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In security-typed programming languages, types statically enforce noninterference between potentially con-
spiring values, such as the arguments and results of functions. But to adopt static security types, like other
advanced type disciplines, programmers face a steep wholesale transition, often forcing them to refactor
working code just to satisfy their type checker. To provide a gentler path to security typing that supports safe
and stylish but hard-to-verify programming idioms, researchers have designed languages that blend static and
dynamic checking of security types. Unfortunately, most of the resulting languages only support static, type-
based reasoning about noninterference if a program is entirely statically secured. This limitation substantially
weakens the benefits that dynamic enforcement brings to static security typing. Additionally, current pro-
posals are focused on languages with explicit casts and therefore do not fulfill the vision of gradual typing,
according to which the boundaries between static and dynamic checking only arise from the (im)precision
of type annotations and are transparently mediated by implicit checks.

In this article, we present GSLRef , a gradual security-typed higher-order language with references. As a
gradual language, GSLRef supports the range of static-to-dynamic security checking exclusively driven by
type annotations, without resorting to explicit casts. Additionally, GSLRef lets programmers use types to rea-
son statically about termination-insensitive noninterference in all programs, even those that enforce security
dynamically. We prove that GSLRef satisfies all but one of Siek et al.’s criteria for gradually-typed languages,
which ensure that programs can seamlessly transition between simple typing and security typing. A notable
exception regards the dynamic gradual guarantee, which some specific programs must violate if they are to
satisfy noninterference; it remains an open question whether such a language could fully satisfy the dynamic
gradual guarantee. To realize this design, we were led to draw a sharp distinction between syntactic type
safety and semantic type soundness, each of which constrains the design of the gradual language.
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1 INTRODUCTION

Gradual typing is typically viewed as a means to combine the agility of dynamic languages, like
Python and Ruby, with the reliability of static languages, like OCaml and Scala (Siek and Taha
2006). But static and dynamic are merely relative notions, and several researchers have explored a
more relativistic view. For example, Disney and Flanagan (2011) and Fennell and Thiemann (2013)
develop languages where only information-flow security properties are enforced using both dy-
namic and static checking; Bañados Schwerter et al. (2014, 2016) develop a language where only
computational effect capabilities are gradualized; Lehmann and Tanter (2017) gradualize only the
logical assertions of refinement types; and Jafery and Dunfield (2017) gradualize only refinements
of sum types. In each of these cases, the “fully dynamic” corner of the gradual language is not
dynamic by typical standards, but rather simply typed. Nonetheless, each language supports mi-
gration toward a richer typing discipline that subsumes simple typing.

This article revisits gradual information-flow security typing, with a particular focus on the
strong information-flow guarantees that security types have historically implied. We describe a
new language, GSLRef , that introduces a type-driven conception of gradual security. Unlike most
prior work, GSLRef supports the same static, type-based reasoning about information-flow for
gradually-typed programs as SSLRef , its purely static counterpart. To explain this innovation, we
review the power of static security types and then show what it means to preserve type-based
reasoning power in a gradual language.

Static Security Typing. Consider a program that processes employee data:1

1 let age = 31
2 let salary = 58000
3 let intToString : Int → String = ...
4 let print : String → Unit = ...
5 print(intToString(salary))

The program is well-typed, but it has a significant error that simple types do not catch: if salaries
are confidential and printing is publicly observable, then this program leaks confidential data.

Information-flow security typing lets a programmer statically classify program entities accord-
ing to a lattice of security labels (Denning 1976) and rely on type-checking to prevent information
leaks. One exemplar security lattice, which we use as a running example, is the U.S. Dept of Defense
classification scheme: Unclassified � Confidential � Secret � Top Secret, which we simplify to
⊥ � L � H � �, denoting minimum, low, high, and maximum security, respectively (Zdancewic
2002). To inform static type checking, each type constructor is statically annotated with a se-
curity label (e.g., IntL ); source program values are also annotated to unambiguously determine
their static security (e.g., 58000H has type IntH ). Security label ordering induces a natural subtyp-
ing relation (e.g., IntL <: IntH and IntH→L StringL <: IntL→H StringH ), which denotes security-
respecting substitutability. An attacker or observer at level �o can discriminate values that have
security level at most �o . Armed with security types and subtyping, an information-flow security
type system statically ensures that high-confidence data may not flow directly or indirectly to
low-confidence channels (Volpano et al. 1996).

In the example above, if we annotate the salary as high-security data (of type IntH ), and spec-
ify that print takes a low-security argument (of type StringL ), then our operational intuition tells
us that the program cannot satisfy these directives: it should be rejected. Before the type sys-
tem can confirm our intuitions, though, we must determine the security levels of every type in

1Adapted from Disney and Flanagan (2011).
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the program. In SSLRef , our static language, this means that every type and value must be anno-
tated. While security label inference and polymorphism (Myers and Liskov 2000) can reduce this
burden, one cannot experiment with some security levels without first determining all security
levels. Once all security types are assigned, the static type system forbids passing a high-security
value to a function that expects a low-security argument, so the type checker rejects the program.
GSLRef conservatively extends this model to support incremental and localized adoption of security
types.

Security Types Induce Free Noninterference Theorems. The employee data example demonstrates
a simple security leak, where high-security data flows directly to a low-security channel. But
security types must also contend with sophisticated leaks, where low-security variables may
change control-flow through high-security code and mutable state can enable implicit security
leaks (Denning 1976). To combat this, information-flow security languages enforce a general prop-
erty called noninterference, which guarantees that high-security inputs do not affect low-security
results (Goguen and Meseguer 1982). Noninterference clearly subsumes our simple security leak,
but it also prevents implicit and control-based leaks, where an attacker attempts to use low-security
inputs and outputs to learn about high-security data.

In security-typed languages, higher-order security types denote modular guarantees about non-
interference (Heintze and Riecke 1998). In particular, they use Reynold’s theory of parametric-
ity (Reynolds 1983) to ensure that a typing judgment dictates how replacing inputs can affect the
resulting output (Abadi et al. 1999). For example, consider a hypothetical function:

let mix : IntL →L IntH →L IntL = fun pub priv => ...

At first sight, it appears to “mix” its arguments pub and priv to produce some result. However,
the security annotations on its type guarantee that the integer result cannot leak information
about priv, no matter what value is given to pub. The key to this result is how the relevant typ-
ing judgment is interpreted. The body of the mix function, t , must satisfy the typing judgment
pub : IntL, priv : IntH � t : IntL. To endow this judgment with meaning, a logical relation-based
semantic model is defined directly in terms of the language’s dynamic semantics. According to
this semantic typing judgment, changing the value of priv has no effect on the final value of t .
This guarantee holds even if mix uses mutable state (Zdancewic 2002). The end result is that an
attacker with no direct access to a high-security channel cannot manipulate the value of pub to
uncover the value of priv, even by modifying mix’s implementation.

