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Abstract
Despite their obvious advantages in terms of static reason-
ing, the adoption of effect systems is still rather limited in
practice. Recent advances such as generic effect systems,
lightweight effect polymorphism, and gradual effect check-
ing, all represent promising steps towards making effect sys-
tems suitable for widespread use. However, no existing sys-
tem combines these approaches: the theory of gradual poly-
morphic effects has not been developed, and there are no im-
plementations of gradual effect checking. In addition, a lim-
iting factor in the adoption of effect systems is their unsuit-
ability for localized and customized effect disciplines. This
paper addresses these issues by presenting the first imple-
mentation of gradual effect checking, for Scala, which sup-
ports both effect polymorphism and a domain-specific lan-
guage called Effscript to declaratively define and customize
effect disciplines. We report on the theory, implementation,
and practical application of the system.

Categories and Subject Descriptors D.3.1 [Software]:
Programming Languages—Formal Definitions and Theory;
D.3.3 [Software]: Programming Languages—Language Con-
structs and Features

Keywords Type-and-effect systems; gradual typing; effect
polymorphism; Effscript; Scala

1. Introduction
Type-and-effect systems allow static reasoning about the
computational effects of programs. Effect systems were

∗ Funded by CONICYT-PCHA/Magı́ster Nacional/2013-22131048 and
Fondecyt project 1150017.
† Partially funded by Fondecyt project 1150017.

originally introduced to safely support mutable variables
in functional languages [17], but more recently, effect sys-
tems have been developed for a variety of effect domains,
e.g., I/O, exceptions, locking, atomicity, confinement, and
purity [1, 2, 6, 18, 19, 31, 32].

Despite their potential, effect systems are not widely
used by programmers. Several recent developments have
enhanced the state-of-the-art of effect systems towards mak-
ing them more practical. In particular, Marino and Millstein
developed a generic effect system that makes it possible
to see many effect disciplines as instances of a general-
purpose system for granting and checking privileges [27].
The generic effect system underlies the design of the Scala
effect checker plugin [30], which also makes progress on
the practical side by supporting a lightweight form of ef-
fect polymorphism [32]. More recently, in order to smoothly
and progressively allow programmers to adopt effect typing,
as well as circumventing the expressiveness limitations of
effect systems, Bañados et al developed a theory of grad-
ual effect systems [5]. A gradual effect system supports
a sound combination of static and dynamic effect check-
ing. The gradual effect system is formulated in terms of the
generic framework of Marino and Millstein.

Unfortunately, to date there is no implementation of a
gradual effect system. In addition, the theory of gradual ef-
fect checking does not consider effect polymorphism, which
is crucial for handling common higher-order abstractions
with enough precision [26, 32]. Furthermore, even though
a gradual polymorphic effect system would be of both theo-
retical and practical value, its adoption would still be limited
by the fact that effect disciplines tend to be too rigid to fit
the specific needs of developers. Developers should be able
to easily define an application-specific effect discipline, for
instance declaring that they care about tracking input/output
(IO) effects in certain parts of their programs, and to possibly
consider certain IO operations such as login as harmless.

This paper addresses all these issues as follows:

• We develop the theory of gradual polymorphic effects,
highlighting the challenges in combining lightweight ef-
fect polymorphism [32] and gradual effect systems [5]
(Section 4).
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• We introduce the notion of customizable effect systems
through a domain-specific language, dubbed Effscript,
for defining effect disciplines (Section 5).

• We implement a customizable, gradual, polymorphic ef-
fect system for Scala as a compiler plugin (Section 6)

• We report on the application of the effect system and Eff-
script to enforce architectural constraints in the popular
Play [39] web framework, and report on the performance
of gradual effect checking (Section 7).

Section 2 provides a more detailed presentation of the is-
sues at stake, and Section 3 gives a brief informal overview
of our proposal. Section 8 discusses related work and Sec-
tion 9 concludes. The implementation of the system, as well
as the code of the examples and benchmarks, is available
online at: http://pleiad.cl/effscript. The complete for-
mal semantics and soundness proof can be found in a com-
panion technical report [37].

2. Background and Motivation
We start by briefly introducing recent advancements in mak-
ing effect systems practical, namely effect polymorphism
and gradual effect checking, before motivating the need for
an effect system that integrates both mechanisms and goes
further in giving programmers direct control over the effect
system.

2.1 Background
An effect system tracks the side-effects of program expres-
sions. Values, including first-class functions and objects, are
by definition effect-free. However, a function or method may
produce effects when it is applied—these are called the la-
tent effects of the function. To illustrate the basics of effect
systems, we use Scala and its effect typing plugin, developed
by Rytz [30]. We focus on the input/output (IO) effect disci-
pline, tracking whether expressions produce some IO effect
or not. In the Scala plugin, these are represented as anno-
tations, @io and @noIo. The print function produces @io
when applied, while the reverse function on lists produces
@noIo (we also say that it is pure in the IO domain).

For instance, the following function is declared to have
@io latent effects, because it may apply print:

def foo(x: Int): Int @io = {
if(x == 0){ print("zero!"); 1 }
else 0

}

The type of foo is denoted Int
@io−→Int, with the latent

effect on top of the arrow (in the general case, it can be a set
of annotations). Note that annotating foo with the @noIo

latent effect would be rejected by the type checker, as the
call to print violates such a specification.

Generic effect systems. Marino and Millstein [27] noticed
that many effect disciplines can in fact be seen as instances

of a generic framework for effect typing. They develop the
theory of a generic effect system, which captures the essence
of effect systems in the form of a privilege checking system.
Expressions can be seen as requiring privileges (dually, pro-
ducing effects) to execute properly, and the language must
include ways to grant such privileges, either through anno-
tations (as above) or through dedicated constructs (as in the
try/catch construct, which grants the privilege to throw).

Effect polymorphism. The generic system of Marino and
Millstein has been adopted by Rytz and Odersky [30, 32]
to develop a practical effect system for Scala. The key con-
tribution of the Scala effect system is its mechanism for
Lightweight Polymorphic Effects (LPE) [32], which conve-
niently supports higher-order programming patterns.

Consider the map function, which applies its function ar-
gument to each element of its list argument. Because the ef-
fects of applying map depend on the effects of the argument
function, a non-polymorphic effect system has to conserva-
tively consider map to have the maximum effects possible.
Consequently, even benign uses of map in a context that re-
quires purity are rejected by the type system.

LPE addresses this issue by allowing a function to declare
that it is (effect) polymorphic in some of its arguments. For
instance, we can define the map function as follows:1

def map(l: List[Int], f: Int => Int):
List[Int] @pure(f) = {
l match {
case Nil => Nil
case x :: xs => f(x) :: map(xs, f)

}
}

The argument f has no declared latent effects, which is
equivalent to annotating it with the maximal latent effects,
>. Consequently, any function can be passed as argument
to map. The key to be able to apply map without always in-
ferring that it produces >, lies in the @pure(f) annotation:
this annotation states that map is pure, modulo the effects of
its argument f. The type system therefore determines the ef-
fect of an application map(l,g) by combining the specific
effects of map (here, @pure) with the latent effects of the
actual argument g.

Unchecked annotations. The benefits of effect polymor-
phism in LPE are still subject to the limitations of static type
checking: in some scenarios, the conservative approxima-
tions of the system get in the way. For instance, consider the
application map(l,print):2 the polymorphic effect system
determines that it has the @io effect, regardless of whether
the list l is actually empty! In such a case, map does not
apply print, and hence the application could safely be con-
sidered to be pure.

1 For conciseness, we consider that map only operates on lists of Int.
2 To be precise, this is written map(l, print ) in Scala, to obtain
the closure value of print. We omit these in this paper.
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To deal with such cases, which are frequent in prac-
tice [32], it is common for effect systems to introduce a way
to (unsafely) bypass the effect system. Both Koka [26] and
the Scala effect plugin provide such a mechanism. In Scala
this is achieved using the @unchecked annotation. For in-
stance, suppose a spawn function that takes a by-name ar-
gument (i.e. a thunk) that must be pure, then:

spawn { e : @unchecked @pure }

is accepted by the effect system, without further checks. Of
course this is unsound if e does perform some effects.

Gradual effects. A sound approach to circumvent the
rigidity of static checking is to rely on gradual checking. For
instance, gradual typing [34] allows fine-grained safe inter-
actions between statically-typed and dynamically-checked
expressions. Gradual typing introduces an unknown (aka.
dynamic) type annotation, which is used as the default for
unannotated code. Statically, the gradual type system rejects
only programs that surely go wrong, and accepts programs
that may go right, but safeguards this flexibility by introduc-
ing runtime checks (casts).

Recently, Bañados et al developed a theory of gradual
effect checking [5] (hereafter TGE). An unknown effect is
introduced, denoted ‘¿’ in the theory, and @unknown in the
Scala code of this paper. For instance:

spawn { e : @unknown }

This program is accepted statically, as with @unchecked.
The difference is that, during compilation, an effect cast
is inserted just before every effectful operation in e. At
runtime, if the flow of execution reaches such a check, a
runtime effect error is thrown if the surrounding context does
not grant sufficient privileges for the effectful operation to be
performed.

