed this phenomenom
in our previous experiment (Mayer et al. 2012), so we can not exclude it here. This is
supported by the large spread of time in the first boxplot of Fig. 2, where the values
for CIT1 in Groovy are larger than for CIT2. We observe the same behavior in all the
time measurement boxplots, where the boxplot for CIT1 for Groovy is systematically
“wider” than the one for CIT2.5

– The unusually large amount of arguments, including 4 primitive types, may have
distracted the subjects. It is possible that subjects spent an equal amount of time under-
standing the large number of arguments, which would make the difference between the
treatments less pronounced.

The case of task CIT2 implies that the argumentation for or against static types cannot be
trivially reduced to the question of how many (unknown) classes are needed in order to
solve a programming task. There seem to be other factors that need to be identified. We
think that identifying these factors is an important venue of future work, of which a first
step is presented in the next section.

6 Exploratory Study

While measuring time is sufficient to gather the insights we set out to discover, time alone
is not suitable to understand the possible reasons of the observed differences between
statically and dynamically typed assignments. If we understand what causes people to spend

5If we anticipate in the next section, we also see that in the numbers of test runs in Fig. 7, where test runs for
Groovy are significantly worse for the supposedly simpler CIT1 than they are for CIT2.
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more time using one technique, it might be possible to adapt one of these techniques so that
the cause will vanish or that the factor is weakened. This could provide programming lan-
guage designers with a roadmap for how type systems could, or maybe should, be designed
to maximize human performance. Additionally, it would give us some understanding about
whether under different circumstances the effect could be larger or smaller.

We now exploit additional measurements gathered during the experiments in order to bet-
ter understand the differences. The additional measurements that we use in the exploratory
study are:

– Number of test runs: The number of test runs describes how often the subjects tried to
start the tests associated with the programming tasks. The result of trying to start the test
runs is that the code is getting compiled and—in the absence of compilation errors—
executed. In case the code contains compile-time errors, the code does not execute, but
it still counts as a test run. In essence, a test run is a static check followed by a dynamic
check. The motivation for this measure is that the static type information may be helpful
to identify more errors in the code earlier, at compile time, thanks to the static analysis
performed by the compiler, whereas runtime errors are harder to identify and may need
several test runs to be fixed. As a result, users can find and correct errors easier every
time they compile or run the code—with the plausible expected consequence that the
statically typed solutions required fewer test runs than the dynamically typed solutions.

– Number of files opened: We measured the number of opened files for each task,
independently of how often each file has been viewed by the subject. The underlying
motivation for this measurement is that, if the static type system helps developers to
directly identify the classes they need in order to solve the programming tasks, the sub-
jects will probably need to open fewer files than developers who work on the dynamic
type system, who will need a more exhaustive search. Overall, we expect users of
static type systems to perform less program exploration than users of the dynamic type
system.

– Number of file switches: Finally, we measured how often developers switch between
the different files while solving the programming tasks—where a file switch means
that the developer who is currently viewing one file needs to view a different file in
order to continue the task. Consequently, in contrast to the number of open files, this
metric measures specific files more than once. We expect that it is more likely that
developers will switch more often between different files (potentially back and forth)
if they do not have the static type information. We assume that static type systems give
developers more accurate information about the entities referenced in a file (e.g., the
type of arguments or the return type), whereas users of the dynamic type system may
need to find that information in the definition of the entity itself more often.

In our previous experiment (Mayer et al. 2012), analyzing these measurements provided
us with valuable additional insights. Hence, we repeat the measurements and compare to
what extent they might explain the effect measured in this experiment. We are particularly
interested in the measurements concerning the class identification tasks, which are similar
to the tasks in Mayer et al. (2012). Additionaly, we perform the same study for the type
error and semantic error tasks to shed more light on the results.