In a static security language, these noninterference guarantees follow from the type structure
of the language. No runtime checks are required, and the security labels applied to values and
types are simply static annotations.2 In essence, static security types induce free theorems about
the noninterference behaviors of computations, just as parametric polymorphic types induce free
theorems about data abstraction (Wadler 1989). Free noninterference theorems provide enormous
benefits to programmers. First, they support modular reasoning about noninterference: a program-
mer who implements a higher-order function with type (IntL →L IntH →L IntL) →L BoolH knows
that the function’s body can safely call its argument with high-security data as the second argu-
ment: the provided function cannot leak that data. Second, type-based reasoning is compositional:
the syntactic typing rules precisely specify how the security properties of subprograms (e.g., a
function-typed expression and a potential argument) compose to determine security properties
of a larger program (e.g., via function application). Finally, this reasoning is static: one need not
reason directly about operational behavior or data flow to understand security. That reasoning

2Like type annotations, security labels appear in dynamic semantics solely to prove type safety: They are erased in a
practical runtime.
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was done once-and-for-all in the type-driven noninterference proof. Instead, type structure guides
reasoning. These properties are especially useful for partial programs like software libraries. Below,
we show that GSLRef preserves these advantages while introducing new flexibility by dynamically
enforcing some type guarantees.

Relaxing Security Typing. Like any static type discipline, security typing has its downsides. As
discussed above, security typing cannot be checked until all types are given a security level,
through ascription, polymorphism, or inference. One cannot incrementally add security levels
and observe the consequences. In addition, verifying noninterference is in general undecidable,
so static security checking is necessarily conservative, and as a result programmers must some-
times refactor perfectly safe and clear code simply to appease the type checker.

To address these shortcomings, researchers have explored ways to combine static and dynamic
security checking. These approaches can be classified roughly as hybrid or gradual. Hybrid ap-
proaches (e.g., Buiras et al. 2015; Chandra and Franz 2007; Shroff et al. 2007; Zheng and Myers
2007) blend various static analysis and runtime monitoring techniques to make analyses more
precise, to incorporate dynamically defined policies, and to target safe executions rather than just
safe programs. Gradual approaches (Disney and Flanagan 2011; Fennell and Thiemann 2013, 2016),
inspired by gradual typing, focus on type systems for static analysis and add the extra goal of
enabling seamless incremental evolution from programs with no information-flow control what-
soever to programs with security-type based static enforcement, while fulfilling the goals of hybrid
approaches.

To clearly understand the contribution of the present work, it is important to clarify that the
prior work in this space, hybrid and gradual alike, take a check-driven approach to analysis: the
core of the security model is based on associating a security level to each value in a program
and managing security levels using two distinct operations: security upgrades and checks. A se-
curity upgrade elevates a value’s security label, e.g., (IntH!)5L −→ 5H. A security check signals
an error if the checked label is not at least as high as the value’s tag, e.g., (IntH?)5L −→ 5L, but
(IntL?)5H −→ error. Upgrades and checks have different dynamic behavior, but with help from
static typing, gradual security languages combine them into type-based upcasts and downcasts,
e.g., (IntL)t , which checks t if L is lower than t ’s static security and upgrades t otherwise. This
approach easily detects direct flows of high-security values to low-security channels, but prevent-
ing implicit flows through control transfer requires extra care, including prophylactic upgrades to
program values (Chandra and Franz 2007) and policies to restrict upgrades (Fennell and Thiemann
2013). As we will see, our development similarly requires careful treatment of assignments.

Check-driven Approaches Break Free Theorems. Dynamic security casts give flexibility to pro-
grammers but fundamentally cripple the ability to reason statically using security types. In partic-
ular, if security downcasts are added to the language, although noninterference is still preserved,
static type judgments no longer imply free theorems about security of programs, as was discussed
above. As a result, programmers must reason about the dynamic semantics—dynamic labels, dy-
namic upgrades, and dynamic checks—to uncover which values do not interfere with one another.
In particular, a function’s type no longer denotes noninterference properties about its arguments
and results. For example, consider the function:

let mix : IntL →L IntH →L IntL =

fun pub priv => if pub < (IntL)priv then 1L else 2L

This program is statically accepted by languages that only check for compatibility of base
types (Disney and Flanagan 2011; Fennell and Thiemann 2013). The type of mix, while fully static,
does not guarantee that mix never reveals information about its second argument. Rather, the type
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merely guarantees that the second argument’s security level is at most H and the result is at mostL.
But upper-bounds on security labels do not suffice to make definitive assertions about the non-
interference behavior of this function.3 Indeed, the program mix 1L 5L successfully reduces to 1L.
To avoid such behavior, the programmer must explicitly upgrade the dynamic security level of the
value passed as second argument at each call site. Alternatively, one can upgrade mix to its own

type, thereby forcing the second argument to be upgraded before executing the function body
(and hence preventing any information leak about that argument). This highlights the fact that
types alone do not denote noninterference properties: the two versions of the mix function behave
differently although they have the same type.

This phenomenon, that adding dynamic checking to a static system may weaken type-based
reasoning principles, is not unique to security typing. Prior work on cast calculi with parametric
polymorphism observes that adding runtime type tests to System F preserves type safety—i.e., that
programs do not crash—but sacrifices type soundness—i.e., that polymorphic types denote strong
data abstraction guarantees via parametricity (Ahmed et al. 2011, Section 5.1).

Contribution: Type-driven Gradual Security Typing. Modular, compositional, and type-based rea-
soning are hallmark benefits of type systems. Thus, to facilitate the seamless transition toward
static security typing, the typing judgment of a gradual type system should imply the same se-
mantic invariants that its fully static counterpart does. To that end, this article presents GSLRef , a
type-driven gradual security language that extends a static security type discipline with gradual
security labels and corresponding notions of gradual type precision and consistent subtyping. To
secure GSLRef programs, one just adds static security labels: dynamic checks arise automatically
and implicitly, as needed to enforce the noninterference guarantees denoted by static types.

Unlike most prior work, GSLRef ’s static security types denote the same noninterference guaran-
tees as its fully static counterpart language SSLRef . As such, GSLRef ’s security types enable modu-
lar and compositional type-based reasoning about noninterference, just like the fully static SSLRef ,
whereas security types in most prior gradual languages do not. GSLRef ’s type system supports
reasoning about termination-insensitive noninterference, because it is sound with respect to a se-
curity logical relation defined directly in terms of type structure. This result is standard for a purely
static security language (Heintze and Riecke 1998), but novel for a gradual security language with
imprecise types supported by dynamic checks. In fact the dynamics are guided by the needs of the
noninterference proof.

To summarize, this work makes the following contributions:

• We present GSLRef , a gradual security language that supports seamless transition between
simply typed and security-typed programming. Security typing annotations alone drive the
balance between static and dynamic information flow checking. (Section 4)

• We prove that GSLRef ’s type discipline enforces termination-insensitive noninterference:
GSLRef ’s types reflect strong information-flow invariants that hold even in code that con-
tains gradually typed subexpressions. (Section 5)

• We prove the static gradual criteria of Siek et al. (2015). Interestingly, to ensure noninterfer-
ence in presence of references (and hence implicit flows through the heap), GSLRef sacrifices
the dynamic gradual guarantee.

• We contribute more generally to the foundations of gradual typing for advanced type disci-
plines. We find that GSLRef ’s security invariants require separate consideration of syntactic

3Recent work by Fennell and Thiemann (2016) on LGJS addresses this particular problem, as described in Section 7.
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type safety and semantic type soundness, each of which constrains the design of the gradual
language.