2.2 Towards a Practical Effect System
Both effect polymorphism and gradual effect checking are
valuable assets for a practical effect system. However, to
date, there is no implementation of a generic gradual effect
system, and the interaction between gradual effects and ef-
fect polymorphism have not been studied. A major contri-
bution of this work is to explain how to combine both ap-
proaches, and to implement this system for Scala.

However, combining gradual and polymorphic effect
checking is not enough for an effect system to be practi-
cal. As we discuss below, an effect system should also be
easily customizable to suit the specific needs of developers.

Gradual polymorphic effect checking. While both the the-
ory of gradual effect checking and the theory of lightweight
polymorphic effects already exist [5, 30, 32], defining a
gradual polymorphic effect system is more challenging than
just merging the semantics of LPE and TGE together. There
are subtle interactions to consider, as will be illustrated in
Section 3.1, because one expects to be able to take an unan-
notated map function and use it polymorphically.

@io

@input[+T] @stdout

@output

@stderr

@noIo

Figure 1. Refined lattice for the IO domain

Customizable effects. While effect polymorphism and
gradual effect checking are important steps towards a prac-
tical effect system, the language-wide approach of effect
domains can be too rigid in practice. Consider the IO effect
discipline as implemented in Scala: every IO operation is
considered effectful and must be taken care of by program-
mers. It is not possible for the programmer to track only
some IO operations, for instance printing to the standard
output stream, and to consider others, such as printing to the
error output stream, as non-effectful. This issue was recently
raised on the Scala users mailing list:3

I was wondering if there is a more or less precise
definition of side effect. I have seen a few, more or less
equivalent, but none can explain why I would consider
*every* IO operation as a side effect. Or, if I want
to consider every IO operation as a side effect, why I
would consider *every* side effect when writing code.
Taking everything as a potential danger looks a bit too
much to me.

To which Martin Odersky responded:

Amr Sabry characterized side effects as “anything
that makes order of execution observable” (my words).
“Observable” is a term that’s up to interpretation. In
your case, since you decided that you do not care
about log messages at all, it would be defensible to
regard logging as side-effect free. How to tell that the
type system is a different question.

We aim at answering exactly this question, by providing
a declarative means for users to customize effect disciplines
to their specific needs. Furthermore, we are not aware of an
existing implementation of a generic effect system in which
defining a new discipline from scratch can be done easily
and declaratively. So far, the only concrete implementation
of a multi-domain effect system we know of is the Scala
effect plugin of Rytz [30], which only supports a couple of
disciplines and is not easily modified. This ties practitioners
to the specific disciplines that were designed by the provider
of the effect system.

Effect lattices. Designing a customized effect discipline
can imply introducing a different taxonomy of effects from
the one anticipated by the provider of the effect system. For

3 https://groups.google.com/forum/#!topic/scala-user/3vG7VJlZIxg
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instance, the Scala effects plugin treats the IO domain in a
very simple binary fashion: @io vs. @noIo. In fact, as men-
tioned before, a developer may want the IO domain to clas-
sify @stderr and @stdout as separate effects. But the re-
lation can be even more complex, yielding an arbitrary ef-
fect lattice, as depicted on Figure 1. In this example lattice,
@io effects are first classified as @input or @output, which
is itself further refined by @stderr or @stdout. Also, just
like exceptions are effects parametrized by a type, the pro-
grammer may want to reason about which type of values are
obtained through an input operation, expressed as the (co-
variant) @input[+T] effect.

An effect lattice expresses subeffecting [30], i.e. a partial
order between effects: @stdout is a subeffect of @io, and
@input[String] is a subeffect of @input[Any]. Subef-
fecting is supported in the effect system of Rytz et al (for ex-
ceptions), but not in the theory of gradual effects of Bañados
et al. A customizable effect system should support the seam-
less specification of arbitrary effect lattices, suited to the spe-
cific needs at hand.

External effect annotations. The adoption of an effect
discipline on an existing code base implies modifying the
source code to introduce effect annotations, either on method
signatures or as effect ascriptions. In the same way in which
aspect-oriented programming [22, 24] provide means for
localized specification of scattered behavior, it should be
possible to specify effect annotations externally from the
code base. This would better support customizable effects
by making it easier to react to changes in the design of the
effect discipline, such as refinements in the effect lattice.

3. Customizable Gradual Polymorphic
Effects: A Brief Overview

This section gives an informal description of the proposed
system, focusing first on the integration of gradual check-
ing and effect polymorphism, and then presenting Effscript,
a domain-specific language that allows programmers to
declaratively define and customize effect disciplines.

3.1 Gradual Polymorphic Effect System
As alluded to in Section 2.2, naively combining effect poly-
morphism and gradual effects does not yield a practical sys-
tem. We illustrate the challenges and solutions below.

Default latent effects of higher-order arguments. Con-
sider again the map function, this time without effect anno-
tations (equivalent to specifying it has an unknown effect):

1 def map(l: List[Int], f: Int => Int):
2 List[Int] @unknown = {
3 l match {
4 case Nil => Nil
5 case x :: xs => f(x) :: map(xs, f)
6 }
7 }

As explained earlier, the cast insertion mechanism for grad-
ual effects inserts an effect cast before each effectful opera-
tion in the body of map. In this case, the only such expres-
sion is the application f(x) highlighted on line 5. The poly-
morphic effect system assigns f the maximal latent effect
>. Consequently, the effect cast is going to check at runtime
whether the> effect can be performed. Statically, this means
that the expression map(l,print) is valid in any context,
since it has the unknown effect. Dynamically, if the list l is
empty, no error is raised because line 5 is not reached. This
is a slight improvement over the non-gradual version. On the
other hand, if l is not empty, an effect error is raised even if
the context allows for @io effects!

To address this issue, it suffices to consider that unanno-
tated function arguments have unknown latent effects ¿, and
not maximal effects > as defined in LPE. Let us go back to
the map function again:

1 def map(l: List[Int], f: Int
@unknown
−−−−−−−−−−−→ Int):

2 List[Int] @unknown = {
3 l match {
4 case Nil => Nil
5 case x :: xs => f(x) :: map(xs, f)
6 }
7 }

Now, the application f(x) on line 5 is not preceded with a
dynamic effect check, because f(x) statically produces the
unknown effect, just like the whole body of the function.

To understand why this simple solution is sound, one
must consider a call site. When checking map(l,print),
the gradual system now notices the mismatch between the
latent effects of print (@io) and the expected latent ef-
fects of the f argument of map (@unknown). At this point,
a higher-order cast is introduced [5]. Intuitively, this means
that print is wrapped in a new function whose body per-
forms the dynamic effect check for the statically-missing
privileges (in this case, @io). Consequently, the use of map is
sound and flexible: if l is empty, there is no runtime check at
all. If l is not empty, the application f(x) first ensures that
sufficient privileges are available to apply f.

Effect polymorphic casts. Unfortunately, the proper inte-
gration of gradual and polymorphic effect checking is not
entirely solved yet. Consider that we cast the unannotated
map function above to the effect-polymorphic type:4

(l:List[Int],f:Int
@input−−−−−−−→ Int)

@pure−−−−−−→
f

List[Int]

The semantics of higher-order cast of TGE specifies that
the casted map function first restricts the set of available priv-
ileges to @pure, and that the argument f is itself casted from

the type Int
@input−→ Int to the type Int

@unknown−→ Int.

4 In the formalism of LPE, the specific effects of a polymorphic function are
annotated above the arrow (here @pure), while the argument(s) on which
the function is polymorphic (here f) are annotated below the arrow.
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This cast, in turn, implies a runtime check for @input in the
body of the argument function. Consequently, at runtime,
even mapping a pure function fails: the check for @input
occurs in a context that was restricted to @pure. This clearly
conflicts with the semantics of effect polymorphism: the type
above dictates that map ought to be pure, except when it ap-
plies f—where @input can be legally produced.

The solution we propose to resolve this tension is to
recognize that whenever a function is casted to an effect-
polymorphic type, we should skip the effect cast on the con-
sidered higher-order argument, and use its latent effects to
dynamically restrict the context of privileges. In our exam-
ple, this means not inserting a check for @input, but rather
a restriction to @input when applying function f. Doing
so is sound, because at the call site of the casted map func-
tion, the effect system has either statically established that
the current context has the necessary privilege @input, or
has inserted an effect cast to ensure that it is the case. In
both cases, the casted function cannot produce more effects
than what the current set of privileges allows when applying
the casted function.

3.2 Customizable Effect System
We propose a domain-specific language, Effscript, to allow
programmers to declaratively define effect disciplines. An
effect discipline is composed of an effect domain and a num-
ber of external effect specifications. An effect domain is de-
fined by a set of privileges, possibly type-parametrized, and
a lattice that establishes subeffecting between effect privi-
leges. External effect specifications (effspecs for short), per-
mit both the external specification of effect annotations on
function definitions as well as ascriptions. They also declare
which expressions produce the effects of the domain.