For each additional measurement, we perform analyses similar to the ones we did before.
We present the raw data for each measurement—test runs in Table 13, files opened in
Table 14, and file switches in Table 15. We also present the results of performing first a
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repeated measures ANOVA and the results of a Wilcoxon test on each individual program-
ming task. In order to give a visual representation of the data, we provide boxplots (instead
of giving a boxplot for each individual group).

Differences with the Previous Analysis Note that this analysis is finer than the analysis
we adopted in Section 3.6, in that some results that would be deemed inconclusive are
shown as trending in one direction. We mark a result as trending when the p-value from the
statistical test is between 0.05 and 0.15. Due to the exploratory nature of the study, we are
less stringent on the significance level of the observed results for the test runs, file switches,
and files opened indicators. In the tables below, trending results are highlighted by showing
the language between parentheses.

6.1 Repeated Measures ANOVA

To test whether there were statistically-significant differences between groups using either
static or dynamic typing, we conducted a series of Repeated Measures ANOVA for the three
measurements; this led to a total of six ANOVA tests. In all six cases, Mauchly’s test for
sphericity was significant, implying that the Greenhouse-Geisser correction must be used
for our data. We used this correction in all cases when reporting results.

For each of the six ANOVAs, we looked at three results: 1) the within-subjects effect of
the task, 2) the within-subjects effect of task and language interaction, and 3) the between-
subjects effect of language itself—the latter is the most relevant because it concentrates on
the main research question.

First, we found statistically significant differences across the within-subjects effects, for
all tests. This is not surprising, as it implies there were differences in tasks. Second, in most
cases, the within-subjects interaction was also significant, implying that for some metrics,
complex interactions existed between the tasks and the language that was used. We flesh
out the details of these interactions using different tests below.

Finally, the between-subjects effects exhibited some significant, and some non-
significant effects. Specifically, on the first set of nine tasks, we see no significant
differences for the total number of file switches or the total number of opened files, but sig-
nificant and moderately sized differences on the number of file runs (η2

p = .350). For the

second set of tasks, we observe very large differences in the number of file runs (η2
p = .688),

in addition to moderate to large differences in file switches (η2
p = .456), and in the number

of open files (η2
p = .454). This implies that between 35 % and 69 % of the differences

between those measurements can be explained by the treatment type system.

6.2 Number of Test Runs

The boxplot for the number of test runs (see Fig. 7) shows an obvious difference in favor
of Java—i.e., fewer test runs—for the tasks CIT3, CIT4, and CIT5, as well as for the type
error fixing tasks TEFT1 and TEFT2. For the semantic errors as well as for the first two
class identification tasks, it is unclear whether there is a difference at all.

The comparison of the number of test runs on a task by task basis for each individual
group (see Table 5) reveals some similarities to the time measurements: the group starting
with Groovy shows significant favorable results for Java, for all class identification tasks
as well as for the type error fixing tasks. For the semantic errors, no significant differences
between Java and Groovy were measured (although the results are close to significant with
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Fig. 7 Boxplot for number of test runs

the tendency that Java requires fewer test runs). For the Java-first group, the results are
slightly different: we see significant differences pro Java for the class identification tasks
CIT4 and CIT5 (and a tendency pro Java in CIT3), and we see (again) a positive impact of
Java for the type error fixing tasks. For the semantic errors, we find one task where a positive
significant difference of Groovy is found (SEFT1) whereas SEFT2 shows a tendency pro
Groovy.

According to our previous argumentation, we see a positive impact of the static type
system on the class identification tasks, and a positive impact of the static type system on the
type fixing tasks. Note that in contrast to the time measurement, the number of test runs is
not inconclusive for CIT2. For semantic errors, the results of both groups tend to contradict
each other, similarly to the time measurements. As such, no clear conclusion can be drawn
(although a slight positive impact of the dynamic type system could be measured for one of
the tasks). There may be a language effect, but it seems offset by the learning effect.