• This work also represents a particularly challenging application of the Abstracting Grad-
ual Typing (AGT) methodology (Garcia et al. 2016). AGT is a framework that uses abstract
interpretation (Cousot and Cousot 1977) at the type level to systematically construct grad-
ually typed languages from pre-existing statically typed ones. We report on our experience
with a number of important considerations that complement the original presentation of
AGT. In addition, we highlight the limitation of AGT when applied to semantically rich type
disciplines. (Section 6)

Before diving into the development of GSLRef , Section 2 informally introduces the type-driven
approach to gradual security typing through examples. Then, Section 3 presents SSLRef , the fully
static security type language from which GSLRef is derived. Supplementary definitions can be
found in the Appendix. Complete definitions, as well as the proofs of all the results stated in the
article, can be found in the companion technical report (Toro et al. 2018). An interactive executable
model of GSLRef is available online at https://pleiad.cl/gradual-security/.

2 TYPE-DRIVEN GRADUAL SECURITY TYPING IN ACTION

Static security type systems impose a burdensome all-or-nothing adoption model: all security types
must be determined before the type system can check security. Even then, some secure programs
have no statically checkable type assignment, or may require substantial refactoring to satisfy the
type checker. Gradual security typing addresses these shortcomings by enabling a programmer to
incrementally add security information to the program, progressively introducing dynamic and
static checks and guarantees.

Let us consider how gradual security typing can progressively introduce security guarantees
and help detect and fix bugs in our first example from Section 1. Recall the problem with the
program: salary is a high-security value, but print is a low-security channel. We can statically
reflect these intentions:

1 let age = 31?

2 let salary = 58000H

3 let intToString : Int? →? String? = ...
4 let print : StringL →? Unit? = ...
5 print(intToString(salary))

In practice the programmer just marks the value of salary and the input type of print: all
omitted security annotations desugar to the unknown security label ?. Under our gradual security
semantics, this program type checks, but triggers a runtime check failure at line 5. If the highlighted
annotations were omitted or ?, then the program would check and run exactly as a simply typed
one, because it would not impose, and thus not enforce, any security invariants.

How do we repair this program? Simply adding more annotations cannot fix it. Case in point,
adding a reasonable security annotation to line 3 escalates the runtime failure to a static type error.

3 let intToString: IntL → String = ...

If the security annotations are as intended, however, then the runtime error must be due to some
behavioral bug in the program (e.g., the programmer might have intended to print the employee’s
age instead).

Reasoning with Imprecision. The gradual type checker statically enforces the invariants it can, de-
ferring checks to runtime when the static type information is insufficient. Rather than introducing
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dynamic casts, as in the check-driven approach, our type-driven approach to gradual security typ-
ing builds on foundations laid by prior research on gradual typing. Siek and Taha (2006) observe
similar difficulties as in the check-driven approach when trying to use subtyping to combine dy-
namic and simple type checking. This inspired gradual typing, which extends static types with
an unknown type to form gradual types, relating them to one another using consistency and preci-

sion relations (Siek et al. 2015). Since these notions are conceptually orthogonal to subtyping, they
blend well with pre-existing subtyping disciplines (Siek and Taha 2007). Our type-driven approach
adapts these concepts to gradual security and its natural notion of subtyping.

In this model, the unknown label ? represents imprecise security information. Precision � is
a partial order from more-precise labels to less-precise labels: static security labels are perfectly
precise, e.g., H � H, while ? denotes utter imprecision, e.g., H � ?. Precision extends covariantly to
security types, e.g., IntH → IntL � Int? → Int?, in contrast to subtyping.

The ordering on security labels � consequently extends to consistent ordering ‹� on gradual
labels. Consistent ordering preserves every order relation among precise labels (e.g., ⊥ ‹� � and
� �‹� ⊥), but mathematically, it is not an ordering relation (e.g., both ? ‹� � and � ‹� ?). Rather,
it reflects consistent reasoning in the face of imprecise information: since we do not know what
label ? represents, either static order is plausible. Consistent ordering induces an analogous notion
of consistent subtyping, e.g., Int� � Int? and Int? � Int⊥, which is not transitive, e.g., Int� � Int⊥,
so it is not a subtyping relation, but embodies imprecise reasoning about static subtyping (Siek and
Taha 2007). An attacker or observer at level �o can now also observe values that have unknown
security levels, as long as the dynamic security information about the value is observable at �o .
This is formally explained in Section 5.

Flexibility. As we have seen, GSLRef lets programmers write statically secure programs by first
writing the simply typed version and progressively adding labels. But gradual typing also provides
flexibility, so that safe programs that veer from the static type discipline can strategically revert to
dynamic checking. GSLRef ’s type-driven approach provides this flexibility. Consider an example
adapted from Fennell and Thiemann (2013).4

1 let infoH : RefLReportH = ...

2 let sendToFacebook : RefLReportL
L−→LUnitL = ...

3 let sendToManager : RefLReportH
H−→LUnitL = ...

4 let addPrivileged : Bool?
H−→? (RefLReport ?

?−→LUnitL)
H−→?RefLReport ?

?−→?UnitL =

5 fun isPrivileged worker report =>
6 if isPrivileged then report := !report + !infoH else ();
7 worker report

8 let sendHi : RefLReportH
L−→LUnitL = addPrivileged true sendToManager

9 let sendLow : RefLReportL
L−→LUnitL = addPrivileged false sendToFacebook

The program starts with the creation of a public reference to a private report, infoH. It
then defines two routines for submitting reports: sendToFacebook publishes data publicly,
and sendToManager publishes data privately. The addPrivileged function decides dynamically
whether to add high-security information to the sent report, and is used to implement the sendHi
and sendLow functions. This code is secure, but SSLRef , our static security system, cannot type
check addPrivileged because of its dynamic choice.

4Security labels above function arrows track mutation effects (Section 3).
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Interestingly, GSLRef can type check this program, thanks to a few well-placed ? labels (line 4),
and it dynamically ensures that the program does not leak data. Case in point, the following grad-
ually typeable function is poised to leak private data:

let sendFail : RefLReportL
L−→LUnitL = addPrivileged true sendToFacebook

but if called, GSLRef ’s dynamic security monitor signals an error when sendToFacebook derefer-
ences the report, thereby preventing the leak.

Type-based Reasoning in GSLRef . Like prior work, GSLRef supports smooth migration to static
security and flexible programming idioms. Its most significant innovation is that GSLRef retains
the type-based reasoning power of static security typing.

Consider again the example mix function of Section 1. In GSLRef , the function body cannot vio-
late the noninterference property implied by its type, just as in its fully static counterpart language

SSLRef . In particular, the following definition is rejected statically as expected:

let mix : IntL →L IntH →L IntL = fun pub priv => if pub < priv then 1L else 2L

In fact, no function body can satisfy this type signature and use its second argument to determine
the result. To do so, we must change the type signature, and with it the implied security invariants:

let mix : IntL →L Int ? →L IntL = fun pub priv => if pub < priv then 1L else 2L

The second argument now has statically unknown security. This definition is accepted statically,
because the function might respect the static security invariants of its clients. Consider two such
clients, which only differ in the security level of the second argument:

mix 1L 5H mix 1L 5L
Client 1 Client 2

Both type check because the security level of the second argument is consistent with the
expected, unknown level. Client 2 returns 1L without incident, because its second argument is
public, so applying mix does not leak private information. Client 1, however, signals a runtime
security error: the function’s intended result would implicitly leak information from a private
input, but the impending leak is trapped and reported. Treating static security levels as precise
requirements rather than upper-bounds, and supporting imprecision, provides the same flexibility
as the check-driven approach, as demonstrated in the reporting example above. The key differ-
ence is that dynamicity manifests as imprecision in a function’s static type, so precise types can
preserve their static security interpretation. The interaction between types of different precision
is transparently guarded by implicit runtime checks.

