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Abstract—In a robotics context, visualizing the data scanned by
a robot is crucial to understand what the robot’s sensors perceive
about its environment. Consequently, robotic visualizations show
these values in a 3-D world, such that they can be compared with
the real world. However these visualizations do not allow develop-
ers to see this data in a manner that allows it to be interpreted
for program construction. As a result, these visualizations are
in many cases ineffective for programming robot behaviors. To
address this issue, we have built several visualizations of robot
sensor data for the programming of behaviors, and we report
on them here. Our visualizations focus on better revealing the
hard data, which allows developers to faster understand it and
consequently to faster create and adapt robot behaviors.

I. INTRODUCTION

When we build programs, we focus not only on their

structure and behavior but also on their inputs, which cause

them to behave in different manners depending on the data

they receive. However building the behavior of a program

may be a troublesome task when inputs are too complex to

understand at first glance. For example, consider a function

receiving a 10x2 matrix that represents the x and y positions

of an object over time. It is difficult to imagine the route of

the object over the xy plane just by looking at the matrix.

The above issue is especially true when we build programs

using live programming [1]. In live programming, developers

can change the program while it is running without the need

to restart it, and these programs actively provide immediate

feedback to developers about their execution. While live

programming allows for fast understanding and prototyping

of a program, if the inputs of this program are not easy to

understand, then the live programming technique may lose its

effectiveness. Considering the previous example: even when

developers can see the numbers in the matrix, if it represents

many points over time they will lose a significant amount

of time analyzing the data to understand the route. This

prohibits a fast understanding of the program and makes live

programming impossible.

Within a robotic context, much of a program’s input is

provided by the robot’s sensors. This data is likely to be

difficult to understand at first glance because of its high

complexity. For example, laser scanners in used in robotics

provide scans that can have 1024 values or more, and these

scans are received by the program every tenth of a second.

As a result, if we combine live programming with robotics,

to achieve a quick understanding of the robot behavior, it is

imperative to have a fast understanding of the inputs of the

robot. In our experience using live programming for robots,

we have needed to dedicate a lot of time trying to understand

the data given by a laser scan. Finally, when the data was

understood, writing the behavior that we wanted was a simple

task which was quickly accomplished.

A need for adequate visualization of robot sensor data has

been identified before, for example in the talk about seeing

spaces by Bret Victor [2], which shows a projection of a graph

of robot sensor data next to the robot itself. Extrapolating

from this, ideally we would have a general purpose robot

dashboard that shows program execution and multiple dynamic

visualizations of robot sensors geared to quickly understand

the hard data. It should be generic to different robots and

sensor configurations, configurable, and support live updating

of data and programs.

Yet current robot sensor data visualizations fall far behind

of this ideal. We noticed this while working with ROS [3], the

leading middleware for robot programming. Even while there

are visualizations for robotic data available, they typically

focus on showing the integration of data of multiple sensors

at once, in a simulated environment. An example of this is

the standard visualization environment of ROS, RVIZ [4].

Using such a visualization achieves a better understanding

of what the robot “sees”, drawing a representation of the

data in a simulated environment. It however does not provide

an analytical visualization for the data of a specific sensor,

making it difficult to understand the hard data required to

build programs. By displaying laser scans in RVIZ, developers

can see the outline of the object and have an idea of the

distance and position of the object, but they cannot see its

exact distance, nor its exact angle.

For our work we wanted to better and faster understand

sensor data, this as existing visualizations do not allow for

understanding the hard data at a glance, so that it can be

used in robot behavior code that consumes it. To address this

issue, we built visualizations for three different robot sensors.

In this work we present these visualizations and show how

they can be helpful in building behaviors for robots. The goal

of these visualizations is to aid in quickly understanding the

data used by these programs, such that we maintain the rapid

development cycle of live programming.