To illustrate the use of Effscript, let us consider the re-
fined IO domain presented in Figure 1. Suppose addition-
ally that the programmer wants to track output only when
printing Person objects. The complete discipline (domain
and effspecs) is defined in Figure 2. The discipline is named
RichIO (line 1); we now explain its definition in details.

Domain. The different effect privileges and the associated
lattice can be seen in lines 2–8 of Figure 2. Lines 2-3 de-
fine the effect privileges of the domain. Notice that @input
has a covariant type parameter, creating a subeffect relation
according to the subtyping of the type parameter.

Lines 4–8 define the lattice. Line 5 (resp. 6) indicates
which effect is to be considered the top (resp. bottom) of the
lattice for the RichIO discipline. Line 7–8 are two subef-
fecting declarations, making both @stdout and @stderr

subeffects of @output. When processing the discipline def-
inition, Effscript checks that the lattice is well-formed (use
of defined privileges, unicity of top and bottom elements,
absence of cycles, consistent variance annotations).

External effect specifications. Lines 9–15 are the effspecs.
An effspec is similar to a pointcut/advice pair in aspect-

1 name: RichIO
2 effects: @noIo, @input[+T], @output, @stdout,
3 @stderr, @io
4 lattice:
5 top: @io
6 bottom: @noIo
7 @stdout <: @output
8 @stderr <: @output
9 effspecs:

10 app scala.Predef.read*:T prod @input[T]
11 app *.Predef.println(T<:Person) prod @output
12 app *.err.println(T<:Person) prod @stderr
13 app *.out.println(T<:Person) prod @stdout
14 def processStudents() ann @stdout @input[Int]
15 def loadStudents() ann @input[Student] within
16 controllers.*

Figure 2. Refined IO discipline using Effscript.

oriented programming [22, 24]: the first part, much like
a pointcut, identifies code elements. Here, code elements
are either function/method applications app or definitions
def, identified using a simple pattern sub-language with
wildcards and type constraints. The second part, much like
a (domain-specific [14]) advice, specifies how to affect the
identified code elements.

The prod operator means that the identified element pro-
duces the given effect. A type variable in the pattern is used
to bind the corresponding type parameter in the produced
effect. For instance, on line 10, the effspec states that any
application of a method of the Scala.predef package that
starts with read and returns a value of type T should be con-
sidered as producing an @input[T] effect. Lines 11-13 de-
clare how the other effects are produced. Note the use of the
type constraint T<:Person to express that only the printing
of Person objects is of interest.

The ann operator means that the identified code ele-
ment is annotated with the given effect. For a function def-
inition, this corresponds to the latent effects of the func-
tion. For instance, line 14 specifies that the the latent ef-
fect of the processStudents function is @stdout and
@input[Int]. This means that the function does not type-
check if it prints a Person object on the error output stream,
or if it reads a non-integer input. Similarly, line 15 declares
that it is valid for loadStudents to read Student objects
only. Note that line 15 uses the within operator to annotate
the function only if it is lexically inside any definition that
belongs to the controller package. Using ann on an appli-
cation instead of a definition results in an effect ascription,
as in ‘f(x) : @output’.

4. A Theory of Gradual Polymorphic Effects
To precisely describe the semantics of the customizable
gradual polymorphic effect system, we first describe a fusion
of the theory of gradual effects of Bañados et al [5] (TGE)
and the lightweight polymorphic effect system of Rytz and
Odersky [30, 32] (LPE). As in both approaches, we focus on
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a small core language, the lambda-calculus with a base type,
extended with effect annotations. This section only contains
highlights of the formal system. The complete formalization
and soundness proof can be found in the companion tech-
nical report [37]. Section 5 describes the customizability of
the system using Effscript. Section 6 discusses the Scala
implementation.

4.1 Technical Background
The description of the gradual polymorphic effect system
that follows heavily relies on both TGE and LPE. Therefore,
this section strives to concisely describe the most important
technicalities of both systems. The reader familiar with this
prior work can safely jump directly to Section 4.2.

4.1.1 Gradual Effects
The theory of gradual effects is formulated as an extension
to the generic effect system of Marino and Millstein [27].
The typing judgment has the form Φ; Γ ` e : T , where Φ
is a set of effect privileges, indicating what effects can be
produced by a given expression e. To typecheck, an effectful
operation requires the corresponding effect privilege to be
in the privilege set Φ. Certain expressions grant privileges,
thereby adjusting the privilege set Φ5. The system is generic
in that the checking and adjusting of the available privilege
set are parameters of the type system, defined as a check
predicate and an adjust function.6

TGE introduces a new unknown effect, denoted ¿. One
of the key insights of that work is to use abstract interpre-
tation [9] to give meaning to ¿. A privilege set that con-
tains ¿ is called a consistent privilege set, and represents a
number of possible concrete privilege sets. This definition is
made precise by the notion of the concretization function γ.
For instance, consider a domain of three effects for memory
management: @read, @write, @alloc. The concretization
of the consistent privilege set Ξ = {@alloc, ¿} is the fol-
lowing set of privilege sets:
γ(Ξ) = {{@alloc}, {@alloc,@read},

{@alloc,@write}, {@alloc,@read,@write}}

The typing rules use a consistent privilege set Ξ instead
of Φ in the context because of the unknown privilege. Then,
instead of using standard set containment to relate the pro-
duced effects with the permitted ones, the gradual system
uses a notion of consistent containment between privilege
sets, which is roughly set containment modulo the unknown:
Ξ1 is consistently contained in Ξ2, notation Ξ1 @∼ Ξ2, if and

5 In this article, we use the terms “effect” and “privilege” interchangeably.
6 More precisely, the check predicate is indexed by check contexts C,
which represent the non-value expression forms of the language, and the
adjust function is indexed by adjust contexts A, which represent the
immediate context around a given subexpression [5, 27]. For instance, in a
language with only function application, there is one check context, and two
adjust contexts, which correspond to evaluating each sub-expressions. For
simplicity in the notation, we simply refer to check and adjust, leaving
their contextual indexes implicit.

only if Φ1 ⊆ Φ2 for some Φ1 ∈ γ(Ξ1) and Φ2 ∈ γ(Ξ2). In-
terestingly, the check and adjust functions of the generic
effect framework can be automatically lifted to operate on
consistent privilege sets, denoted c̃heck and ãdjust, re-
spectively. The exact definitions from [5] are not necessary
to follow the description of our system.

Finally, as is standard in the formalization of gradual typ-
ing [34], the semantics of the language is given by translation
to an internal language with dynamic checks. The evaluation
judgment has the form Φ ` e → e′, meaning that e reduces
to e′ under the current privilege set Φ. The dynamic opera-
tions that are inserted either restrict the current privilege set
(restrict) or check the current privilege set for a given ef-
fect privilege (has). These operations are inserted whenever
the unknown effect is used in a typing derivation, to enforce
the corresponding dynamic checks. If an effect check fails, a
runtime effect error is raised.

4.1.2 Lightweight Polymorphic Effects
To provide a practical effect system for Scala, Rytz and
Odersky propose Lightweight Polymorphic Effects [30, 32].
LPE is also based on the generic effect system of Marino and
Millstein [27], albeit more loosely.

In particular, LPE is not formulated as a privilege check-
ing system, but as an effect inference system. The type judg-
ment of LPE has the form Γ;x ` e : T ! Φ, where Φ is
the set of inferred effects (output), instead of being part of
the context (input). The x is called the polymorphic context,
and is related to the main contribution of LPE, which is the
mechanism for effect polymorphism.

A higher-order function (like map) is effect-polymorphic
if its latent effects depend on the effects of some of its
(higher-order) arguments. This is expressed by indicating
relative effects variables on function types, meaning that
each function declares a list of argument names x that con-
tribute to its latent effects. For instance, the (curried) type of
map is written List[A]

⊥−→(f : A
>−→B)

⊥−→
f

List[B], ex-

pressing that map is pure, save for the effects of its function
argument f . This means that the actual latent effects of ap-
plying map are fully determined at each call site, once the
type of the mapped function is known. In the typing judg-
ment, the polymorphic context x keeps track of the variables
on which the expression e is effect polymorphic. For the
purpose of typechecking e, the application of functions con-
tained in the polymorphic context is considered to be pure.

4.2 Language Syntax
We now turn to the formal description of the gradual poly-
morphic effect system. This section and the following de-
scribe the extensions and modifications to TGE that are nec-
essary to integrate gradual effects with effect polymorphism,
and subeffecting.

The syntax is shown in Figure 3. As in TGE, the language
is parameterized on some finite set of privileges Priv for
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φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P (Priv) , Ξ ∈ CPrivSet = P (CPriv)

v ::= unit | (λx : T . e)T ;Ξ;x Values
e ::= x | v | e e | e :: Ξ Terms

T ::= Unit | (x : T )
Ξ−→̄
x
T Types

Figure 3. Language syntax

a given effect domain. Subeffecting is a partial order on
effect privileges, denoted φ1 <: φ2. A consistent privilege,
in CPriv, can additionally be the unknown privilege ¿. A
consistent privilege set Ξ is an element of the power set of
CPriv, i.e. a set of privileges that can include ¿.