If we changed the type signature of mix to IntL →L IntH →L Int ? , making the return type impre-
cise, then the definition would type check as well. Nonetheless, GSLRef ’s dynamic enforcement
ensures that the returned value could never leak to a public channel, be it a variable or a heap
location, because the result is dynamically secured.

The type-driven model lets programmers use type ascriptions to impose static security guar-
antees on code that is built from imprecisely typed components. Gradual typing automatically
introduces dynamic checks to soundly enforce these invariants. Consider a function called smix
that has a fully static signature but is implemented using the imprecisely typed mix function:

let mix : IntL →L Int ? →L IntL = fun pub priv => if pub < priv then 1L else 2L
let smix : IntL →L IntH →L IntL = fun pub priv => mix pub priv

Type-based reasoning about noninterference dictates that smix cannot reveal any information
about its second argument (regardless of the actual security label of the second argument). For
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instance, consider the clients:

smix 1L 5H smix 1L 5L
Client 1 Client 2

In GSLRef , both clients type check, but both fail at runtime! Client 2 fails, because smix’s type
dictates a strong noninterference property, independent of the client’s dynamic security levels. To
see why, observe that smix accepts as second argument any integer value that has a security level
no higher than H. When 5L is substituted in the body of smix, its runtime security information
is upgraded to H. This new security level in turn strengthens the confidentiality of the value
returned by mix, which contradicts the static return type of mix (L), hence resulting in a runtime
error. This behavior preserves local type-based reasoning about the behavior of components,
regardless of how they are composed.

To summarize, in GSLRef different gradual security types denote different security guarantees.
Most importantly, the flexibility introduced by imprecise security types cannot be abused to
violate the type-based noninterference guarantees imposed by static security types.

References and Implicit Flows. In the presence of mutable references, information-flow security
faces the classic problem of implicit flows through the heap (Denning 1976). Consider the following
program, adapted from Austin and Flanagan (2009):

1 fun x: BoolH =>
2 let y: RefL BoolL = ref trueL

3 let z: RefL BoolL = ref trueL

9 if x then y := falseL else unit
9 if !y then z := falseL else unit
9 !z

This program attempts to downgrade the security of it’s input. A static security type system easily
rejects it, because the first branch of the first conditional (line 4) assigns a low-security reference
under a high-security boolean condition. Indeed, in GSLRef this program is statically rejected as
well.

This program is tricky for dynamic information flow monitors, however, and has inspired many
approaches (e.g., Austin and Flanagan 2009, 2010, 2012; Hedin and Sabelfeld 2012a). Since gradual
security typing includes both static and dynamic security checking, GSLRef must also address the
challenge of dynamically detecting implicit flows. Consider the same program as above but with
some imprecise annotations:

1 fun x: BoolH =>
2 let y: Ref? Bool ? = ref true ?

3 let z: RefL BoolL = ref trueL

4 if x then y := false ? else unit
5 if !y then z := falseL else unit
6 !z

This gradually typed variant type checks, because the reference bound to y now has an unknown
security level. But if x is bound to trueH at runtime, then the program fails with an error at the
assignment on line 4, because it cannot replace the contents of a reference in a manner that
violates the security context H imposed by the conditional expression x. This restriction, and its
motivation, is analogous to the “no-sensitive-upgrade” approach of Austin and Flanagan (2009).

Now suppose we make y’s type have unknown static security but force its initial contents to
have high security, i.e.:
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Fig. 1. SSLRef : Syntax and static semantics.

2 let y: Ref? Bool? = ref trueH

Then at runtime the assignment on line 4 succeeds, because the assignment on line 2 already
refined y’s dynamic security to H, which satisfies the security context. Now if x is falseH then this
program fails at the assignment on line 5, because z’s security level violates the dynamic security
context introduced by branching on the contents of y.

To sum up, GSLRef ensures termination-insensitive noninterference, gradually, even in the
presence of references.

3 STATIC SECURITY TYPING WITH REFERENCES

This section introduces SSLRef , a higher-order static security-typed language with references,
which serves as the static extreme of our gradual language. The language is a straightforward adap-
tation of prior information-flow security typing disciplines (Fennell and Thiemann 2013; Heintze
and Riecke 1998; Zdancewic 2002). The most significant novelties include a syntax-directed type
system and a dynamic semantics that tracks security levels but performs no security checks: The
type system alone guarantees noninterference.

Syntax. Figure 1 presents the syntax of SSLRef , at heart a simply typed higher-order language
with references: it includes booleans, functions, unit, mutable references, and type ascription. Each
value and type constructor is annotated with a security label � ∈ Label with partial order�, where
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� and ⊥ denote the greatest and least labels, respectively. Function abstractions, and their corre-
sponding types, are annotated with an additional security label called the latent security effect: We
explain its static semantics below. Two forms arise only at runtime (highlighted in gray): mutable
locations o and a protection term prot� (t ), which restricts the security effects of its subterm t .

Statics. Figure 1 also presents the type system of SSLRef , which is technically a type-and-effect
system (Gifford and Lucassen 1986). The judgment Γ; Σ; �c � t : S says that the term t has type S
under type environment Γ, store type Σ, and security effect �c ∈ Label. A type environment Γ is a
finite map from variables to types. A store type Σ is a finite map from locations to types. The secu-
rity effect, sometimes called the program counter label (Denning 1976), is a security label that de-
notes the least security level of those references that a given term may allocate or mutate (Heintze
and Riecke 1998). The security effect prevents high-security computations—e.g., the branch of an
if expression that is chosen based on a high-security Boolean—from leaking information by as-
signing to low-security references. An SSLRef source program t is well-typed if ·; ·;⊥ � t : S .

• Rule (Sx) and rule (So) type variable and location references as usual. Simple values are also
typed as usual, but their types inherit their labels from the values themselves (Sb/Su).

• Rule (Sλ) annotates the type of a function with the latent security effect of its body, as is
standard for type-and-effect systems. The greatest (i.e., best) security effect can be inferred
from the function body, but for simplicity this type system consults an explicit annotation
�′.

• Rule (Sprot) imposes a lower bound � on the security effect of the subterm t . This restriction
is captured by stamping the label � onto the type (Heintze and Riecke 1998)–e.g., Bool� ≺

�′ = Bool(� ≺�′) , where � ≺ �′ represents the least upper-bound, or join, of security levels �
and �′.

• Rule (S⊕) types Boolean operations, yielding a result with the join of the operand security
levels.