More in detail: we built three visualizations: laser scans,

touch sensors and robot speed. Each of these significantly
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improves on existing RVIZ visualizations. The laser scan

visualization shows at first glance an approximate distance

and position of an object and provides tools to know the exact

distance and angle of every datapoint of the laser scan. The

touch sensor visualization allows knowing the state of every

touch sensor in a robot, which is absent in RVIZ. Finally, the

speed visualization shows the speed of a robot in a graph,

while in RVIZ robot speed can only be estimated by looking

at the movement of the robot over time.

This paper is organized as follows. Section II elaborates on

the problem. Then, in Section III we present our three custom,

dynamic visualizations. Lastly, we talk about related work in

Section IV, and end with conclusions and future work.

II. MOTIVATION: LIVE PROGRAMMING AND ROBOT DATA

Live programming is a software engineering technique that

accelerates the building of software by enabling continuous

real time modifications of running programs, i.e., changing the

code without the need for restarting. Program understanding

is reinforced by a continuous feedback loop of the changed

behavior or a visualization of the running program. With this

live feedback, developers immediately see the results of their

changes and hence understand the changed behavior faster.

In previous work, we built a live programming language

for robots, appropriately called Live Robot Programming [5]

(LRP1). Using this language we have been performing ex-

periments on how live programming can be used in a robotic

context, with positive results. In LRP, robot behavior is written

as nested state machines. A hierarchy of machines, each with

their states, transitions and events, represents the different be-

haviors and change of behaviors. LRP provides a visualization

where the hierarchy of machines and each machine’s states and

transitions can be seen. The visualization provides continuous

feedback to developers when programs are running. Because

of its liveness properties, in LRP developers can modify, add

or remove behaviors and the resulting program can be imme-

diately seen in the visualization and moreover is immediately

present on the running robot. If the robot was executing a

behavior, the behavior continues its execution even when the

program changes.

We however experienced one important issue when working

with robots in LRP: We need to better understand the contin-

uous stream of sensor data coming from the robot. We found

that on many occasions, at first glance the data of a sensor may

be too complex to understand. For example, robots use laser

scanners to measure distances to the nearest objects, over a

wide angle. Laser scan data can be quite complex because the

laser returns info about the limits of the scan – the minimum

and maximum distance at which the laser recognizes objects

–, the start and end of angle of scan, and last but not least

the distance of every point in the scan. One example laser we

have: the base laser on our PR2 robot [6], measures up to 60

meters in distance, covers 260 degrees, and one scan consists

of 1040 datapoints.

1Web site with examples and download: http://www.pleiad.cl/lrp

Fig. 1. A laser scan from a PR2 as seen in RVIZ. The laser scan shows the
walls of a part of the Department of Computer Science.

A developer cannot interpret this data at a glance and needs

to perform some analysis to obtain the information that is

relevant for the task at hand. For example, establishing what

the distance is between the robot and the nearest object, and

where this object is, cannot be performed in a reasonable

amount of time just by looking at the textual data of 1040

datapoints. This issue is more critical in a live programming

context where we want to write prototypes and iterate over

them as quickly as possible, and the focus is to quickly

understand our program while it is executing. While the

LRP programming language follows this principle, in our

experience interpretation of data, e.g., from a laser, is a major

impediment to understanding the inputs for the program and

thus to understand the behavior.

To address this issue we created a set of custom visualiza-

tions for robotic sensor data. Our main goal is to be able to

interpret as quickly as possible the raw data received by the

robot, so that it can be used in the programs being created.

In our robot experiments we use ROS [3] because it is

becoming the de-facto standard robot middleware, with a large

amount of packages and tools to work with different robots.

ROS already comes with a standard 3-D visualization environ-

ment: RVIZ [4]. It provides a GUI to visualize sensor data,

robot models and environment maps. With this, developers can

visualize what is happening with the robot in the environment.

Figure 1 shows an example visualization of our PR2 robot

scanning the environment using its base laser.

As RVIZ focuses on representing the data in the environ-

ment rather than the data itself, it does not give access to this

data for analysis. As a result it does not provide any help

in interpreting this data so that it can be used in a program.