A value can either be unit or a function. The main
difference with TGE is that functions are fully annotated7,
including the type of the argument T1, the return type T2,
the latent (consistent) privilege set Ξ, and the relative effect
variables x. A term e can be a variable x, a value v, an
application e e, or an effect ascription e :: Ξ. A type is either
Unit or a function type (x : T )

Ξ−→
x

T . Although functions
have only one argument, the relative effect variables x can
include variables defined in the surrounding lexical context.

For instance, in a context Γ where f is defined, a function
that takes a function g as argument, performs some output,
and applies both f and g, can be defined as follows:

(λg : Unit
>−→Unit . ...)Unit;{@output};{f,g}

4.3 Type System
The complete type system is presented in Figure 4; the
changes with respect to TGE are highlighted in gray. In
particular, the type judgement Ξ; Γ;x ` e : T includes the
additional polymorphic context x. Also, the rules rely on two
specific notions: consistent subcontainment, an extension
of consistent containment that supports subeffecting, and a
new definition of consistent subtyping that additionally takes
polymorphic contexts into account.

Consistent subcontainment. Subeffecting yields a more
flexible notion of set containment, called subcontainment:

Definition 1 (Subcontainment). Φ1 is subcontained in Φ2,
notation Φ1 ⊆: Φ2, if and only if ∀φ1 ∈ Φ1, φ1 ∈ Φ2 ∨
∃φ2 ∈ Φ2 such that φ1 <: φ2.

Based on this notion of subcontainment, we can define
consistent subcontainment as an extension of consistent con-
tainment (recall Section 4.1.1) that deals with subeffecting:

Definition 2 (Consistent Subcontainment). Ξ1 is consis-
tently subcontained in Ξ2, notation Ξ1 @∼: Ξ2, if and only
if Φ1 ⊆: Φ2 for some Φ1 ∈ γ(Ξ1) and Φ2 ∈ γ(Ξ2).

7 We further discuss annotations in Section 6.1.

Ξ; Γ; x ` e : T Var
Γ(x) = T

Ξ; Γ; x ` x : T

Fn
Ξ1; Γ, x : T1; x1 ` e : T ′ T ′ .: T2

Ξ; Γ; x ` (λx : T1 . e)
T2;Ξ1; x1 : (x : T1)

Ξ1−−−→
x1

T2

Eff
Ξ1; Γ; x ` e : T Ξ1 @∼: Ξ

Ξ; Γ; x ` (e :: Ξ1) : T

App

ãdjust(Ξ); Γ; x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ; x ` e2 : T2

Ξ1
′ = Ξ1 ∪ (∪f∈(y\x)latentΓ;x((Γ, y : T2)(f)))

e1 6∈ x Ξ1
′ @∼: Ξ T2 .: T1 c̃heck(Ξ)

Ξ; Γ; x ` e1 e2 : T3

AppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3 ãdjust(Ξ); Γ; x ` e2 : T2

f ∈ x T2 .: T1 c̃heck(Ξ)

Ξ; Γ; x ` f e2 : T3

Figure 4. Gradual polymorphic effects: type rules.

Consistent subtyping. Consistent subtyping from TGE ex-
tends subtyping to deal with consistent privilege sets. Modi-
fying consistent subtyping from TGE to use consistent sub-
containment is enough for dealing with subeffecting, but is
not sufficient for polymorphism: we need to account for the
relative effect variables on function types, as in LPE. The full
definition of subtyping for effect polymorphism is quite in-
volved [30]. Consistent subtyping.: reuses the definition of
subtyping from Rytz, except for the fact that it relies on con-
sistent subcontainment, instead of the simple containment
relation used by Rytz to compare effect sets (see [37] for
details).

Typing rules. Rule [Var] is self explanatory. Rule [Fn]
typechecks the body of the function using the annotated
privilege set Ξ1 and relative effect variables x1, and verifies
that the type of the body T ′ is a consistent subtype of the
annotated return type T2.

To type an effect ascription (rule [Eff]), the ascribed priv-
ilege set is used to typecheck the inner expression. This rule
is the same as in TGE save for the polymorphic context and
the fact that is uses consistent subcontainment to check that
the ascribed privilege set is valid in the current context.

Rule [App] is an adaptation of the corresponding TGE
typing rule to support relative effects. The sub-expressions
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e1 and e2 are typed using adjusted privilege sets (according
to each domain). c̃heck verifies that the application is al-
lowed with the given permissions Ξ. A subtlety is that if the
invoked function is effect-polymorphic, its latent effects are
not only Ξ1, but also include the latent effects of the rela-
tive effect variables of the functions in y that are not already
present in the polymorphic context x.

These additional latent effects are computed by the aux-
iliary function latentΓ;x(T ) defined in [30]. The function
needs access to both the type environment Γ and the poly-
morphic context x to lookup the types of the relative effect
variables. An extra subtlety is that the type of each f in y\x
is obtained in an environment in which the argument y has
type T2, not T1. This is to account for effect polymorphism:
the actual latent effects of the argument come from e2.

Rule [AppP] is a new rule for the application of functions
that are the parameter of an enclosing effect-polymorphic
function (i.e. f ∈ x). The difference between [AppP] and
[App] is very subtle: the typing rule [AppP] does not need to
check if the latent effects of the function being applied are
consistently subcontained in the set of privileges of the en-
closing application. The reason is that in [AppP] the applica-
tion is being polymorphic on f , meaning that the application
is allowed to produce any effect that f may produce.

4.4 Extension of the Translation Rules
The source language supports unknown privilege annota-
tions, therefore runtime checks must be introduced. To in-
troduce runtime checks, the source language is translated
into an internal language, which makes runtime checks ex-
plicit. The rules are similar to TGE except for the support
for effect polymorphism, subeffecting, and the way we deal
with higher-order casts. Figure 5 presents the most signifi-
cant translation rules, i.e. for function application.

Rule [TApp] describes the non-polymorphic function
application. There are two main differences compared to
[App]. First, a runtime check may be introduced using
insert-has?, to determine whether the statically-missing
privileges in Ξ to perform the application are available at
runtime. This privilege set Φ is obtained using the meta-
function ∆ defined in [5], which computes the minimal set
of additional privileges needed to safely pass the c̃heck ver-
ification. The metafunction insert-has? inserts a dynamic
check for privileges only if the privilege set Φ is not empty.

Rule [TAppP] is the transformation rule for applications
of functions that are the parameter of an enclosing effect-
polymorphic function. It is very similar to [TApp] save for
the fact that the application expression is a variable f , so
there is no recursive translation.

Cast insertion. Both rules [TApp] and [TAppP] use the
cast insertion metafunction 〈〈·〉〉cΓ to cast the application ex-
pression to the appropriate type. An inserted cast has the
form 〈T2 ⇐ T1〉cΓ. As a standard optimization, a cast is only
inserted if the casted expression is not a static subtype of the

Ξ; Γ;x ` e⇒ e′ : T

TApp

ãdjust(Ξ); Γ;x ` e1 ⇒ e1
′ : (y : T1)

Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 ⇒ e2
′ : T2

Ξ1
′ = Ξ1 ∪ (∪f∈(y\x)latentΓ;x((Γ, y : T2)(f)))

Ξ1
′ @∼: Ξ T2 .: T1

e1
′′ = 〈〈(y : T2)

Ξ−→T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉trueΓ e1
′

e1 /∈ x c̃heck(Ξ) Φ = ∆(Ξ)

Ξ; Γ;x ` e1 e2 ⇒ insert-has?(Φ, e1
′′ e2

′) : T3

TAppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 ⇒ e2
′ : T2

ef = 〈〈(y : T2)
Ξ−→T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ f

f ∈ x T2 .: T1 c̃heck(Ξ) Φ = ∆(Ξ)

Ξ; Γ;x ` f e2 ⇒ insert-has?(Φ, ef e2
′) : T3

Figure 5. Translation to the internal language: rules for
application.

target type. The c and Γ annotations in both cases are new
compared to TGE. The boolean variable c is used to indi-
cate whether the cast must eventually include the dynamic
effect check has or not: c is true if an application is not poly-
morphic [TApp], and false if the application is polymorphic
[TAppP]. The annotated type environment Γ is technically
necessary to resolve latent effects in casts.

Higher-order effect casts. In the theory of gradual ef-
fects [5], translation to the internal language introduces
higher-order casts, whose semantics is then given in the dy-
namic semantics:

〈T21
Ξ2−→T22 ⇐ T11

Ξ1−→T12〉 (λx : T11 . e)→
(λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1|\|Ξ2|))

[(〈T11 ⇐ T21〉x)/x]e)

That is, a higher-order cast reduces to a function wrapper
that restricts the current privilege set to Ξ2, and then
checks that the context has the minimal privilege set not
already accounted for statically. Note that a cast on the
argument is also inserted, which may turn out to be higher-
order as well. This semantics requires the runtime system to
have dedicated support for higher-order casts.

