
Extended Abstract @ ML Family Workshop 2015

Lost in Extraction, Recovered
An Approach to Compensate for the Loss of Properties and Type Dependencies

when Extracting Coq Components to OCaml

Éric Tanter
PLEIAD Lab

Computer Science Department (DCC)
University of Chile, Santiago, Chile

etanter@dcc.uchile.cl

Nicolas Tabareau
Inria

Nantes, France
nicolas.tabareau@inria.fr

Abstract
Extracting Coq programs to OCaml enables a model of software
development in which some critical components of a system can
be developed in Coq and proven correct, before being extracted to
OCaml and integrated with the rest of the system. However, due
to the gap between Coq and OCaml, key features like properties
and type dependencies disappear upon extraction, leading to po-
tentially unsafe and unsound executions of certified components.
We describe an approach to protect extracted components through
mostly automatic generation of runtime checks, ensuring that the
assumptions made by certified components are checked dynami-
cally when interacting with non-certified components.

1. Introduction
OCaml Programmers should be able to exploit program extraction
to integrate Coq certified components within their systems, while
ensuring that the assumptions made by the certified components
are enforced. However, extraction of Coq components to OCaml
suffers from a number of limitations that can lead to unsound or
even unsafe executions, e.g. yielding segmentation faults.

While some unsafe executions can be produced by using ef-
fectful functions as arguments to functions extracted from Coq—
because referential transparency is broken—we focus on two fun-
damental issues that manifest even when the OCaml code is pure:
properties and type dependencies.

Let us consider subset types, the canonical way to attach a
property to a value [1, 5]. Subset types are of the form {a:A | P a},
denoting the elements a of type A for which property P a holds.
More precisely, an inhabitant of {a:A | P a} is a dependent pair (a
; p), where a is a term of type A, and p is a proof term of type P a.

Suppose a function divide of type nat→{n:nat | n > 0}→ nat
defined in Coq. To define divide, the programmer works under the
assumption that the second argument is strictly positive. However,
this guarantee is lost when extracting the function: Coq establishes
a difference between programs (in Type), which have computa-
tional content, and proofs (in Prop), which are devoid of computa-
tional meaning and are therefore erased during extraction. Ideally,
we would like to extract divide to an OCaml function that checks
that the second argument is indeed positive, or fails otherwise:

let divide m n = if n > 0 then ...
else failwith "invalid argument"

This would allow the original code (...) to be executed in a sound
context, where n > 0 indeed holds. Such an approach to transfer
properties as runtime checks can be supported as long as the stated
property is decidable.

The situation can be even worse with type dependencies, since
extracting dependent structures to OCaml typically introduces un-
safe operations. Consequently, it is easy for an OCaml client to
produce segfaults. Consider the following example adapted from
CPDT [1], in which the types of the instructions for a stack ma-
chine are explicit about their effect on the size of the stack:

Inductive dinstr : nat→ nat→ Set :=
| IConst : ∀ n, nat→ dinstr n (S n)
| IPlus : ∀ n, dinstr (S (S n)) (S n).

An IConst instruction operates on any stack of size n, and
produces a stack of size (S n), where S is the successor constructor
of nats. Similarly, an IPlus instruction consumes two values from
the stack (hence the stack size must have the form (S (S n))), and
pushes back one value. A dependently-typed stack of depth n is
represented by nested pairs:

Fixpoint dstack (n : nat) : Set :=
match n with
| O⇒ unit
| S n’⇒ nat × dstack n’

end%type.

The exec function, which executes an instruction on a given
stack and returns the new stack can be defined as follows:

Definition exec n m (i : dinstr n m) : dstack n→ dstack m :=
match i with
| IConst n⇒ fun s⇒ (n, s)
| IPlus ⇒ fun s⇒

let ’(arg1, (arg2, s’)) := s in
(arg1 + arg2, s’)

end.

Of special interest is the fact that in the IPlus case, the stack s
is deconstructed by directly grabbing the top two elements through
pattern matching, without having to check that the stack has at least
two elements— this is guaranteed by the type dependencies.

Because such type dependencies are absent in OCaml, the exec
function is extracted into a function that relies on unsafe coercions:

(* exec : int -> int -> dinstr -> dstack -> dstack *)
let exec n m i s =
match i with
| IConst (n0, n1) -> Obj.magic (Pair (n1, s))
| IPlus n0 ->

let Pair (arg1, t) = Obj.magic s in
let Pair (arg2, s’) = t in

Obj.magic (Pair ((add arg1 arg2), s’))

1 2015/8/12

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#O
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#unit
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:type scope:x '*' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Peano.html#:nat scope:x '+' x
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'

The dstack indexed type from Coq cannot be expressed in OCaml,
so the extracted code defines the (plain) type dstack as:

type dstack = Obj.t

where Obj.t is the abstract internal representation type of any
value. Therefore, the type system has in fact no information at all
about stacks: the unsafe coercion Obj.magic (of type ’a -> ’b)
is used to convert from and to this internal representation type. The
dangerous coercion is the one in the IPlus case, when coercing s
to a nested pair of depth at least 2. Consequently, applying exec
with an improper stack yields a segmentation fault:1

exec 0 0 (IPlus 0) [];;
Segmentation fault: 11

While it might be possible to preserve some type dependencies
by exploiting advanced features of the target language type system
(in particular, GADTs in OCaml), there will inevitably be cases
where the dependencies expressed in Coq outsmart the target type
system and extraction relies on unsafe features.