• Rule (Sapp) is mostly standard but also enforces security restrictions. First, to prevent
mutation-based security leaks, the operator’s latent effect �′ must upper-bound its secu-
rity level as well as the latent security effect of the entire expression. Both restrictions are
captured with a single label comparison in the premise. Second, to prevent value-based se-
curity leaks, the security level of the entire expression must upper-bound the level � of the
operator—this is done by stamping label � onto the type. Rule (Sapp) also appeals to the
subtyping relation induced by ordering the security labels. Subtyping is driven by security
labels: it is invariant on reference types, covariant on security labels, and contravariant on
latent effects (Pottier and Simonet 2003):

� � �′
Bool� <: Bool�′

� � �′
Unit� <: Unit�′

� � �′
Ref� S <: Ref�′ S

S ′1 <: S1 S2 <: S ′2 �1 � �′1 �′2 � �2

S1
�2−→�1S2 <: S ′1

�′2−→�′1
S ′2

• Rule (Sif) incorporates the standard structure for a subtype discipline: the type of the ex-
pression involves the subtyping join <

: of its branches. To protect against explicit information

flows, the expression type is stamped to incorporate the security level � of the predicate. Ad-
ditionally, to prevent effect-based leaks, each branch is type checked with a security effect
that incorporates the security level of the predicate.5

5Note that SSLRef does not have an explicit effect ascription form t :: �c (Bañados Schwerter et al. 2014), but this can be
encoded using the expression (λ�c x : Unit⊥ .t )⊥ unit⊥.
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Fig. 2. SSLRef : Label tracking dynamic semantics.

• Rules (Sref) and (Sasgn), which perform write effects, are constrained by the security effect
of the typing judgment to prevent leaks through the store.

Rule (Sref) honors the effect discipline by requiring the current security effect to lower-
bound the security level of the stored value. The resulting reference has least security ⊥,
because it is newly minted and cannot leak information: the type of the stored content is
known and its security level prevents further prying.
Rule (Sasgn) ensures that the security level of the location and current security effect lower-
bound the assigned value. The result of assignment has ⊥ security, because unit cannot leak
information. Rule (Sderef) stamps the security level of the reference onto the resulting type.

• Finally, Rule (S ::) is typical for ascription, requiring the ascribed type to be a supertype of
the subterm’s type.

Dynamics. With fully static security typing, programs execute on a standard runtime with no ad-
ditional security-enforcing machinery. Type safety—well-typed terms do not get stuck—is guaran-
teed by the underlying run-of-the-mill simple type discipline. However, to establish the soundness

of security typing—high-security computations have no effect on low-security observations—one
must characterize computations and their resulting values with respect to their security levels.
To this end, the SSLRef dynamic semantics explicitly tracks security labels as programs evaluate,
but never checks them. The noninterference proof demonstrates that no such checks are required:
static typing suffices. Tracking labels provides weak security guarantees that are exploited in the
proof of the stronger noninterference result.

Figure 2 presents the rules of the label-tracking dynamic semantics. The judgment

t1 | μ1
�c�−→t2 | μ2 says that a term t1 and store μ1 step to t2 and μ2, respectively, in security effect
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�c . Reduction of terms is specified using term frames f :

f ::= � ⊕ t |v ⊕ � | � t |v � | � :: S | if � then t else t | !� | �:=t |v :=� | refS �

The core semantics is typical, so we focus on tracking security. The runtime security effect �c ,
which reflects its static counterpart, affects the security level of reads from and writes to the store,
as well as the security level of values returned from high-security contexts to low-security ones.

Protection terms prot� (t ) control the current program counter label. Apart from prot, all ex-
pressions propagate the current program counter to subterms. Rule (Rprot) upgrades �c for the
dynamic extent of t . The resulting value is stamped with the protected label �, in case the contents
leak information to a context that lacks the confidentiality of �. Values are stamped much like
types: r� ≺ �′ = r (� ≺�′) . Protection terms do not exist in source programs: they are introduced by
control operations, i.e., function calls and conditionals. The intuition is that calling a function or
destructing a Boolean of security level � may leak information about the identity of the function
or Boolean, respectively. As such, the context of the resulting computation should communicate
(via mutation) only with reference cells that have high-enough security, and the result of the com-
putation is classified as well.6 Function calls ignore the operator’s latent effect �′, which promises
the type system that the ensuing computation will not violate the stated confidentiality. However
the operator’s security label determines the confidentiality of the ensuing computation.

When stored, a value inherits confidentiality from both the current security effect and the loca-
tion itself. This behavior tracks both the confidentiality of the location and the induced security
effect.

Properties. SSLRef is type safe: we establish this result via a standard progress and preservation
argument (Toro et al. 2018). Since the runtime semantics includes no security checks, progress
mirrors the corresponding argument for the underlying simple type discipline. To prove preser-
vation, we must show that after each reduction step the resulting term still has the same security
according to the typing rules of Figure 1, modulo subtyping.

Proposition 3.1 (Type Safety). If ·; Σ; �c � t : S , then either

• t is a value v

• for any store μ such that Σ � μ and any �′c � �c , we have t | μ
�′

c�−→ t ′ | μ ′ and ·; Σ′; �c � t ′ : S ′

for some S ′ <: S , and some Σ′ ⊇ Σ such that Σ′ � μ ′.

The store typing judgment Σ � μ holds if and only if dom(μ ) = dom(Σ) and ·; Σ; �c � μ (o) : Σ(o)
for all o ∈ dom(μ ), �c ∈ Label.

The most important property of a security-typed language like SSLRef is the soundness of se-
curity typing, i.e., that well-typed programs have no forbidden information flows. We formally
state and prove noninterference using step-indexed logical relations (see the companion technical
report (Toro et al. 2018)). We do not include the definitions of the logical relations and noninter-
ference statement here, because proving that SSLRef is secure is not the main focus of this work,
and the full treatment of noninterference for the gradual language (Section 5) subsumes them.

4 GSLRef: TYPE-DRIVEN GRADUAL SECURITY TYPING

This section presents the static and dynamic semantics of GSLRef , and addresses its type safety and
gradual guarantees. We show that GSLRef enforces noninterference in Section 5.

6Zdancewic (2002) observes that, e.g., if x then eL else eL leaks no information about Boolean x : BoolH so could be deemed
low-security, but security type systems must be conservative for the sake of tractability.
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Fig. 3. Index of terms, operations and relations used in this article, along with their notation, and reference
to corresponding Figure (F) or Page (P).

The reader might (understandably!) wonder how some of the definitions presented in this sec-
tion were conceived. This section largely appeals to intuition to justify these definitions, but in
practice they were obtained by following the Abstracting Gradual Typing methodology (Garcia
et al. 2016), which exploits principles of abstract interpretation (Cousot and Cousot 1977) to sys-
tematically derive a gradual language from a static one. In fact, this work can be seen as a particu-
larly challenging case study for AGT—which has led us to identify the limits of the AGT approach
when applied to disciplines where type safety (i.e., “well-typed terms do not get stuck”) does not
imply type soundness (i.e., “well-typed terms do not leak”). The gradual language obtained by a
straightforward application of AGT is type safe, but does not ensure noninterference because of
subtle interactions between security typing imprecision and heap-based flows. We discuss the key
elements, pitfalls, and discoveries of this systematic derivation process in Section 6.

To aid the reader, Figure 3 indicates where important terms, operations and relations are pre-
sented, along with their notation.

4.1 Static Semantics

Figure 4 presents the syntax and static semantics of GSLRef .7 A gradual security label g ∈ GLabel
is either a static label � or the unknown label ?, which represents any label whatsoever. Each value
and gradual type constructor is now annotated with a gradual security label.