Table 5 Wilcoxon-Test for the within-subject comparison for number of test runs

Groovy first

Task CIT1 CIT2 CIT3 CIT4 CIT5 TEFT1 TEFT2 SEFT1 SEFT2

p-value .001 .003 .000 < .001 < .001 .002 < .001 .072 .061

less runs Java Java Java Java Java Java Java (Java) (Java)

Java first

p-value .975 .280 .098 .011 < .001 .001 .001 .007 .067

less runs - - (Java) Java Java Java Java Groovy (Groovy)

Result

test runs Java Java Java Java Java Java Java (Groovy) –

Italics indicates that the observed effect approached significance
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6.3 Number of Files Opened

We now focus on the number of files opened by the subjects during the experiment (Fig. 8).
Compared to the time and number of test runs measurements, we see similarities: CIT1
and CIT4 show a language effect and CIT 3 shows it as well, even if the boxplots overlap
somewhat; the effect is much less pronounced for CIT2 and CIT5. Tasks TEFT1 and TEFT2
reveal again a large effect; it seems obvious that Java required less files to be opened. The
semantic error tasks SEFT1 and SEFT2 do not show large differences, but a trend in favor
of Groovy.

The comparison of the number of files opened on a task-by-task basis (Table 6) reveals
a positive impact of the static type system for the group starting with Groovy for 3 out of
5 class identification tasks (except CIT2 and CIT5). For the type error fixing tasks, both
tasks required less opened files in Java. For the semantic errors fixing tasks, no significant
difference can be seen (but a trend in SEFT1). For the group starting with Java, no significant
differences can be seen for the class identification tasks (with trends favorable to Java in
CIT1 and CIT5). For type fixing error, we still see a significant effect in favor of Java even
in the Java-first group, while for the semantic error tasks, Groovy turned out to require less
files to be opened.

According to our previous argumentation, we see: less files opened for only three out of
five type identification tasks with the static type system; less files opened with the static
type system for type error fixing tasks; and less files opened for the dynamic type system,
for the tasks where semantic errors need to be fixed.

6.4 Number of File Switches

Considering the boxplots for the number of file switches (Fig. 9), we observe indications of
a language effect, although we see more overlap than in previous boxplots. The differences

Fig. 8 Boxplot for number of files opened
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Table 6 Wilcoxon-Test for the within-subject comparison for number of files opened

Groovy first

Task CIT1 CIT2 CIT3 CIT4 CIT5 TEFT1 TEFT2 SEFT1 SEFT2

p-value .001 .377 .043 .001 .060 .001 .000 .073 .206

less files opened Java – Java Java (Java) Java Java (Java) –

Java first

p-value .076 .806 .443 .977 .120 .001 .000 .001 .005

less files opened (Java) – – – (Java) Java Java Groovy Groovy

Result

less files opened Java – Java Java (Java) Java Java (Groovy) Groovy

between CIT1 up to CIT4 are less large; for task CIT5, there is less overlap, indicating that
a significant difference is possible. With regard to the type error tasks, the differences are
obvious as usual, while for the semantic errors there seems to be a tendency towards Groovy
requiring less file switches.

Considering the results from the Wilcoxon test (Table 7), the Groovy-first group shows
almost the same result as the number of test runs: no obvious differences between Java
and Groovy for the semantic errors (with however a tendency that Java required less file
switches); fewer file switches using Java for the type fixing tasks; and, for the class iden-
tification tasks, only CIT3 does not show a significantly reduced number of file switches

Fig. 9 Boxplot for number of file switches
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Table 7 Wilcoxon-Test for the within-subject comparison for number of file switches

Groovy first

Task CIT1 CIT2 CIT3 CIT4 CIT5 TEFT1 TEFT2 SEFT1 SEFT2

p-value .000 .015 .113 .003 .002 .001 .001 .107 .098

less switches Java Java (Java) Java Java Java Java (Java) (Java)