We propose an approach in which a richly-typed Coq function
can be casted2 to a function with a standard type signature that
matches the target language type system, in a way that automati-
cally embeds the necessary runtime checks in the casted function.

2. Recovering Properties
We develop safe casts3 for Coq, paving the way for gradual certified
programming; notably, we show that this is feasible entirely within
standard Coq, without extending the underlying theory and imple-
mentation. Note that the focus of this presentation is on OCaml
extraction, not on gradual certified programming in Coq (the latter
is presented in full details in [6]).

Concretely, we can cast divide from type nat → {n:nat | n >
0}→ nat to a function divide’ with the plain type nat→ nat→ nat
in a safe manner, using the ?d cast operator, which weakens func-
tion domains:

Definition divide’ n := ?d (divide n).

When applied, the extracted divide’ function checks that its
second argument is strictly positive, and raises a runtime cast error
otherwise:

divide’ 4 2;;
- : nat = 2
divide’ 10 0;;
Exception: Failure "Cast has failed".

There are two major challenges to supporting casts of proper-
ties: decidability and the potential for cast errors.

Decidability. Since casts lift statically-established properties to
runtime checks, one can only apply casts on decidable properties.
For this, we rely on a Decidable type class, along with an extensible
library of decidability instance. (We extend the Coq/HoTT Decid-

1 We configure extraction to map the nat inductive type from Coq to
OCaml’s int primitive type, and similarly with list.
2 We intentionally use the old English form casted, and not the currently
accepted form cast, in order to be able to distinguish a casted function,
i.e. a function that is subject to a cast, from a cast function, i.e. a function
that is used to perform a cast. Similarly, this allows us to distinguish a casted
value, i.e. a value subject to a cast, and a cast value, i.e. the value of a cast
expression.
3 Note that we use the term cast in the standard way, to denote a type
assertion with an associated runtime check [4]—this differs from the non-
traditional use of cast in the Coq reference manual (1.2.10) where it refers
to a static type assertion.

able type class library.) The decision procedure for a given property
is synthesized automatically through type class resolution.

For instance, the OCaml code for divide’ calls our cast function
after applying the decidable le nat decision procedure for ≤:

let divide’ n m =
cast_fun_dom (decidable_le_nat 1) (divide n)

Cast errors. Notice how the OCaml client code above does not
obtain optional values when using divide’, but instead obtains plain
nats if the cast succeeds, or a runtime error otherwise. To avoid
imposing a monadic style to deal with the potential for cast errors,
we can represent cast failure in Coq as an axiom.4

Specifically, we introduce one axiom, failed cast, which states
that for any indexed property on elements of type A, we can build a
value of type {a:A | P a}:
Axiom failed cast :
∀ {A:Type} {P : A→ Prop} (a:A) (msg: Prop), {a : A | P a}.
This axiom is obviously a lie, but it allows us to provide a cast

operator as a function of type A → {a:A | P a}, even though a
cast can fail. Hence programmers can use cast, denoted ?, without
having to deal with optional values.
Definition cast (A:Type) (P : A→ Prop)

(dec : ∀ a, Decidable (P a)) : A→ {a : A | P a} :=
fun a: A⇒
match dec a with
| inl p⇒ (a ; p)
| inr ⇒ failed cast a (P a)

end.

The cast operator applies the decision procedure to the given
value and, depending on the outcome, returns either the dependent
pair with the obtained proof, or a failed cast. Considering the
definition of cast, we see that a cast fails if and only if the property
P a does not hold according to the decision procedure. A subtlety
in the definition of cast is that the casted value must not be exposed
as a dependent pair if the decision procedure fails. An alternative
definition could always return (a ; x) where x is some error axiom
if the cast failed. Doing so, however, would ruin the interest of
the cast framework in the context of program extraction: because
all properties (in Prop) are erased, a casted value would not be
extracted to a value associated with a runtime check, but just to a
plain, unchecked value.

The cast operator denoted ?d weakens the domain of a plain
function type {a : A | P a} → B, which expects a value of a
subset type as argument, into a standard function type A→ B, by
downcasting the argument:
Definition cast fun dom (A B : Type) (P: A→ Prop)

(dec: ∀ a, Decidable (P a)) : ({a : A | P a} → B)→ A→ B :=
fun f a⇒ f (? a).
The cast framework includes several other cast operators—

some subtleties arise with dependent function types—and can be
applied to other rich properties like records (see [6] for details).