The typing judgment Γ; Σ; gc � t : U says that the term t has gradual type U under type envi-
ronment Γ, store environment Σ, and gradual security effect gc . The typing rules are analogous to
the static typing rules presented in Figure 1 except that security labels, types, type functions and
predicates are all replaced by their gradual counterparts. For instance, static label ordering � is

7In GSLRef , the o and protg(t ) forms and typing rules merely serve to induce corresponding GSLε

Ref forms (Section 4.2).
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Fig. 4. GSLRef : Static semantics.

replaced with consistent label ordering ‹�:

? ‹� g g ‹� ?

�1 � �2
�1 ‹� �2

Intuitively, if consistent label ordering between two gradual labels holds, then it means that the
static relation holds for some static labels represented by the gradual labels. It is always plausible
in the presence of ?, since the unknown label represents any label. Similarly, subtyping is lifted
to consistent subtyping �, whose definition is analogous to static subtyping, but using consistent
label ordering:

g �̃ g′

Boolg � Boolg′

g �̃ g′

Unitg � Unitg′

g �̃ g′ U1 � U2 U2 � U1

RefgU1 � Refg′ U2

U ′
1 � U1 U2 � U ′

2 g1 �̃ g′1 g′2 �̃ g2

U1
g2−→g1

U2 � U ′
1

g′2−→g′1
U ′

2
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The label join and meet operators are replaced with consistent join and consistent meet, respec-
tively:

�˜≺ ? = ?˜≺ � = � g˜≺ ? = ?˜≺ g = ? if g � � �1 ˜≺ �2 = �1 ≺ �2

⊥˜≺ ? = ?˜≺ ⊥ = ⊥ g˜≺ ? = ?˜≺ g = ? if g � ⊥ �1 ˜≺ �2 = �1 ≺ �2
These operators recover precise label information when the unknown label interacts with the rele-

vant boundary element (� for ˜≺, and ⊥ for ˜≺ ), otherwise the result is always unknown. Intuitively,
this is because any label � joined (respectively, met) with � (respectively, ⊥), yields � (respectively,
⊥), so imprecise arguments do not perturb the results. But when the relevant boundary is not in-
volved, then varying � can vary the results, a possibility that is captured by using the unknown
label as result.

The join operators for subtyping and label ordering are replaced with consistent join ˜<: and
consistent label join ˜≺, respectively:

Boolg˜<: Boolg′ = Bool
(g̃ ≺g′) Unitg˜<: Unitg′ = Unit

(g̃ ≺g′) Refg U <
: Refg′ U

′ = Ref
(g̃ ≺g′) U �U ′

(U11
g′1−→g1

U12) ˜<: (U21
g′2−→g2

U22) = (U11 ˜<: U21)
g′1˜≺ g′2−→

(g1˜≺g2 )
(U12 ˜<:U22)

U ˜<:U undefined otherwise

The consistent subtyping meet operator is defined dually (definition in Appendix A.3).
Consistent subtyping join appeals to a gradual meet operator � on the referent types. This

gradual meet arises, because static subtyping is invariant for the contents of references, so static
subtype join is only defined for references with equal referent types. The gradual meet operator
can be understood as the gradual counterpart of a static type equality partial function equate (i.e.,
equate(S, S ) = S , undefined otherwise) (Garcia et al. 2016). Intuitively, if the � of two gradual en-
tities is defined, then it means that they are possibly equal. For instance, H � L is undefined, but
H � ? = H. Formally:

g� g =g

g� ? = ? � g =g

Boolg � Boolg′ =Boolg�g′

Unitg � Unitg′ =Unitg�g′

RefgU � Refg′ U
′ =Refg�g′ U �U ′

U1
g2−→g1

U2 �U ′
1

g′2−→g′1
U ′

2 =(U1 �U ′
1 )

g2�g′2−→ g1�g′1
(U2 �U ′

2 )

Finally, The SSLRef rules (Sapp) and (Sasgn) from Figure 1 have compound premises that com-
bine both label join and label ordering, e.g., �c ≺ � � �′. One subtlety we discovered while applying
the AGT methodology is that these premises lose precision when lifted compositionally: simply
replacing join with consistent join and label ordering with consistent label ordering yields dif-
ferent results than when lifted in aggregate; we discuss this further in Section 6. Therefore, rules
(U app) and (U asgn) use the consistent bounding predicate, which is defined algorithmically as:
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Â�g1 ≺ g2 � g3 ⇐⇒ g1
‹� g3 ∧ g2

‹� g3. Technically, we could have used this definition to split each
premise, but treating the predicate atomically matters when we consider the dynamic semantics.

4.2 Dynamic Semantics

To present the dynamic semantics of GSLRef , we first define a reduction relation for an internal
language GSLε

Ref that directly mirrors GSLRef , except that all terms are augmented with some
evidence information that justifies why the term is well-typed according to the gradual type system.
During reduction steps, units of evidence are combined to form new evidence that supports type
preservation between a term and its contractum. If the combination succeeds, then reduction goes
on; if the combination fails, then a runtime error is raised. We first explain what evidence is, then
how GSLRef programs are elaborated with evidence information into GSLεRef , and finally how
evidence is combined, yielding the GSLεRef reduction rules.

Evidence for Consistent Judgments. Evidence captures why a consistent judgment holds. To ex-
plain this concept, we begin with consistent judgments about security labels, then consider the
more complex consistent judgments about types.

We use the metavariable ε to range over evidence, and write ε � g1
‹� g2 to say that evidence ε

supports the plausibility that g1
‹� g2 holds.

For instance, consider the consistent ordering judgment ? ‹� L. Even though the unknown la-
bel generally denotes any security label, consistent ordering insists that this ? can only denote
labels that are bounded from above by L. Furthermore, this consistent ordering judgment yields
no additional information about the right-hand side, which is already precise. We capture this
learned information by representing evidence as a pair of static label intervals, noted 〈ı1, ı2〉, where
ı = [�, �′]. If 〈ı1, ı2〉 � g1

‹� g2, then ı1 and ı2 represent inferred range restrictions for g1 and g2,
respectively. Therefore,

〈[⊥, L], [L, L]〉 � ? ‹� L.

By analogous reasoning, the consistent judgment H ‹� ? is initially justified by the evidence
〈[H,H], [H,�]〉, gaining precision about the right-hand side. Interval precision is defined as con-
tainment over intervals, i.e. [�1, �2] � [�′1, �

′
2] if and only if �′1 � �1 and �2 � �′2. Precision between

interval pairs 〈ı1, ı2〉 � 〈ı ′1, ı ′2〉 is defined pointwise.
We represent evidence as pairs of intervals, rather than pairs of labels, essentially be-

cause pairs of labels are not precise enough to support gradual security. The formal ratio-
nale is involved, so we defer it to Section 6. For some intuition, though, consider the program
true? :: BoolH :: Bool? :: BoolL. Evaluating it ultimately involves combining evidence for three con-
secutive judgments8: ε1 � ? ‹� H, ε2 � H ‹� ?, and ε3 � ? ‹� L. The program should fail at runtime,
because an H security value should not be coerceable to L, so these three evidences should not
compose. Unfortunately, pairs of labels are not precise enough to ensure this: They forget the in-
termediate step through H. In contrast, pairs of label intervals retain enough precision to warrant
the expected runtime failure.