Because of this, understanding and using the data received by

ROS in our programs is not an easy task. For example, just by

looking at the arrays of scan values of the PR2 laser it is not

obvious that the first value of the array (the leftmost value)

actually represents the rightmost point of the scan, while the
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Fig. 2. rqt plot visualization of the X and Y position of a robot.

last one (the rightmost value) is the leftmost point of the scan!

In addition to RVIZ, ROS provides another tool to visualize

data: rqt plot. It shows a scrolling time plot of data of a robot.

In Figure 2 we can see an example of the X and Y position

of a robot over time. This tool can be useful to see how the

data changes over time, but it is limited to simple numerical

values. Because of this, even when this tool allows to visualize

multiple numerical values, it may be difficult to understand

this values in their context. For example, in Figure 2 we can

see the positions X and Y separately thanks to rqt plot, but

it makes more sense to have a map to show where the robot

was positioned over time, as done by RVIZ. Moreover, rqt plot

does not have a way to interpret more complex data, such as

a laser scan.

Note that even though we are motivated by our experiences

with robots in ROS, our visualizations should not be coupled

to be used only with ROS. The idea behind this is to allow for

a transformation of the data from a given robotics system to

our custom visualization. With this in mind, our work is not

restricted just for ROS, but it may be adapted to any framework

or middleware.

III. VISUALIZING ROBOT SENSOR DATA

We built specific visualizations to help developers quickly

understand the data received by a robot in a live programming

context. This understanding should aid the programmer in

creating and modifying programs that handle this kind of data.

Our visualization is also live, i.e., the data is automatically

updated over time.

So far we have built 3 visualizations for different sensors.

We expect to build more as needed in order to build more

behaviors. In this section we talk about the visualizations we

have built: laser scan, robot speed and touch sensors.

A. Laser Scan

A laser scan is a sensor measurement that states the distance

of objects in a wide angle of vision. The data we show in the

visualization is not only the objects detected by the laser, but

also we give visual indications about the intrinsic properties

of the laser scan and the distance of the objects themselves,

as is shown in Figure 3. Note that we visualize a 2-D laser

scan, i.e., a laser scan with data only on a plane.

The intrinsic property of a laser scan sensor is the area of

object detection. It is defined by the minimum and maximum

Fig. 3. The static version of our laser scan visualization, showing the same
data as in Figure 1. The visualization shows the area of detection of points,
indications about the position of points and a pop-up with more information
about the 635th point in the array of datapoints.

distance an object can be detected and the sweep angles of the

laser. This is shown in the visualization by a gray area, which

is a scaled representation of the distances and sweep angles

of what the laser can scan in the real world.

In the visualization we also give indications that help in

approximately determining the position of diverse objects

within the area of detection. We do this firstly by drawing

curved lines that divide the sweep area, indicating the radial

distances of the objects. We label the curved lines to indicate

the radial distance of the different lines in the visualization.

The amount of curved lines and their distances from the robot

can be customized by the developer. Secondly, we draw a

number of radial lines, customizable by the developer, to

divide the area of detection in equal parts. We label the

radial lines with the angle from the center of the robot and

approximation of the index of the array of datapoints that

represents that angle. All of this is done to understand as

quickly as possible the laser scan data and the position of

the objects inside. Scan data is plotted as a set of red dots,

each red dot shows the distance measured to the nearest object

for that scan angle. With all the indications, at first glance

developers can approximately know where the objects are

positioned inside the range of the laser scan. The red dots

are updated live, i.e., when the objects or the robot move,

the red points also change to indicate the new distribution of

objects in the detection area of the laser.

Moreover, the dynamic visualization can be frozen, pro-

viding a static part where developers can focus on a specific

point in time and have more information about the data in

that moment. The static visualization adds a pop-up on every
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datapoint representing the laser scan that gives information

about the index of the point in the array of datapoints, the

distance and the angle of the point. Figure 3 shows the static

part of the visualization, with a pop-up on the 635th point.

Figure 3 is an example of the static visualization. We can

see the walls of an aisle inside the Department of Computer

Science of the University of Chile. The figure shows the same

data as in Figure 1, but with more information about the hard

data. In the figure there is a pop-up showing more information

about the point where the cursor is positioned: the 635th point

in the array of datapoints. It is positioned at a 2.54 meters

distance, at a 28.8 degree angle from the center of the robot.

