
Type-Theoretic Galois Connections∗

Pierre-Évariste Dagand
Sorbonne Universités
UPMC Univ Paris 06

CNRS—Inria—LIP6 UMR 7606
pierre-evariste.dagand@lip6.fr

Nicolas Tabareau
Inria

nicolas.tabareau@inria.fr

Éric Tanter
PLEIAD lab

Computer Science Dept (DCC)
University of Chile

etanter@dcc.uchile.cl

We observe that one approach to address the compilation of
source programs working with rich(er) types to target pro-
grams with weak(er) types is to formally relate both source
and target types via a type-theoretic partial Galois connec-
tion that accounts for the semantic correspondence between
both. The partiality of the connection reflects the potential
for failure when attempting to derive a corresponding value
at a source type given a value at a target type.

We explore the applicability of type-theoretic Galois con-
nections in the specific setting of dependent interoperabil-
ity: trading static guarantees for runtime checks, a depen-
dent interoperability framework provides a mechanism by
which simply-typed values can safely be coerced to depen-
dent types and, conversely, dependently-typed programs can
defensively be exported to a simply-typed application.
In this setting, a traditional monotone type-theoretic Ga-

lois connections enforces a translation of dependent types
to runtime checks that is both sound and complete with re-
spect to the invariants encoded by dependent types. We also
study a variant, dubbed anticonnection, which lets us induce
weaker sound conditions that can amount to more efficient
runtime checks.

Using our Coq framework, users can specify domain-specific
partial connections between data structures. The library
takes care of the (heavy) lifting that leads to interopera-
ble programs. It thus becomes possible to internalize and
hand-tune the extraction of dependently-typed programs to
interoperable OCaml programs within Coq itself.

Methodology We motivate our formalism, type-theoretic
(partial) Galois connections, through the familiar relation be-
tween the dependently-typed Vec N n and its simply-typed
counterpart List N. Our objective is to define a pair of (par-
tial) functions mediating between vectors and lists, allowing
us to switch safely between both representations. We also
want to precisely characterize the relationship between both
functions.

We notice that there is a total embedding

forget n: Vec N n→ List N

∗This work was partially funded by the CoqHoTT ERC Grant 637339, by
FONDECYT Project 1150017 and the Émergence(s) program of Paris.

PriSC’18, January 08–13, 2018, Los Angeles, CA, USA
2018.

from vectors of size n to lists. The challenge is thus to define a
(necessarily partial) function mapping lists to vectors. To do
so, we adopt a two-step process. First, we exploit the standard
notion of type equivalence to relate the type Vec N n to its
image by forget:

im forget n := { l: List N & ∃ v: Vec N n, forget n v = l }

that explicitly segregates the computational content of vectors—
“a list” —from its logical content—“whose length is equal to
n”. Indeed, the property ∃ v: Vec N n, forget n v = l is logi-
cally equivalent to the property length l = n.

Because forget is an embedding, the restriction of forget
to its image establishes a type equivalence (denoted ≃) be-
tween an inductive family and a subset type:

Vec N n ≃ im forget n for all n ∈ N
Second, we must relate the subset type im forget n with

the simple type List N. Once again, there is a total embed-
ding from the dependent type to the simple one: it is in fact
the first projection of the Σ-type! Conversely, going from
simple types to subset types is a potentially partial operation.
We model partiality using the standard monadic framework
with a monadic composition ◦K , an identity creturn, a lift-
ing lift from pure to monadic operations and a flat partial
order—i.e. ⊥ ⪯ a and Some a ⪯ Some b iff a = b.
The back-translation from lists to im forget n is thus a

partial function, denoted with the arrow⇀ :

make n: List N⇀ {l:List N & ∃ v:Vec N n, forget v = l}

that may fail, esp. if the length of the input list is different
from n:

∀ n, ∀ l: List N, ((lift π1) ◦K (make n)) l = Some l

∨ ((lift π1) ◦K (make n)) l = Fail

and must amount to an identity function when the input list
is of the right length:

∀ n, ∀ l: im forget n, Some l = make n (π1 l)

Translated in the monadic language, these two specifica-
tions become:
∀ n, (lift π1) ◦K (make n) ⪯ creturn
∀ n, creturn ⪯ (make n) ◦K (lift π1)

whereby we recognize a type-theoretic and partial version
of a monotone Galois connection—or partial connection for
short, conventionally written A ≲K B.
Note that having creturn ⪯ f means that f is total and

is, in fact, the identity function; hence A ≲K B denotes a
1



PriSC’18, January 08–13, 2018, Los Angeles, CA, USA Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter

Connection
Connection A B

A≲B

Type equivalence
Equiv A B

A ≃ B

Anticonnection
Anticonnection A B

A≈B

Partial connection
ConnectionK A B

A≲KB

Partial anticonnection
AnticonnectionK A B

A≈KB

First-order dependent connection
DepConnection B C

B≲□KC

First-order dependent anticonnection
DepAnticonnection B C

B≈□KC

Figure 1. Bird-eye view of the dependent interoperability framework

Galois insertion. Here, this means that one direction (from
subset type to simple type) never fails: given an index n, and
a list enriched with the property that it corresponds to a
vector of size n, projecting out the list and then attempting
to reestablish that it corresponds to a vector of size n never
fails (and gets back to the same value). This explains the
directedness of partial connections: we have, for all index n,
im forget n ≲K List N.