To justify consistent judgments about types like consistent subtyping, we lift label evidence to
type evidence ε by naturally lifting intervals to types: type constructors are now marked with label
intervals instead of labels. For instance:

〈Bool[⊥,L],Bool[L,L]〉 � Bool? � BoolL.

8In a way that we make precise below.
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The syntax of evidence is as follows:

E ∈ GEType, ı ∈ Interval, ε ∈ Evidence
ı ::= 〈�, �〉 (intervals)

E ::= Boolı | E
ı−→ıE | Refı E | Unitı (type evidences)

ε ::= 〈E,E〉 | 〈ı, ı〉 (evidences).

Note that we use the same metavariable ε to represent both label evidence and type evidence, since
which kind of evidence is meant is always clear from the context.

Terms with Evidence. Each well-typed term of GSLRef is recursively elaborated into a GSLε
Ref term

by decorating it with evidence for the consistent judgments used to establish its well-typedness.
The syntax of GSLε

Ref terms follows:

t ::= v | εt @ε εt | εt ⊕ εt | if εt then εt else εt |
refU

ε εt | !εt | εt :=ε εt | protεgεg(εt ) | εt (terms)
r ::= b | (λgx : U .t ) | unit | o (base values)
u ::= rg | x (raw values)
v ::= u | εu (values).

During reduction, the actual type of a subterm may evolve to a consistent subtype of the stati-
cally determined type. For this reason, each term is augmented with evidence for their immediate
sub-redexes (i.e., all subterms that have to be reduced to a value for computation to proceed), jus-
tifying why the subterms are consistent subtypes of the types demanded statically by the outer
term constructor. For instance, in the term ε1t1 ⊕ ε2t2, ε1 justifies t1 being a consistent subtype of
Boolg1

, the type deduced during type checking. In particular, t1 could be such a consistent subtype,
because it is a value that was ascribed type Boolg1

using an explicit ascription. In fact, GSLRef as-
criptions are represented simply as evidence-augmented terms εt in GSLε

Ref : the evidence ε holds
all the computationally relevant information about consistent subtyping. For instance, the GSLRef

term (10L :: Int?) :: IntH is translated to ε2 (ε110L), where ε1 � IntL � Int? and ε2 � Int? � IntH.
Note that, in addition, some terms carry extra evidences that are needed during reduction to

justify type preservation. A conditional if ε1t1 then ε2t2 else ε3t3 carries evidences ε2 and ε3 that
justify that the type of each branch t2 and t3 is a consistent subtype of the type of the conditional

expression. For instance, ifU2 andU3 are the types of t2 and t3, respectively, then ε2 � Â�U2 <: U2 <
:U3,

where Â�U1 <: U2 <
:U3 is the consistent lifting of the ternary static judgmentT1 <: T2 <
:T3. Similarly, a

protection term protε1g1
ε2g2 (ε3t ) carries a security effect g2 (and its evidence ε2), which represents

the security effect of the subterm t ; specifically, g2 is the join of g1 and the current security effect.
Values are either raw values u or evidence-augmented raw values εu. The latter correspond to

ascribed values v :: U in GSLRef : the evidence ε confirms that the u’s type is a consistent subtype
of the ascribed type U .

Several terms—applications, references, assignment, and protection—have evidence in addition
to that of their subterms. This extra evidence supports the consistent label ordering judgments
of their corresponding typing rule, which relate to the current latent effect label. For instance, in
the term refU

ε ′ εt , the evidence ε ′ supports the consistent label ordering judgment gc
‹� label(U ).

For uniformity, we overload the metavariable ε to denote both label and type evidence, since the
difference is always clear from the context. Evidence attached to subterms is type evidence, and
evidence attached to the security effect or to an expression symbol (@, ref, :=, or prot) is label
evidence.
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Fig. 5. GSLRef : elaboration to GSLε
Ref terms.

Introducing Evidence. Figure 5 presents rules for elaborating GSLRef source terms to evidence-
augmented GSLε

Ref terms. This elaboration is akin to a cast insertion translation (Siek and Taha
2006), but simpler, because it inserts evidence uniformly (Garcia et al. 2016). Basically, each con-
sistent label and type judgment in Figure 4 is replaced by an evidence-computing partial function
called an initial evidence operator (I). An initial evidence operator computes the most precise evi-
dence that can be deduced from a given judgment. For instance, given a consistent label ordering
judgment g1

‹� g2, the initial evidence for it is computed as follows:

I�g1
‹� g2� = intr (bounds(g1), bounds(g2))

The bounds function produces the label interval that corresponds to a given gradual label,
i.e., bounds(?) = [⊥,�] and bounds(�) = [�, �]. The interior operator intr computes the smallest
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sub-intervals of its arguments that include all plausible orderings.9 Given two intervals ı1 and ı2,
intr (ı1, ı2) yields the greatest pair of sub-intervals 〈ı ′1, ı ′2〉 � 〈ı1, ı2〉 such that each label �1 in the
interval ı ′1 is less than some label �1 in ı ′2, and each label in ı ′2 is greater than some label in ı ′1.
Formally:

intr ([�11, �12],[�21, �22]) = 〈[�11, �12

≺

�22],[�11 ≺�21, �22]〉.
This operation only changes the upper-bound of the lower interval and the lower-bound of the
upper interval. The resulting intervals are well-defined, because we only use this operator in I

after consistent label ordering is already known to hold.

Similarly, the initial evidence of a consistent judgment Â�g1 ≺ g2 � g3 is computed as

I�Â�g1 ≺ g2 � g3� = intr (bounds(g1) ≺ bounds(g2), bounds(g3)).

This definition uses join of intervals, defined as [�1, �2] ≺ [�′1, �′2] = [�1 ≺ �′1, �2 ≺ �′2]. For instance,

the initial evidence for consistent judgment ‚�? ≺ H � ? is:

I�‚�? ≺ H � ?� = intr (bounds(?) ≺ bounds(H), bounds(?))

= intr ([H,�], [⊥,�])

= 〈[H,�], [H,�]〉.

A generalized definition of I, considering any consistent bounding judgment can be found in
Figure 18. The definition of I extends naturally to compute the initial evidence for consistent
subtyping judgments (the complete definition can be found in Figure 19). For instance, in the (Tif)

rule, I� Â�U2 <: U2 <
:U3� computes the initial evidence for the consistent lifting of the fact that the

type of the first branch is a subtype of the type of the entire conditional expression.
Rule (T ::) recursively translates the subterm t , and the consistent subtyping judgmentU1 <: U2

from (S ::) is replaced with I�U1 � U2�, which computes evidence ε for consistent subtyping. This
evidence is eventually placed next to the translated term t ′. The ascription itself is erased, because
it does not affect the results of the computation.

Rule (T app) works similarly. Since t1 is not constrained by a consistent subtyping judgment, the
rule generates evidence for reflexive consistent subtyping: that the type is a consistent subtype

of itself, I��U11
g′

−→gU12�. This seemingly vacuous evidence evolves nontrivially as a program

reduces. Evidence for the judgment ‰�gc ≺ g � g′ is computed as I�‰�gc ≺ g � g′�, and placed next to
the @ symbol, since it does not logically belong to any subterm.