We adopt instead an equivalent formulation in which
higher-order casts are given semantics directly during the
translation phase: a cast is statically expanded to the cor-
responding literal function wrapper. The downside of this
approach is that it forces us to introduce an internal appli-
cation operator • to apply wrappers without interfering with
type checking. However, this operator is important for type-
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checking only, and its existence at runtime is necessary only
to formally prove type soundness. A consequence of sound-
ness is that it can be erased, and all applications are dealt
with in the same way. Consequently, we avoid modifying
the runtime semantics of the language.

As explained in Section 3.1, a key challenge in integrating
gradual and polymorphic effect checking is the ability to
cast a function to an effect-polymorphic type. The solution
is to not insert a has check in the function wrapper of an
argument on which the target function type is polymorphic,
and to allow a richer context of privileges using restrict.
Therefore, the semantics of higher-order effect casts depends
on whether the cast is monomorphic or polymorphic.

Monomorphic effect casts. A monomorphic effect cast is
defined as follows:8

〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x2 : T11)
Ξ1−−→
x1

T12〉trueΓ f =

(λx2 : T21 . 〈〈T22 ⇐ T12〉〉trueΓ

restrict Ξ2 ∪ (∪x∈(x2)latentΓ;∅((Γ, x2 : T21)(x)))

has |Ξ1 ∪ (∪x∈(x1\x2)latentΓ;∅((Γ, x2 : T21)(x)))|\|Ξ2|
f•(〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x2))T21;Ξ2;x2

The general scheme is overall the same as in TGE: the cast is
compiled into a new function that performs a restrict/has
combination, casting both the argument and the return value.
Compared to TGE, the cast insertion function 〈〈·〉〉cΓ is used
in order to recursively compile these inner casts. The cast
on the return type always inserts a dynamic check (c is true)
because there is no polymorphism on return values. For the
argument cast, c is true only if the target type of the cast
is not polymorphic in its argument x2, i.e. x2 6∈ x2. Also,
note that while TGE uses direct substitution to silently apply
the casted function (a trick that is only applicable because
casts are given specific runtime semantics), we resort to
a primitive application operator •, which does not cause
additional effect checks. The most interesting part of the
definition is that inserted restrict must include the latent
effects of the relative effect variables of the target type,
because they represent the maximal privilege set that x2 may
produce. Also, the inserted has must check for the latent
effects of the relative effects variables of x1\x2, because
they represent the maximal privilege set that x1 may produce
and that x2 does not produce.

Polymorphic effect casts. A polymorphic effect cast is de-
fined as follows:

〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x1 : T11)
Ξ1−−→
x1

T12〉falseΓ f =

(λx2 : T21 . 〈〈T22 ⇐ T12〉〉trueΓ

8 The definition assumes that the casted expression is a variable f . This is
because in case the expression is an arbitrary e, the cast insertion function
introduces an internal function application to ensure that e is evaluated first
before the wrapper is created. This synthetic application is realized with a
primitive application operator that does not cause additional effect checks.

restrict Ξ2 ∪ (∪x∈(x2)latentΓ;∅((Γ, x2 : T21)(x)))

f•f (〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x2))T21;Ξ2;x2

The most significant difference with the monomorphic case
is that no has check is introduced. This adaptation of
restrict/has corresponds to the flexibility of effect poly-
morphism: applying a function on which the expression is
polymorphic is considered to not produce any effect (no
has), but the permitted effects must be bounded by the de-
clared latent effects of that function (with restrict). Note
also that the primitive application operator used to apply f
is annotated, •f , in order to keep track of the fact that the
latent effects of f need not be considered.

As an illustration, Appendix A provides a step-by-step
derivation of (a simplified version of) the map example of
Section 3.1.

4.5 Soundness
Type soundness of the gradual polymorphic effect system is
proven by proving soundness of the internal language using
a standard preservation and progress argument. We then
prove that the translation from the source language to the
internal language preserves typing, thereby establishing type
soundness for the gradual language. The complete definition
and soundness proof is available in the companion technical
report [37].

5. Customizing the Effect System
This section briefly discusses how Effscript, the domain-
specific language for specifying effect disciplines, is de-
fined. The syntax of Effscript is fairly straightforward (Ap-
pendix B). In particular, the syntax of external effect speci-
fications (effspecs) is directly based on pointcuts in aspect-
oriented languages, in particular in the static pointcut des-
ignators of AspectJ such as call and within [22]. We have
settled for a simple design that is expressive enough to cover
the needs we encountered in practice so far.

We describe the semantics of Effscript through extensions
of the semantics of the gradual polymorphic effect systems
of the previous section. In this paper, we focus on the se-
mantics of annotation specifications (with ann) and produc-
tion specifications (with prod). In short, annotation specifi-
cations are realized through a pass of code transformation
prior to effect checking, while production specifications are
dealt with directly in the effect system.

Similarly to the class table in Featherweight Java [20],
which holds the information about class definitions and is
implicitly available in the typing rules, we introduce an eff-
spec context, which is used by matching functions to deter-
mine whether an effspec applies to the considered expres-
sion. We do not explicitly pass this context around.

Annotation specifications. The ann operator is given se-
mantics through a source-to-source transformation that in-
serts effect ascriptions where needed. To determine whether
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an application or definition must be updated, the matching
function matcha relies on the type information. Therefore,
the source-to-source translation is defined as a judgment of
the form Γ ` e e′ : T . Here is the transformation rule for
an application that is matched by at least one effspec:

AApp-m

Γ ` e1  e1
′ : T1−→T3 Γ ` e2  e2

′ : T2

Ξ = matcha(e1 e2, T1−→T3, T2) Ξ 6= ∅

Γ ` e1 e2  (e1
′ e2
′ :: Ξ) : T3

matcha can exploit the syntactic information of e1 and e2

as well as their respective types in order to determine if some
effspecs match the application expression. If so, it returns a
consistent privilege set Ξ that is the union of all the declared
annotations. Ξ is then used to insert the ascription. Note that
effects are not taken into account at this early stage. The
simple typing phase is necessary to provide matcha with the
type information of e1 and e2. The type-and-effect system
defined previously applies on the transformed code in which
all annotations have been introduced.

Production specifications. The prod operator updates the
effects produced by an application or the latent effects of a
function definition. The semantics of production specifica-
tions is integrated in the effect system. Here is the modified
rule for an application that is matched by at least one effspec:

PApp-m

ãdjust(Ξ); Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

Ξ1
′ = Ξ1 ∪ (∪f∈(y\x)latent((Γ, y : T2)(f)))

Ξ1
′ @∼: Ξ T2 .: T1

Ξ′ = matchp(e1 e2, T1−→T3, T2)

Ξ′ 6= ∅ Ξ′ @∼: Ξ

Ξ; Γ;x ` e1 e2 : T3

As for annotation specifications, matchp returns the union
of the produced effects of all matching effspecs, or the empty
set if none match. If some effspecs match, then the only
check that is realized is that the current context Ξ includes
sufficient privileges for the new produced effects Ξ′.

Limitations of effspecs. All aspect-oriented extensions of
languages with first-class functions have to face the chal-
lenge of denoting functions in that may be aliased with
pointcuts [10, 13, 36]: for instance, detecting the call to
print in val f=print; f("foo");. Dynamic languages
such as AspectScheme and AspectScript typically resort to
function pointer equality at runtime [13, 36]; the alterna-
tive is to stick to compile-time pointcut matching, and limit
pointcuts to denote named function definitions without deal-
ing with aliases (e.g. AspectML [10]). To preserve static
matching, we adopt the latter approach and hence do not
match application of aliases to first-class functions.

Finally, the expressiveness of effspecs is rather limited so
far. For instance, we cannot refine the allowed privilege set
on the argument of an application, such as:

app spawn(e) ann (e) as @pure

Extending the expressiveness of effspecs is an interesting
venue for future work.

6. Implementation in Scala
The customized gradual effect system for Scala is imple-
mented as a compiler plugin for scalac, and an external
DSL, Effscript. Effscript is implemented simply using Scala
parsing combinators to process .eff files, and outputs Scala
source files with class definitions of the defined effect disci-
pline, which are used by the compiler plugin. The compiler
plugin itself is composed of two sub-plugins to implement
bidirectional effect checking as explained in Section 6.1 be-
low. Finally, we discuss how we support the semantics of
the gradual effect system without modifying the runtime en-
vironment (JVM) in Section 6.2.

6.1 A Bidirectional Effect System
The original system of Bañados et al does not require
lambda abstractions to be annotated with their latent effects;
instead, the latent effects are (non-deterministically) chosen.
Consider the abstraction type rule from [5]:

T-Fn
Ξ1; Γ, x : T1 ` e : T2

Ξ; Γ ` (λx : T1 . e) : T1
Ξ1−→T2

The function type uses Ξ1 as the latent effect sets, which
corresponds to any set that is sufficient to typecheck the body
e. This non-determinism is not satisfactory for implementing
the system, as it leaves the question of how to determine Ξ1

open. This is why the type system we have presented is based
on fully annotated functions, including their latent effects.
The downside is that requiring fully-annotated functions can
be impractical.