This machinery enables us to account for first-order con-
nections between dependent and simple datatypes (Vec N
n ≲K List N) by composition of a partial connection (im
forget n ≲K List N) and a type equivalence (Vec N n ≃ im

forget n). We can then abstract the index and establish a
dependent connection between an indexed type and a simple
type (Vec N ≲□K List N).
To account for higher-order transformations, we must

generalize partial connections to relate any pointed partial
order through a pair of monotone functions subject to a sim-
ilar adjunction property. We thus obtain a type-theoretic
version of monotone Galois connections, or connection for
short, written A ≲ B.
We also develop a symmetric variant of monotone Ga-

lois connections (where both composite functions are below
the identity), which we dub anticonnections. An anticonnec-
tion, written A ≈ B, gives the freedom to arbitrarily abort a
coercion—for example, if it turns out to be too costly to run.
Similarly, a partial anticonnection, written A ≈K B allows us
to relate a subset type that represents only a strict subset of
its corresponding simple type—the translation from subset
to simple types may thus be partial.
The overall view of the framework and its conceptual

dependencies is summarized in Figure 1.

Relation to prior work. This presentation reports on an
extension and refinement of an article that appeared in the
proceedings of ICFP 2016 [2], accepted for publication at
JFP [3]. The main novelties wrt the ICFP version are: (i) We
have clarified the overall conceptual framework by identi-
fying the structuring role of a type-theoretic form of Galois

connections. (ii) We have been led to explore the classical
monotone presentation of Galois connections, which pro-
vides tighter relations between programs, and to provide
a separate treatment of anticonnections, which we had im-
plicitly adopted in our earlier work. In turn, this leads to a
rationalized presentation of checkable properties as the coun-
terpart to decidable properties; (iii) We have made significant
efforts to simplify our type-theoretic structures. In particular,
defining partial orders in HProp, hence stating that ordering
proofs are irrelevant, led to dramatic simplifications in the
definitions of type connections, by removing the need for
coherence conditions between sections and retractions.

Perspectives. Interestingly, the monotone framework seems
to capture a notion of type precision, akin to that used in re-
cent accounts of gradual typing [4, 6] to characterize the
amount of static information that a type carries. This sug-
gests that building a form of gradual typing on top of the
dependent interoperability framework could be possible;
and more generally, that monotone partial Galois insertions
could serve as a type-theoretic foundation for various forms
of gradual typing.

Directly relevant to the secure compilation research agenda
is the extension of our approach to effects. This is particu-
larly relevant when considering the interoperable extraction
to OCaml, which features exceptions, memory cells and in-
put/outputs. The extensive body of literature on type iso-
morphisms [1] may provide some useful guiding principles.
Recently, Levy [5] provides a blueprint for adapting the no-
tion of type isomorphism to a wide range of side-effects
by segregating types between value types and computation
types. It would be interesting to understand how this distinc-
tion fares in our dependently-typed setting.

Coq Formalization. The full Coq formalization, with docu-
mentation, is available at http://coqhott.github.io/DICoq/.

2

http://coqhott.github.io/DICoq/


Type-Theoretic Galois Connections PriSC’18, January 08–13, 2018, Los Angeles, CA, USA

References
[1] Roberto Di Cosmo. 2005. A short survey of isomorphisms of types.

Mathematical Structures in Computer Science 15, 5 (2005), 825–838.
[2] Pierre-Evariste Dagand, Nicolas Tabareau, and Éric Tanter. 2016. Partial

Type Equivalences for Verified Dependent Interoperability. In Proceed-
ings of the 21st ACM SIGPLAN Conference on Functional Programming
(ICFP 2016). ACM Press, Nara, Japan, 298–310.

[3] Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2018. Foun-
dations of Dependent Interoperability. Journal of Functional Program-
ming (2018). To appear.

[4] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting
Gradual Typing. In Proceedings of the 43rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL 2016). ACM Press,
St Petersburg, FL, USA, 429–442.

[5] Paul Blain Levy. 2017. Contextual Isomorphisms. In Proceedings of the
44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2017). ACM Press, Paris, France, 400–414.

[6] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang
Boyland. [n. d.]. Refined Criteria for Gradual Typing. In 1st Summit on
Advances in Programming Languages (SNAPL 2015). 274–293.

3


	References