Java first

p-value .939 .093 .796 .679 .002 .001 .001 .001 .004

less switches – (Groovy) – – Java Java Java Groovy Groovy

Result

less switches Java (Java) (Java) Java Java Java Java (Groovy) (Groovy)

using Java (only a trend). For the Java-first group, we see a slightly stronger parallel with
the time measurement: for task CIT2 there is a trend in favor of Groovy, and a significant
result in favor of Java in CIT5. Likewise, we see significant effects towards Java for the type
error tasks, and towards Groovy for the semantic error tasks. Consequently, it cannot be
concluded that all tasks required less file switches using Java, due to CIT2, CIT3, SEFT1,
and SEFT2.

6.5 Insights on the Experiment from the Exploratory Study

We begin by summarizing the measurements from the experiment and the exploratory study:
Table 8 sums up the results. We adopt the following conventions: “J” stands for an observed
effect favoring Java, “G” for an observed effect favoring Groovy, and “—” for inconclusive
results. To observe an effect, we require at least a significant result in one of the group that is
not contradicted by a significant effect in the other group; a “+” indicates a significant effect
observed in both groups, or a significant effect and a trend in the same direction; a “–” sign
indicates a significant effect that was contradicted by a trend in the opposite direction, or a
trend in one direction that is not contradicted. We start by describing the error identification
tasks, as their interpretation is more straightforward.

Type Error Tasks (TEFT1 and TEFT2) All additional measurements show significant
effects of the static type system, and thus support the result of the original time
measurements—overwhelming evidence favoring the static type system. All three measure-
ments might reveal the cause of the differences in the time measurements. We conclude that
for developers, the static type system requires less navigation through the code, and less

Table 8 Summary of measurements we performed, and our expectations before carrying the the experiment

Aspect CIT1 CIT2 CIT3 CIT4 CIT5 TEFT1 TEFT2 SEFT1 SEFT2

Less Time J — J J J+ J+ J+ — —

Less test runs J J J+ J+ J+ J+ J+ G– —

Less files opened J+ — J J J– J+ J+ G– G
Less file switches J J– J– J J+ J+ J+ G– G–

Expected J J J J J+ J+ J+ — —

Unexpected results are shown in bold
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testing in order to identify and fix the error. Of course, this is plausible and a consequence
of the very nature of static type systems: with a static type system, the compiler points out
the exact location of a type error. On the other hand the dynamic type system finds the error
at runtime, and the symptoms of the error may appear far from the actual cause of the error.
For type errors, the navigation effort of developers is much higher in dynamically typed
systems.

Semantic Error Tasks (SEFT1 and SEFT2) The time measurements show that dynamic and
static type systems do not impact the time required to fix semantic errors, as expected.
However, the other indicators seem to point towards the dynamic type system—admittedly
somewhat weakly for SEFT1, and in the case of SEFT2, more strongly for opened files.
We are not sure why we observe this behavior: it may be that test runs, files opened, and
file switches are simply not reliable indicators of the program comprehension process when
subjects are fixing semantic errors. We can think of two alternative explanations. The first is
that dynamic type systems enforce different cognitive processes that let developers explore
the project in a different way and to go less often to different locations in the code (in terms
of files, etc.). The second is the presence of a between-task learning effect: subjects using
the dynamic language are slightly more efficient at debugging, since they practiced it in
previous tasks. Although this is speculative, it is an interesting avenue of future investiga-
tion. Altogether, we can conclude that the further measurements do not provide meaningful
explanations for the measured time: while the time measurement did not reveal any differ-
ences between static and dynamic type systems, the further measurements have the tendency
to do so.