To resolve this tension, we have implemented a bidirec-
tional effect system, similar to the bidirectional type check-
ing approach of Pierce and Turner [29]. The system has two
working modes: a checking mode, in which the permitted ef-
fects are given in the typing context, and an inference mode,
in which latent effects are an output of the type system. Ef-
fect ascriptions and annotations trigger mode switches. In
particular, switching to inference mode allows the system to
infer the minimal valid effect set Ξ1 of a function definition.

To implement the bidirectional effect system, the sys-
tem works in two phases. The first phase takes a source
program with possibly missing annotations and produces a
fully-effect annotated program, using effect inference. Note
that this first phase reuses the effect plugin developed by
Rytz, which performs polymorphic effect inference, modi-
fied to take into account unknown effects and the Effscript
customizations. The second phase applies the effect check-
ing system on the fully-annotated code, together with the
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1 def f(x: Int): Unit @unknown = {
2 (/* body */) : @input
3 }
4 f(1) : @output
5 /*****************************************/
6 def f(x: Int): Unit = {
7 RuntimePrivileges.has(List(input()));
8 /* body */
9 }

10 RuntimePrivileges.restrict(List(output())){
11 f(1)
12 }

Figure 6. (top) Sample program, which typechecks but fails
at runtime. (bottom) Sample program after transformation.

translation for inserting has and restrict where needed, ex-
actly as described in Section 4.4. This phase is implemented
as a separate sub-plugin.

The translation to fully-annotated code is straightforward.
The judgement Γ;x ` e ⇒ e′ : T ! Ξ describes that the
expression e is translated to the (fully-annotated) expression
e′, of type T and produces effects Ξ. The only interesting
rule is the rule for the unannotated abstraction, given below:

Γ, x : T1; ∅ ` e⇒ e′ : T ! Ξ

Γ;x ` (λx : T1 . e)⇒ (λx : T1 . e)
T ;Ξ;∅ : (x : T1)

Ξ−→
∅
T ! ∅

The rule infers the return type T and the effects produced
by the function body Ξ. This information is used to translate
the lambda to a fully-annotated version. Note that, according
to the semantics of LPE, each function (even nested) should
explicitly declare its relative effect variables. In this case,
the unannotated lambda does not include such information,
so the polymorphic context is empty, and so is the relative
effects of the translated function.

6.2 Runtime Effect Checking
The gradual effect system is defined with a non-standard
runtime semantics to support checking effects at runtime [5].
The semantics include an extra context information to track
the current privilege set, and there are dedicated rules to
deal with has, restrict, and higher-order casts. A direct
implementation of this semantics would imply modifying
the JVM, which is not an option for the adoption of the
effect system by mainstream Scala programmers. Instead,
we transform Scala source code to an equivalent Scala code
that makes use of a small runtime library to track and check
effects at runtime.

Figure 6(top) shows a small program, which typechecks,
but fails at runtime because function f is trying to pro-
duce @input in a context where only @output is allowed.
The compiler plugin transforms the code into that of Fig-
ure 6(bottom).

The tracking of effect privileges in the context is imple-
menting using a dynamically-scoped variable (called dy-

namic variable in Scala), named RuntimePrivileges.
This object mainly provides two methods: has (line 7) to
check that the list of effects given as argument is compatible
with the current set of privileges, and restrict (line 10) to
adjust the set of privileges for the dynamic extent of its body
(the last argument delimited by curly braces).

The calls to has and restrict are inserted as needed
based on the (static) comparison of the required privilege set
and the privilege set available in the context. For instance,
the transformation shown in Figure 6 assumes that the con-
text of the f(1) call statically includes @output, hence no
has is inserted on line 10.

Representing effects. Note that the code after transfor-
mation uses a runtime representation of effects: @input

and @output are represented as (lowercase-named) classes
input and output, and privilege sets are represented as
Lists, as shown in lines 2 and 7. As we will see in Sec-
tion 7.3, the choice of more efficient runtime representation
for both effects and privilege sets can significantly affect the
observed overhead of runtime effect checking. Also, repre-
senting effects with type parameters is particularly challeng-
ing due to the fact that the JVM does not support runtime
type parameters. Consequently, we have to resort to strings
and reflection to compute subeffecting at runtime, which is
costly (see Section 7.3).

Higher-order casts. While the semantics of TGE treat
casts through dedicated reduction rules, here we take advan-
tage of the translation-based realization of casts described
in Section 4.4. This equivalent formulation has the advan-
tage of not requiring new evaluation semantics: higher-
order casts are handled simply with anonymous functions,
restrict, and has operations.

7. Experience and Validation
We now report on different efforts to experiment with and
validate the implementation of the customizable gradual ef-
fect system for Scala. We first report on the use of Effscript
to impose architectural constraints in web applications de-
veloped in the popular Play framework. Second, we discuss
how we can exploit gradual checking and external effect
specifications to integrate existing libraries in a system with
effects. Finally, we report on some benchmarks that assess
the cost of runtime effect checking, and the pay-as-you-go
motto of gradual typing.

7.1 Architectural Constraints in Play
Play is a popular web framework for Scala and Java [39]. A
typical Play application follows the MVC architectural pat-
tern. The MVC pattern splits applications into three layers:
the model layer, the view layer and the controller layer. The
model components define the data entities on which the ap-
plication operates, and usually relies on a persistence stor-
age mechanism to store the data, such as a database. The
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package controllers
import models._
object UserController{
  def index(name: String) = 
   Action{ implicit request => 
    val users = UserQuery.byName(name)
    Ok(views.html.index(users))}}

Controller.scala

Database

1 name: DBAccess
2 effects: @access, @noAccess
4 lattice: 
5   top: @access
6   bottom: @noAccess
7 effspecs:
8   app scala.slick.backend.*.* prod @access
9   def models.UserQuery.* ann @access
10  app scala.slick.backend.*.* ann @noAccess 
            within controllers.UserController
11  def views.html.*.apply() ann @noAccess 

mvc.eff

package models
case class User(name:String)
object UserQuery{
  def insert(u: User) = { 
    /*Slick code*/ 
  }
  def byName(name: String)={ 
     /*Slick code*/ 
  }}

Model.scala

@(users: 
List[models.User])
<ul>
  @for(user <- users){
    <li>@user.name</li>
  }
</ul>

index.html

Figure 7. Enforcing the MVC pattern in Play with Effscript.

view components render the model into a user interface. The
controller components respond to events and may access the
models.

The MVC pattern mandates a number architectural con-
straints. Most importantly, only models should be able to
access the database directly. Controllers can access the
database only through models, not directly. Views should
not be able to access the database, either directly or through
calling methods on model objects that access the database
(they are only allowed to read properties of model objects).
Of course, the standard Scala type system falls short when it
comes to ensuring that a Play application really follows these
architectural constraints. We can use Effscript to declara-
tively specify an effect discipline for these MVC constraints
for a given Play application, so that the type system helps
programmers respect the pattern.

Figure 7 shows a UserController controller that queries
all users in the database by calling the byName method of
the UserQuery model, which uses the Slick library [38] for
database access. The result is rendered by the index.html
template. The figure shows the interactions that should be
prevented by the effect system.

The Effscript file mvc.eff on Figure 7, lines 1–6, defines
the custom effect discipline to enforce the MVC pattern in
the Play application. It declares two effects, @access and
@noAccess, to represent database access privileges. With
this effect domain specification, one can either use effect

annotations explicitly in the application code, or use effspecs
(as in lines 7–11). We discuss both approaches below.

Explicit effect annotations. Directly using the effect dis-
cipline requires the model to be updated in order to declare
where effects are produced:
1 package models
2 case class User(id: Long, name: String,
3 parentId: Long)
4 object UserQuery{
5 val all = TableQuery[UserTable]
6 def insert(u: User): Unit @access = {
7 all += u
8 }
9 def byName(name: String):

10 List[User] @access = {
11 all.filter(_.name===name).list
12 }
13 }

Line 6 and 9 declare that those methods produce the @access
effect. In addition, to prevent the controller or the view from
access the database directly, we need to use explicit effect
ascriptions, for instance:
1 package controllers
2 import models._
3 object UserController{
4 def index(name: String) = DBAction {
5 implicit rs =>
6 val users = UserQuery.byName(name)
7 UserQuery.all +=
8 User("John", 1) : @noAccess
9 Ok(views.html.index(users))

10 }
11 }

One could argue that instead of introducing the ascription,
it would be preferable to avoid performing a direct call to
the database in the first place. However, it can be hard to
avoid writing these explicit ascriptions without using effects.
For instance, Play uses Twirl 9 as a template engine, which
transform views to objects. As of today, Twirl does not
support annotation of views. Therefore we cannot simply
declare index.html to be pure and have to use explicit
ascriptions as above on each effectful operation of a view.

Finally, unless we are willing to manually introduce effect
annotations and recompile the whole Slick library and its
dependencies, we have to assume that Slick functions always
potentially produce maximal effects, which is impractical.