If we compare this to RVIZ, their representation of the laser

scan is a line of points that can be kept into the visualization to

build maps and complete objects. However, it does not expose

anything of the data itself, developers cannot see what is the

actual distance of the object and the robot. Nor can developers

know what is the range of the laser shown in the visualization

as we do with the visualization shown in Figure 3.

In robotics, laser data is typically used as input for com-

plex algorithms that have already been implemented, such

as Simultaneous Location and Mapping or Path Planning.

While multiple robotic behaviors can be realized by reusing

such already implemented algorithms, our visualization allows

developers to better understand the data used in these contexts,

and to see if the robot is behaving as it should. Moreover,

whenever developers want to build new algorithms, they will

use the hard data of the laser to build them, and our laser

visualization will be useful to them.

B. Speed

The speed of a robot is typically measured by a combination

of linear speed and angular speed [7]. Both speeds are decom-

posed into the X, Y and Z axes of the robot. For simplification,

in a vehicle we can say that a positive linear speed in X means

that the vehicle moves forward and an angular speed in Z

means that the vehicle turns on the spot. Technically speaking,

the robot can provide speed as sensor data but speed can also

be given as a control signal to the robot [7]. As a result, we can

either visualize a speed control signal, considering it a sensor

measurement of an ideal speed, or show speed as given by the

sensor data, revealing all sensor noise.

If we know a robot’s speed we can approximate how it

is moving in the environment. We can know if the robot is

moving too fast or not, and what kind of movement is it

performing, e.g., the robot is turning or moving in a straight

line. We can see if the speed of the robot and the kind of

movement at a single point in time is according to the behavior

that a developer built for the robot. All of this can be seen

while developers have access to the actual value of the speed.

We use a bar chart to visualize both linear and angular

speeds, as shown in Figure 4. We choose a bar chart because

it compactly shows all dimensions of the speed vector. When

the robot moves backwards on X, the speed is considered

to be negative, so in our graph bars go up and down to

represent positive and negative speed, respectively. When the

Fig. 4. Speed Visualization.

robot moves, the bars also change, visualizing the changes of

speed of the robot. From our experience, a maximum speed of

1 and a minimum speed of -1 is a correct scale. Nonetheless

both maximum and minimum speed are configurable.

Moreover, as the developer chooses the maximum and

minimum, these can be the maximum speed of the robot itself,

or an arbitrary limit the robot must not exceed, e.g., for safety

reasons. When a value exceeds the limit, the respective bar

changes its color to red. This allows developers to see at first

glance, without even reading the speed number, when the robot

is exceeding maximum speed.

In contrast, RVIZ does not have an explicit visualization

of the speed of a robot. So while the robot can be seen to

move inside the 3-D world of RVIZ, developers can not know

how fast the robot is moving, and if it is moving very slowly

its movement may not be visible at all. In contrast, with our

visualization, developers can see how the robot is moving

while reacting to their programs, and also see the exact speed

value. They can also see if the robot is moving or turning and

can notice if the robot is accelerating by seeing that a bar is

changing size over time.

Lastly, for robots moving on the ground, it makes more

sense to just use the X and Y axis for linear speed and the

Z axis for angular speed, because the robot is moving in

just one plane [7]. Therefore, we built a variant of the speed

visualization that only shows the X and Y bar for linear speed

and the Z bar for angular speed. This instead of showing a bar

chart where the Z bar of linear speed and the X and Y bars of

angular speed will never change.

C. Touch Sensors

A touch sensor is a sensor that gives information whether

an object is directly touching it. Our visualization of a touch

sensor is a labeled rectangle that is white when there is no

object touching the sensor and that turns green when an object

touches it. The overall visualization can compose multiple

touch sensors, as robots may have many. In Figure 5 we see

our visualization for a Turtlebot robot [8]. It contains three

touch sensors, positioned at the left, center and right of the

robot. In this case, only the center sensor is being touched.