Class Identification Tasks (CIT1 to5) From the time measurements we expected to find a
difference favoring Java. For all tasks except CIT2, all the indicators are roughly in agree-
ment with an advantage for Java. For task CIT2, we find more mixed results, as both time
and files opened measurements are inconclusive. However, we also find weak evidence in
favor of Java for file switches, and a significant difference for the number of test runs. Our
expectation—that the dynamic type system enforces an exploration of the source code that
uses additional resources more often—seems to be supported by the file switches and test
runs, but this is not reflected in the time measurement. The simple explanation that the learn-
ing effect was too strong does not seem to hold: in that case, the other measurements would
also manifest a benefit in the second language being used, and be all inconclusive. Since
this result concerns a single task, it might be the case that subjects explored the dynami-
cally typed code in the same way as for the other tasks—but find the desired solution more
quickly for a task-specific reason in the Java-first group.

Another surprising indicator is the weak tendency in favor of Java in terms of opened
files for CIT5. We would expect a much stronger tendency. However, task CIT5 requires the
identification of 12 different types. Given such a high miminum number of types to identify,
it is conceivable that in any case, subjects solving this task did open a large proportion of
the files in the system regardless of the treatment (the system has 30 classes), dimming the
potential differences between them.

Altogether, we can argue that the number of file switches turn out to be a good indicator
for the measured times (this result corresponds to the result in Mayer et al. (2012)). One
interpretation is that static type systems reduce the navigation costs (because developers do
not have to search in the code what classes are required by the API) and cause in that way a
reduction of the development time for such kinds of programming tasks.
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6.6 Comparison with Previous Study

To compare our set of indicators with those of our previous experiment (Mayer et al. 2012),
we start by recalling them in Table 9.6

We employ the same convention as before, except that this previous experiment did not
distinguish between weak, normal, and strong observed effect (i.e., the table does not con-
tain any “+” or “–”). The tasks in this experiment were class identification tasks, with some
types harder to identify than others (for instance, types parametrized by other types, such
as generics, are harder to identify than simple types). The number in the name of the task
refers to the number of types to identify. In that experiment, the overall conclusions of the
study were:

– The effects are more pronounced when there are more types to identify, or when they
are more difficult to implement.

– The first task Easy 1 may have been subject to a warm-up effect for Groovy users,
explaining the advantage for Java.

– For simpler tasks such as Easy 3 and Medium, a “brute-force” comprehension strategy
may be faster in solving the task. This comprehension strategy involves more test runs
and files opened for Groovy users, whereas Java users are more systematic and slower.
Task Medium 3 shows this clearly as test runs and files opened are higher in Groovy,
yet the overall time is lower.

– For more difficult tasks, this strategy incurs more file switches and ends up being slower
than the more systematic approach, guided by type annotations, employed by subjects
using Java. Overall, file switches was the indicator most consistent with time.

Taking this into account, we can see some similarities with the present study, if we take
into account the differences between the tasks in the study: there are variations in the number
of types to identify, as well as their difficulty. We consider all the types to identify in CIT1
to 5 to be of medium difficulty, as all tasks feature types parametrized by other types. The
number of types to identify are respectively 2, 4, 6, 8, and 12. As such, task Medium 3
from our previous experiment would fall in between CIT1 and CIT2 in terms of complexity.
Given our remarks above on the complexity of CIT1 (potentially harder than it seems) and
of CIT2 (potentially easier than it seems), we could see all three tasks as roughly equivalent.
Task Easy 6 would be, in number of types, equivalent to task CIT3, although the types to
identify are more complex in CIT3. Finally, CIT4 and CIT5 are more complex. Comparing
with task Hard 3 from our previous experiment is difficult, since the types involved there
were much more complex, involving complex nested generic types.

Furthermore, we mentioned earlier that we suspect that, as with task Easy 1, CIT1 may
be subject to a warm-up effect as subjects were not familiar with Groovy. This makes us
reduce the weight of the evidence towards Java in this particular task. Given all this, if we
consider tasks CIT2–5, we see that:

– Similarly to our previous experiment, all of the indicators (time, test runs, open files,
file switches) tend to be more pronounced in favor of Java as the difficulty of the tasks
increase.