3. Recovering Type Dependencies
To recover type dependencies, we propose to exploit type isomor-
phisms between dependently-typed structures and plain structures
with subset types, and then exploit the cast framework presented in
the previous section to safely eliminate the subset types.

4 Representing cast failure as an axiom is particularly important to support
gradual certified programming within Coq [6]. If the focus is only on
extraction, then a monadic approach is perfectly reasonable, because the
error monad used in Coq can be extracted in a transparent manner to OCaml,
such that existing OCaml code does not have to deal with monadic values.

2 2015/8/12

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inl
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#inr
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Specif.html#:type scope:'x7B' x ':' x '|' x 'x7D'
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x

For instance, we can establish an isomorphism between a depen-
dent pair packaging the dependently-typed dstack with its index n
and a plain list with a property:

{n:nat & dstack n} ∼ {l:list nat | n = length l}.
Similarly, we can establish an isomorphism between dependently-
typed instructions dinstr and plain instructions as follows:

{n m:nat & dinstr n m} ∼ {i:instr | valid n m i}.
where instr is a plain inductive structure for instructions:

Inductive instr : Set :=
| IConst : nat→ instr
| IPlus : instr.

and valid is the (trivial, omitted) relation that embodies the con-
straints expressed in dinstr. Once the isomorphism is applied, it is
possible to get rid of the subset types by applying the cast frame-
work discussed in the previous section. The composition of both
techniques allows us to lift exec from a function of type:

∀n m : nat, dinstr n m→ dstack n→ dstack m

which relies on both dependently-typed structures dinstr and
dstack, to a function of (simple) type:

nat→ nat→ instr→ list nat→ list nat

A further step is to get rid of the first two arguments of exec, which
are irrelevant in the extracted code. We can do that by establishing
a stronger dependent isomorphism, i.e. an isomorphism enriched
with a functional dependency: a way to recover the index of an
indexed structure based on a plain structure. In the case of dstack
and list, the n index of dstack can be easily computed from a given
list, by taking its length. Also, in a call to exec, the length of the
stack is exactly the first index of the corresponding dinstr. Given
this first index, and a plain instruction, we can compute the second
index. Like property casts, and unlike the computation of the dstack
index, computing the second index of a dinstr can fail at runtime,
if we discover that the instruction is not compatible with the first
index. With these two dependent isomorphisms, we can lift exec to
a function of type:

instr→ list nat→ list nat

which is exactly the expected plain type that an ML programmer
would expect. Crucially, the extracted lifted function is safe in that
it internally performs the necessary morphing of structures and
runtime checks of properties, as needed, before calling the original
Coq-extracted function.

The type isomorphisms are similar to those studied in algebraic
ornaments [2], where a basic data structure can be augmented with
additional logic to form an indexed data type. Here we add the
refinement types as a step that allows us to go to dynamic checking
of the data logic. The dependent isomorphisms that allow us to
hide index arguments from lifting functions seem also novel. Our
approach can in fact be characterized as implementing a form of
dependent interoperability [3] for Coq. Compared to that work,
our approach is more general (e.g. we can interoperate across type
constructors), and is fully (and mechanically) verified.

Availability. The cast framework for Coq is available at:
https://github.com/tabareau/Cocasse.
The dependent type isomorphisms framework is, at the time of this
writing, still at a pre-release stage.

References
[1] A. Chlipala. Certified Programming with Dependent Types. MIT Press,

2013.
[2] P.-E. Dagand and C. McBride. Transporting functions across orna-

ments. In Proceedings of the 17th ACM SIGPLAN Conference on Func-
tional Programming (ICFP 2012), pages 103–114, Copenhagen, Den-
mark, Sept. 2012. ACM Press.

[3] P.-M. Osera, V. Sjöberg, and S. Zdancewic. Dependent interoperability.
In Proceedings of the 6th workshop on Programming Languages Meets
Program Verification (PLPV 2012), pages 3–14. ACM Press, 2012.

[4] B. C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002. ISBN 0-262-16209-1.

[5] M. Sozeau. Subset coercions in Coq. In Types for Proofs and Programs,
volume 4502 of Lecture Notes in Computer Science, pages 237–252.
Springer-Verlag, 2007.

[6] É. Tanter and N. Tabareau. Gradual certified programming in Coq. In
Proceedings of the 11th ACM Dynamic Languages Symposium (DLS
2015), Pittsburgh, PA, USA, Oct. 2015. ACM Press. To appear. Preprint
available on arXiv.

3 2015/8/12

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#:type scope:x '->' x
https://github.com/tabareau/Cocasse

	Introduction
	Recovering Properties
	Recovering Type Dependencies