With this visualization a developer can understand which

touch sensor is being activated when a robot is doing some-

thing – like moving – and make a decision based upon that.
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Fig. 5. Visualization of three touch sensors of a Turtlebot robot.

For example, from Figure 5, if we see the Turtlebot robot

being hit on the left bumper we can make the robot turn to

the right to avoid that specific obstacle. If we see the robot

being hit on the right bumper, we can make it turn to the left.

Such a visualization of touch sensors is however completely

absent from RVIZ. There is no way for a programmer to see

in RVIZ that a robot hit an object unless some other sensor

detected it and in the simulation the object is drawn touching

the robot. And even if the robot itself can be observed touching

the object in RVIZ or in the real world, the programmer can

not establish whether the touch sensor detects this.

IV. RELATED WORK

RVIZ [4] is a fully 3-D visualization environment for robots

in ROS [3]. RVIZ visualizes sensor data and state information

from the robot, combining the data and visualizing it all

into a single image that overlays the data on a simulated

environment. However, RVIZ does not provide access to the

hard data so that it can be interpreted by developers. One way

to extend RVIZ such that it shows visualizations similar to ours

is the use of markers. A marker is a simulated object inside the

visualization that can be sized and placed programmatically.

It would allow, for example, to draw the radial lines of the

laser scan in the simulated world – curved lines are not

available as markers – or to place cubes whose height represent

current speed. These however still do not expose the hard

data, e.g., from a cube height the exact speed is not revealed.

Moreover these constructs are positioned as normal objects in

the 3-D environment, making them hard to read for certain

camera angles, or if the camera is moving around.

An alternative is the use of augmented reality as in the work

of Collet and MacDonald [9]. Their main focus is to represent

the data in a real environment and they show examples using

a laser and a sonar scan. The visualization augments a view

of the real world, overlaying the area of detection of objects,

cutting it short at the edge of detected objects. However the

visualization does not provide a way to access the hard data.

Considering live programming, there are several live lan-

guages that have their own visualizations. We can trace back

live programming to the work of Tanimoto on VIVA [1].

VIVA is a live programming language for image processing.

It uses a graphical representation of programs as if they

were electronic circuits: the data flows along wires, reaching

components where it is processed. Data can be any Lisp value,

but it is not shown in the visualization. A similar data-flow

based visualization is used by Hancock in Flogo I [10]: a live

programming language for robotics focused on teaching. The

work shows numerical or boolean data for sensor readings,

which is easy to interpret without any visualization.

V. CONCLUSION AND FUTURE WORK

In this paper we presented three custom visualizations for

different robot sensors, more specifically for a laser scan

sensor, touch sensors and the speed of a robot. These visualiza-

tions are dynamic, i.e., the data is automatically updated over

time with the new data the sensors provide. In the laser scan

visualization, developers can see the position of datapoints

approximately at first glance, as well as their specific position

by hovering the mouse pointer over a point. With the speed

visualization, developers can see the exact speed of the robot

and observe how it moves. Finally, with the touch sensors

visualization, developers can visualize multiple touch sensors

at once. None of the above can be done in RVIZ. The last

visualization is not even present in RVIZ.

We built these visualizations because we wanted to un-

derstand at a glance the data given by robots, improving

the experience of building programs using live programming.

Because of this, our visualizations show important information

about the hard data, such as the value of the speed for the speed

visualization and the area of detection of the laser scan. In our

experience using these visualizations in LRP [5] – our live

programming language– on different robots, they significantly

speed up the development of robotic behaviors.

Although we informally tested these visualizations, we still

need to involve more developers to validate if they help in

programming robot behaviors and if our visualizations are

suitable for each case. We plan to perform a user study where

developers will build behaviors either with our visualizations

or using RVIZ. We will compare the solutions of both groups

in regard to time taken and take a survey to obtain qualitative

data about our visualizations.

Further future work is addressing a number of other sensors

for robots that we have not included yet. We expect to include

more sensors in our dynamic visualizations as needed. For

example, the Kinect camera [11], used by different robots,

produces point clouds which are nontrivial to interpret.
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