– Test runs are the weakest match with the time measurement, while file switches are the
strongest match.

6Note that the programming tasks in Mayer et al. (2012) were exclusively CIT tasks. Hence, a comparison is
only based on the CIT tasks in the here described experiment.
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Table 9 Summary of measurements we performed in our previous experiment (Mayer et al. 2012)

Aspect Easy 1 Easy 3 Medium 3 Hard 3 Easy 6

Less time J G G J J

Less test runs — G J J —

Less files opened J G J J J

Less file switches J G G J J

Expected — J J J J

– The number of files opened indicator exhibited a different tendency for the last task, but
this can be explained by the large number of types to identify, which, as we mentioned
above, would dilute the differences between the two treatments.

– The fact that, for task CIT2, the evidence towards Java is not yet clear-cut matches to
some extent the situation of task Medium 3, which was of a similar difficulty, although
none of the indicators manifest an advantage in favor Groovy. Also, contrary to the
earlier experiment, files opened and file switches behave differently.

Overall, we do observe some differences with our previous exploratory study, but not very
large ones. It seems that tasks of the complexity of tasks Medium 3 and CIT2 are tasks for
which the productivity benefits of dynamic type systems starts to wear off in favor of static
type systems. To confirm this, we may need to carry out an experiment focused on simpler
tasks, featuring several tasks with complexity between that of Easy 1 and CIT3. We believe
that by now, the spectrum of more difficult tasks has been much more covered.

6.7 Summary

We introduced three additional measurements beyond raw time (number of test runs, files
opened, and file switches), in order to shed light on our time measurements. We also
compared our results with the exploratory study we performed earlier (Mayer et al. 2012).

In general, the measurements in the exploratory study point to the same conclusions as
measuring developement times, although there were some differences among the types of
tasks:

– For class identification tasks, file switches is the closest matching indicator to time.
We speculate that the cause for the difference in time is the navigation and comprehen-
sion effort required by dynamically typed systems—of which the file switches are an
indicator.

– For type errors, all the indicators unsurprisingly showed a very strong effect of the static
type systems.

– For semantic errors, the indicators were more ambiguous: no effect was found of the
type system on time, which we expected; however, some other indicators were slightly
in favor of the dynamic type systems, for reasons that are still unclear.

Although we have determined so far only that there is a relationship between those mea-
surements, it is unclear whether this relationship is causal. Of course, this experiment is not
able to give any definitive answer to this question. However, especially for type identifica-
tion tasks we have seen with the number of file switches a first indicator that seems to be
worth to be analyzed in more detail in future experiments.
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7 Summary and Conclusion

Although there is a long on-going debate about the advantages and drawbacks of static type
systems, there is little empirical data available on their usage by human developers. This
paper has presented an experiment analyzing the potential benefit of static type systems,
complemented by an exploratory study of additional data gathered during the experiment.
The experiment investigated two commonly used arguments in favor of type systems: that
they assist the programmer in finding errors, and that they act as implicit documentation.
Three kinds of programming tasks—all of them potential maintenance tasks—were given
to 33 subjects: tasks where a set of previously unknown classes had to be used by the
developers, tasks where developers had to fix type errors, and tasks where developers had
to fix semantic errors. Altogether nine programming tasks were given to the subjects.

Each subject completed the programming tasks twice: with a statically typed language
and with a dynamically typed one. For the statically typed language, the subjects used Java,
while for the dynamically typed language they used Groovy. The result of the experiment
can be summarized as follows:

– Static type systems help humans use a new set of classes: For four of the five pro-
gramming tasks that required using new classes, the experiment revealed a positive
impact of the static type system with respect to development time. For one task, we did
not observe any statistically significant difference (possibly due to learning effects).

– Static type systems make it easier for humans to fix type errors: For both program-
ming tasks that required fixing a type error, the use of the static type system translates
into a statistically significant reduction of development time.