Effspecs to the rescue. Effspecs elegantly solve all the
problems described above. We can declaratively specify the
effects allowed in the views, as well as which effects are
produced where, without having to alter the source code:
6 ...
7 effspecs:
8 app scala.slick.backend.*.* prod @access
9 def models.UserQuery.* ann @access

10 app scala.slick.backend.*.* ann @noAccess
within controllers.UserController

11 def views.html.*.apply() ann @noAccess

9 https://github.com/playframework/twirl
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Line 8 declares that every method of the Slick library
produces @access. Line 9 grants the UserQuery model
the privilege to access the database, by adding @access

to the latent effects of all its methods. Line 10 declares
that UserController is not allowed to directly access the
database through the Slick library, but it can still access
the database through methods of the model. Finally line 11
declares that views cannot access the database at all: the
latent effect of every function of the views.html package
must be pure. This means that directly calling methods from
the Slick backend or methods from models that access the
database is rejected by the effect system.

Interestingly, even implicit calls to effectful operations
in the views can be detected and prevented. Suppose a
method getChildren of class User that uses a method of
UserQuery. A simplified view that shows the information
of a user could be declared as follows:

1 @(user: models.User)
2 <p>Name: @user.name</p>
3 <p>Children: @user.getChildren.mkString(",")</p>

Line 3 accesses the database implicitly through the method
getChildren, hence violating the MVC restriction. Thanks
to the defined effspecs and effect propagation, the effect
system infers that getChildren produces @access, and
therefore it is rejected statically.

Refining the restriction to certain tables. We can further
refine the effect discipline by forbidding UserController

to insert in the database new model objects other than users.
This refinement is formulated in Effscript by extending the
definition of Figure 7 as follows:

name: DBAccess
effects: ..., @insert[+T]
lattice:

...
insert[T] <: @access

effspecs:
...
app models.*.insert(T) prod @insert[T]
app models.*.insert[T] ann @insert[User]

within controllers.UserController

To track insertions of model objects of type T in the database,
a new (covariant) effect privilege @insert[+T] is de-
clared. In the lattice section, we declare that @insert[+T]
is a subeffect of @access. Finally, two new effspecs are
added: the first specifes that methods called insert of
package model produce @insert[+T] binding the type
of the method argument T to the type parameter of the pro-
duced privilege. The second effspec declares that whenever
a UserController invokes such an insert method, the
application expression is wrapped with an effect ascription
insertUser, thereby ensuring that only insertion of User
objects are allowed.

For instance, suppose that a BlogArticle is acciden-
tally inserted in the UserController:

1 package controllers

2 import models._
3 object UserController{
4 def insert(name: String) = DBAction {
5 implicit rs =>
6 val article = BlogArticle(...)
7 BlogArticleQuery.insert(article)
8 Ok(views.html.flash("success"))
9 }

10 }

The effect system reports an error informing that line 7
is produces insert[BlogArticle] whereas the only al-
lowed effect is insert[User].

7.2 Interfacing with Existing Libraries
Integrating external libraries in a system that uses effect dis-
ciplines is challenging. One can either (over conservatively)
assume that external functions can produce any effect (>),
or unsafely assume that they are pure (⊥). In both cases, the
fact that the decision is a global language default is too rigid.
A more flexible option consists in generating stub files for
external libraries and manually annotate each external func-
tion with its intended types—such an approach is supported
for instance in the Checker framework for pluggable type
systems [11], or to annotate existing JavaScript libraries in
TypeScript [7].

The system we propose in this work enhances the situa-
tion on two fronts. First, by supporting gradual effect check-
ing, there is an interesting alternative default option to the
>/⊥ dilema. By considering unannotated functions to pro-
duce unknown effects, one resorts to dynamic checking for
third party libraries. Technically, a limitation is that the grad-
ual checking approach of Bañados et al, adopted here, works
by translating code to insert dynamic checks (has) and con-
text adjustments (restrict). Therefore, the code of the ex-
ternal library should be available for processing.10

Interestingly, when external function definitions them-
selves cannot be altered, effspecs in Effscript provide an-
other viable alternative: an effspecs can denote all applica-
tions of the external function, just as we did in the MVC
example (Figure 7) to externally specify that calling Slick
backend methods produces the @access effect.

This leads us to the other advantage of our approach for
dealing with external libraries: the pattern matching lan-
guage (akin to pointcuts) allows us to attach default effect
annotations to several library functions at once, without hav-
ing to go through each function manually, as is necessary
with the stubs approach.

For instance, for the MVC example of Section 7.1, we
include the following effspecs in an initial global Effscript
file, to prevent effect tracking of external library functions in
which we are not interested:

10 The fact that our implementation works as a source-level modification
instead of bytecode-level modification is a technical detail; we could exploit
bytecode manipulation tools instead. But this does not address the issue of
foreign function interfaces, or libraries for which the bytecode cannot be
altered for copyright reasons.
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Figure 8. Impact of dynamic checks on execution time (log-
arithmic scale).

app play.* prod @pure
app controllers.* prod @pure
app java.* prod @pure
app org.joda.time.* prod @pure
app scala.(?!Function)* prod @pure
app scala.Function*.tupled* prod @pure
app views.html.helper.* prod @pure

Finally, note that the privilege set used to run a program
is initially empty, and is adjusted depending on the effect
annotations of the main method. For example, if main is
declared as:

def main(args: Array[String]): Unit @access

then the only available privilege for the execution of the
program is @access. The default is for the main method
to grant maximal privileges.

7.3 Benchmark
We now report on the cost of dynamic effect checks intro-
duced by the gradual effect system in Scala. The experiments
are run on an Apple computer with Mac OSX 10.9.5, 2.3
Ghz Intel Core i7 processor, 16GB of RAM, and flash stor-
age. We run Scala version 2.10.4.

We consider a small program that includes effect ascrip-
tions, polymorphic functions, function applications, and a
custom-made map function to which we pass as arguments
a list of ten integers and different kinds of functions: pure
anonymous functions, effect ascripted functions and effect-
ful functions.

We consider 4 versions of the same program, differing
only in the number of runtime effect checks they induce. The
first version of the program is fully annotated, hence its ex-
ecution does not produce any runtime effect check. The sec-
ond version has mostly unknown annotations, resulting in
95 dynamic checks (has) as well as 67 context adjustments
(restrict) per run of the program. Finally, we use two inter-
mediate partially-annotated versions, which produce 35 and
65 dynamic has checks per run, respectively (both produce
36 restricts per run).

A benchmark run consists in executing each of these
programs one million times. For each program, we perform
20 benchmark runs, and report on the variance and average
of all runs. Also, to avoid the noise of starting up the virtual
machine, each experiment warms up the JVM by running
the program 100.000 times. The results of the benchmark are
presented in Figure 8, plotting the total number of runtime
checks in each benchmark run with the corresponding time
in seconds. Table 1 presents the detailed measurements.

In addition to this baseline experiment (denoted “default”
in Figure 8), we perform several other complementary ex-
periments. First of all, we tested the piece of code without
the effect system, in order to measure the raw overhead of
using the plugin. Also, in order to assess the impact of the
complexity of the effect discipline on performance, we mea-
sure a scenario with subeffecting, and another with addition-
ally type parameters. Lastly, we perform an experiment in
which we use bit vectors instead of lists of objects for the
runtime representation of privilege sets, so dynamic effect
checks boil down to bitwise operations. More precisely, each
bit of the byte represents a specific effect privilege, where 1
means the privilege is present, 0 otherwise.

Results. The runtime overhead of using the effect system,
without runtime effect checks, is only 5%. The overhead
comes from the restrict operations, which track the dy-
namic current set of privileges during execution. When ev-
erything is fully annotated, restricts are still introduced to
track the initial privilege set, and every time an effect ascrip-
tion is encountered. Note that it would be possible to opti-
mize this scenario further through a flow analysis that deter-
mines whether the current privilege set is eventually used or
not, thereby avoiding some (if not all) restrict operations.

The cost of dynamic effect checking in the “default”
scenario increases significantly, starting with 15% overhead
and going up to 10x slower. Remember that this is using the
default representation of privilege sets as lists of privilege
objects. Adopting the bytes representation of privilege sets
is a drastic improvement, with an overhead starting at 2.7%
and reaching only 121% in the worst case.

Adding subeffecting, while provoking more involved
checks, does not induce any noticeable overhead compared
to the default scenario. It is certainly possible to design an
optimization for subeffecting relying on a byte-level repre-
sentation, although this is left as future work.

Using type parameters in the effect lattice badly affects
performance. Recall that, because type parameters are erased
when Scala is compiled to Java, the plugin uses strings and
reflection to compare type parameters at runtime. In fact, the
raw cost is much worse than the one presented here, because
we have implemented a caching mechanism to reduce the
overhead of reflection. Even with this optimization, the exe-
cution is 38x time slower.