– For fixing semantic errors, we observed no differences with respect to development
times: For both tasks where a semantic error had to be fixed, we did not observe any
statistically significant differences.

The results of the additional exploratory study, where we analyzed the number of test runs,
the number of files opened, and the number of file switches, can be summarized as follows:

– The number of file switches is a good indicator for measured time differences in
class identification tasks: It looks like static type systems—which reduce the devel-
opment time for such class identification tasks—reduce the number of file switches for
such tasks.

– The number of test-runs, the number of files opened, as well as the number of
file-switches are good indicators for type error fixing tasks: All three measurements
show the same results as the time measurements—that static type systems reduce the
development time for such tasks.

– The number of test-runs, the number of files opened, as well as the number of
file-switches seem to be inappropriate for semantic error fixing tasks: All three
measurements show to a certain extent some tendencies—which were not detected by
the time measurement.

We believe that the most important result is that the static type systems showed a clear
tendency in class identification tasks, and that we found a first indicator that this is caused
by a reduced navigation effort. This makes the result closely related to the study by Ko et al.
(2006) who measured in an experimental setting that 35 % of the development time was
spent on navigating through the code. It seems plausible to assume that—due to the type
annotations in the code—developers do not have to search in a large number of different
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files how they can use a given (undocumented) API. Instead, the type annotations directly
guide them to the right place. This implies a reduction of the navigation costs.

It must not be forgotten that this experiment (as every experiment) suffers from a num-
ber of threats to validity. Here, we should focus on one in particular: the experiment was
based on the programming language Java—a programming language which is not known
for having the most expressive type system. It would be interesting to see whether for other
languages (such as Haskell) the results are comparable. Another issue is the question to what
extent only the type annotations (and not the type checks) are responsible for the measured
differences. Both issues are avenues for future work.

We have presented evidence that programmers do benefit from static type systems for
some programming tasks, namely class identification tasks and type error fixing tasks. For
the first kind of task we have seen that the reduced navigation effort (caused by the static
type system) might be the cause for this benefit. This result hardly implies that static systems
benefit programmers for all tasks—a conclusion that seems unlikely. However, we think the
onus is now on supporters of dynamic typing to make their claims with rigorously collected
empirical evidence with human subjects, so the community can evaluate if, and under what
conditions, such systems are beneficial.

Appendix: A Raw Measurement Data

Table 10 Example solutions for semantic error fixing tasks (SEFT) and type error fixing tasks (TEFT)
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Table 11 Example solutions for class identification tasks
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Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software

engineering: an introduction. Kluwer, Norwell

Stefan Hanenberg works as a researcher at the University of Duisburg-Essen, Germany. From the same
university he received his PhD in 2006. His research interests are mainly in the empirical evaluation of
programming language constructs in general and in the area of evaluation of type systems in particular.



Empir Software Eng

Sebastian Kleinschmager is a software engineer from Germany who has a special interest in creating a
scientific foundation for his field. During his studies of applied computer science (BSc) and business infor-
mation systems (MSc) at the University of Duisburg-Essen, he focused his research on conducting empirical
experiments to evaluate programming techniques. After his studies he pursued a career in business and
currently works as a Senior IT Specialist, specializing in business application and web software development.

Romain Robbes is assistant professor at the University of Chile (Computer Science Department), in the
PLEIAD research lab, since January 2010. He earned his PhD in 2008 from the University of Lugano,
Switzerland and received his Masters degree from the University of Caen, France. His research interests lie
in Empirical Software Engineering and Mining Software Repositories. He authored more than 50 papers on
these topics at top software engineering venues (ICSE, FSE, ASE, EMSE, ECOOP, OOPSLA), and received
best paper awards at WCRE 2009 and MSR 2011. He was program co-chair of IWPSE-EVOL 2011, IWPSE
2013, and WCRE 2013, is involved in the organisation of ICSE 2014, and the recipient of a Microsoft SEIF
award 2011.



Empir Software Eng
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