To summarize, we find the results particularly encourag-
ing for a first practical implementation of a gradual effect
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# has 0 35M 65M 95M
# restrict 2M 36M 36M 67M

scenario avg std ovhd avg std ovhd avg std ovhd avg std ovhd
default 2.686 0.036 1.06x 14.994 0.104 5.91x 17.828 0.109 7.03x 27.926 0.202 11.0x
subeffecting 2.925 0.091 1.15x 15.703 0.152 6.19x 18.485 0.306 7.29x 28.265 0.321 11.4x
type params 3.641 0.031 1.44x 45.403 0.407 17.9x 59.783 0.537 23.6x 96.753 0.786 38.2x
bit vectors 2.605 0.022 1.03x 4.247 0.095 1.68x 4.472 0.122 1.76x 5.623 0.135 2.29x
no effects 2.535 0.025 1.00x - - - - - - - - -

Table 1. Detailed benchmark results

system. The observed performance of the implementation
respects the “pay-as-you-go” motto of gradual typing: the
overhead for a fully static program is acceptable, and there
is a progressive reduction in the overhead as the “static-ness”
of the effect discipline augments. In addition, there are pend-
ing optimization opportunities to be explored in each of the
scenarios. This being said, the high impact of type param-
eters in the lattice is probably unavoidable considering the
limitations of the JVM in this respect.

8. Related Work
This work is most related to lightweight effect polymor-
phism [32] and the theory of gradual effect systems [5],
which both build upon the generic effect system of Marino
and Millstein [27]. We have already extensively discussed
the relation to this work.

There is large body of work of integrating static and
dynamic type checking, which we cannot entirely discuss
here. The most related work in the area are the efforts to
apply the gradual typing approach of Siek and Taha [34] to
various advanced typing approaches. These include gradual
typestates [16, 40], gradual ownership types [33], gradual
security types [12, 15] and gradual typing for annotated type
systems [35]. Most of these works are theoretical, while we
strive to provide a practical implementation in a widely-used
language like Scala.

On the theoretical side, the main challenge of this work
is to support effect polymorphic cast. This is related to the
work on parametric polymorphism and gradual typing [3,
28], which addresses the issue of casting an unknown func-
tion type to a parametrically polymorphic type. In particular,
Matthews and Ahmed [28] use runtime sealing to ensure that
arguments of a polymorphic type variable are used paramet-
rically. The solution presented in this work is fairly different
technically because standard types are properties of values
while here we deal with effects, which are properties of com-
putations. But intuitively, one could see the restrict opera-
tion that is inserted in a polymorphic effect cast as the effect
counterpart of the runtime sealing of Matthews and Ahmed.

In spirit, this work is also very close to the motivation
of pluggable type systems [4, 8, 11]: providing facilities for
users to customize the type system as they see fit. In this re-
spect, while existing pluggable type systems are formulated
as generic frameworks, our work is specific to effect typing.

Most importantly, the customization is extremely easy com-
pared to framework-based approaches: Effscript is a simple
declarative language.

Indeed, pluggable type systems can be seen as open im-
plementations [23] of type systems, while the Effscript lan-
guage is akin to a domain-specific aspect language [14]. In
the same way that an aspect language like AspectJ [22] pro-
vides a more accessible and user-friendly interface to cus-
tomize a language than metaobject protocols [21] and open
compilers [25], Effscript should be more accessible to non-
experts than open type systems.

9. Conclusion
We have presented a generic effect system that is customiz-
able, gradual and polymorphic. The system has been imple-
mented as a compiler plugin for Scala. On the theoretical
side, the combination of gradual checking and lightweight
effect polymorphism required a subtle redefinition of the
rules for higher-order casts, in order to support casts to effect
polymorphic functions that preserve the flexibility of effect
polymorphism. A full proof of soundness is future work.

This is the first implementation of a gradual generic effect
system. Initial performance evaluation show that gradual ef-
fect checking can be made practical, even if more optimiza-
tion opportunities should be exploited.

In addition, another contribution of this work is to address
the customizability of effect systems via a simple domain-
specific language, Effscript, for declaratively defining effect
disciplines. We show the applicability of Effscript with a
simple Play application. There are many venues to enhance
Effscript, such as augmenting the expressiveness of the pat-
tern matching sub-language, and supporting incremental re-
finements of existing effect disciplines.
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A. Effect Polymorphic Casts: Detailed Example

Let us consider functions rcv : ((f : Int
@io−−−→ Int)

⊥−→
f

Int)
⊥−→ Int and function mapl : (f : Int

¿−→ Int)
¿−→ Int

defined as follows (for conciseness we omit annotations on lambda terms when these can be easily inferred and/or are not
relevant to the argument):

rcv = (λg : ((f : Int
@io−−−→ Int)

⊥−→
f

Int) . g((λx : Int . x)Int;⊥;∅))Int;⊥;∅

mapL = (λf : Int
¿−→ Int . f(1))Int;¿;∅

Suppose an initial privilege set Ξi and a program that consists of an application rcv(mapl). During transformation of the
source language into the internal language, [TApp] inserts casts as follows:

rcv(mapl)⇒ (1)

〈〈(f : Int
¿−→ Int)

¿−→ Int
Ξi−−→ Int⇐ ((f : Int

@io−−−→ Int)
⊥−→
f

Int)
⊥−→ Int〉〉trueΓ rcv(mapl) = (2)

((λf . (λx . restrict Ξi f•(〈〈(f : Int
@io−−−→ Int)

⊥−→
f

Int⇐ (f : Int
¿−→ Int)

¿−→ Int〉〉trueΓ )x))•rcv)(mapl) =

(3)

((λf . (λx . restrict Ξi f•((λy . restrict @io x•(〈〈Int ¿−→ Int⇐ Int
@io−−−→ Int〉〉

false

Γ y)))))•rcv)(mapl) =
(4)

((λf . (λx . restrict Ξi f•((λy . restrict @io x•((λz . y•yz))))))•rcv)(mapl) (5)

Notice how in (4) we restrict the privilege set to ⊥ plus the latent effects of f . With the naive semantics, we would restrict
the privilege set to ⊥, meaning that any effectful operation would produce a runtime error. Also, because we are casting to an
effect-polymorphic function on its argument, we flag the next cast so it does not introduce checks as shown in (5).

Let us consider the case where we insert the has as in the naive semantics, as highlighted in (6):

((λf . (λx . restrict Ξi f•((λy . restrict @io x•((λz . has @io y•yz))))))•rcv)(mapl) (6)

Applying several steps of evaluation we obtain:

((λf . (λx . restrict Ξi f•((λy . restrict @io x•((λz . has @io y•yz))))))•Γrcv)(mapl)→ (7)

(λx . restrict Ξi rcv•((λy . restrict @io x•((λz . has @io y•yz)))))(mapl)→ (8)

restrict Ξi rcv•((λy . restrict @io mapl•((λz . has @io y•yz))))→ (9)

restrict Ξi (λy . restrict @io mapl•((λz . has @io y•yz)))(λx . x)→ (10)

restrict Ξi restrict @io mapl•((λz . has @io (λx . x)•yz))→ (11)

restrict Ξi restrict @io (λz . has @io (λx . x)•yz)(1)→ (12)

restrict Ξi restrict @io has @io (λx . x)•y1 (13)

If the initial privilege set Ξ1 is ⊥ then the evaluation leads to Error even though no effect is produced. As explained before,
when the target of a cast is an effect polymorphic function on its argument, the insertion of has is not needed as it only
represents the maximal privilege set that the polymorphic function accepts as argument, not what the actually-produced effect
is. In this example the appropriate check for permissions is done while type checking the body of rcv: g((λx : Int . x))
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B. Effscript Syntax
The syntax of Effscript is presented in Figure 9.

effscript ::= name effects lattice [effspecs] Effscript
name ::= name: 〈string〉 Effscript name
effects ::= effects: effectDef + Effscript effects
lattice ::= lattice: top bottom relation∗ Effscript lattice
effspecs ::= effspecs: effspec+ Effscript effspecs
top ::= top: effect+ Top effect
bottom ::= bottom: effect Bottom effect
relation ::= effect <: effect Effect relation
effectDef ::= @unknown | @ 〈string〉 [typeParamDef ] Effect privilege definition
effect ::= @unknown | @ 〈string〉 [typeParamComp] Effect privilege
typeParamComp ::= [ typeCompLess+(,)] Type param with comparison op.
typeParamDef ::= [ ([variance] typeCompLess)+(,)] Type param with comparison op.

and variance
typeParam ::= [ typeVariable+(,)] Type param
variance ::= + | - Type variance
typeCompLess ::= typeVariable [<: typeName] Type with comparison op.
typeComp ::= typeVariable [comp typeName] Type with comparison op.
comp ::= <: | :> | =:= Comparison operator
effspec ::= pointcut advice+ External effect specification
pointcut ::= selector signature Pointcut
selector ::= app | def Selector
signature ::= pathPattern typeParam [args] Function signature
args ::= ( typeComp+(,)) Function argument types
advice ::= operation effect [within] Effect operation
operation ::= prod | ann Operation
within ::= within pathPattern Lexical within
pathPattern ::= pattern that denotes a path, such as scala.collection*, *.println Path pattern (*)
typeVariable ::= any type variable, such as T or V Type variable
typeName ::= name that denotes a type, such as String or Int Type name

(*) : The * is used as a wildcard to represent any sequence of characters excluding the ..

Figure 9. Effscript syntax
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