The rest of the translation rules are analogous: each term is translated recursively, judgments
are replaced by functions that determine the corresponding initial evidence, and the evidence for
reflexive consistent subtyping I�

<: is associated to otherwise unconstrained types.
As an example, consider the GSLRef program x :=true?, with current security effect L and envi-

ronment Γ � x : Ref? BoolH. It elaborates to GSLε
Ref as follows:

(Tassgn)

Γ; .; L � x � x : Ref? BoolH Γ; .; L � true? � true? : Bool?
ε1 = I��Ref?BoolH� = 〈Ref[⊥,�]Bool[H,H],Ref[⊥,�]Bool[H,H]〉

ε2 = I�Bool? � BoolH� = 〈Bool[⊥,H],Bool[H,H]〉
ε3 = I�„�L ≺ ? � H� = 〈[L,H], [H,H]〉

Γ; .; L � x :=true? � ε1x :=ε3 ε2true? : Unit⊥

9In Garcia et al. (2016), the interior and initial evidence operators coincide under the name “interior,” because both operate
on pairs of gradual types. By distinguishing between intervals and labels, the present development induces a corresponding
distinction between these notions.
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Evolving Evidence. During reduction, evidence for consistent judgments must be combined to
justify each reduction step. This combination is realized by two operators: consistent transitivity

for label ordering and consistent join monotonicity.
The consistent transitivity operator ◦� attempts to combine evidence for g1

‹� g2 and g2
‹� g3

to produce evidence for g1
‹� g3. Since ‹� is not in general transitive, ◦� is partial, giving rise to

runtime errors. For instance, both H ‹� ? and ? ‹� L hold, but can they be combined to deduce that
H ‹� L? Of course not, otherwise high-confidence data could flow to low-confidence positions. To
understand this failure of consistent transitivity, consider the initial evidence for these judgments,
〈[H,H], [H,�]〉 and 〈[⊥, L], [L, L]〉. They cannot be combined, because “they do not meet in the
middle”; i.e., the middle intervals [H,�] and [⊥, L] share no labels in common, which would justify
transitivity. This intuition is formalized as follows:

〈ı1, ı21〉 ◦� 〈ı22, ı3〉 = �� (ı1, ı21 � ı22, ı3)

where [�1, �2] � [�′1, �
′
2] = [�1 ≺ �′1, �2

≺

�′2] if �1 ≺ �′1 � �2

≺

�′2

and �� ([�1, �2], [�′1, �
′
2], [�′′1 , �

′′
2 ])

= 〈[�1, �2

≺

�′2

≺

�′′2 ], [�1 ≺ �′1 ≺ �′′1 , �
′′
2 ]〉 if �1 � �′2, �′1 � �′′2 , �1 � �′′2

The meet operator � denotes the intersection of two intervals. Given three intervals ı1, ı2, ı3, the
�� operator calculates, if possible, a pair of intervals 〈ı ′1, ı ′3〉 � 〈ı1, ı3〉 such that transitivity of label
ordering through elements of ı2 is always plausible. Both operators are undefined if their side
conditions do not hold.

The consistent join monotonicity operator ˜≺ reflects another facet of reasoning about consistent
ordering relationships. Recall from Figure 2 that during reduction, labels are sometimes joined,
either for stamping values or for augmenting the security effect. Similarly, in GSLε

Ref evidence must
be combined to support new consistent judgments that involve these joined labels. Consistent join

monotonicity combines evidence for g1
‹� g2 and g3

‹� g4 to produce evidence for Â�g1 ≺ g3 � g2 ≺ g4,
the consistent lifting of the static judgment �1 ≺ �3 � �2 ≺ �4:

〈ı1, ı2〉 ˜≺ 〈ı ′1, ı ′2〉 = 〈ı1 ≺ ı ′1, ı2 ≺ ı ′2〉.

In contrast to consistent transitivity, this operator is total.
Lifting these label operators to types is direct, albeit verbose, and can be found in Appendix A.5.

These type operators inherit properties from the label operators, e.g., consistent transitivity of
subtyping ◦<: is partial just like consistent transitivity of label ordering.

Reduction Rules. Figure 6 presents reduction semantics for GSLε
Ref . Reduction operates on config-

urations C, which consist of a term and a store, and a security effect. Specifically, t1 | μ1
εg

c�−→ t2 | μ2

denotes the reduction of term t1 in store μ1 to term t2 in store μ2 under security effect gc ; the
label evidence ε confirms that the runtime security effect is a sublabel of the label that was used
statically to type check the original term (and is preserved by reduction).

The semantics is defined using two notions of reduction,−→ and−→<:. The rules directly mirror
the rules of SSLRef (Figure 2), except that they also manage evidence at subexpression borders and
combine evidence as needed to justify the preserved typing of the contractum. If evidence fails to
combine, then the program ends with an error.

A word about notation: to select evidences for sub-components of types, we use evidence inver-
sion functions (Garcia et al. 2016). For instance, given a function type evidence ε , idom(ε ) (respec-
tively, icod (ε )) retrieves the type evidence of the domain (respectively, co-domain). Similarly, ilat
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Fig. 6. GSLε
Ref : Dynamic semantics.

retrieves latent effect evidence from the evidence for a function type, and iref performs likewise
for reference types. Finally, given type evidence ε , ilbl (ε ) yields the corresponding label evidence.

We now describe each reduction rule in turn.

• Rule (r1) reduces a binary operation by joining the evidence of both operands to confirm
that type preservation holds.
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• Rule (r2) reduces a protected value by stamping the security effect of the prot on the value
and joining both evidences accordingly. We stamp g1 on the value to prevent it from leaking
information to the current context when g1 is more confidential than the current security
effect gc . Note that g2—which represents the join between g1 and the current security effect
gc —is not used in this rule; it is used during reduction of the protected subterm.

• Rule (r3) reduces a function application either to a protected body or to an error. The term
reduces to an error if consistent transitivity fails to justify that the type of the actual argu-
ment is a consistent subtype of the formal argument type. This prevents an evident invalid
information flow from the actual argument to the formal argument. Also, to prevent im-
plicit flows via the store, an error is signaled if consistent transitivity fails to confirm that
the latent effect of the function is greater than both the current security effect and that of
the function. If the function application is valid, then the body is protected at the security
level of the function. Label g′1 represents the security effect that is used to reduce the body,
where ε ′1 confirms that g′1 is no more confidential than the latent effect g′.

• Similarly, rule (r4) reduces a conditional expression by protecting the chosen branch. The
resulting prot term is constructed using the dynamic information of the conditional.

• Rule (r5) reduces a reference term to a fresh location. To prevent invalid implicit flows,
the current security effect is stamped on the stored value. The term reduces to an error
if consistent transitivity fails to confirm that the current security effect is lower than the
statically determined security level of the reference content U .

• Rule (r6) reduces a dereference term. In the dynamic semantics of SSLRef , dereferencing a
store location causes the actual security of the location to be stamped on the resulting value.
Here, the term reduces instead to a protected expression, which is equivalent but simplifies
the proofs.

• Rule (r7) is critical to ensuring noninterference. It can reduce to an error, and thereby pre-
venting either implicit or explicit invalid flows, for three reasons:
(1) the security level of the stored value should be no more confidential than the statically

determined security level of the reference content (explicit flow).
(2) both the current security effect and the actual security level of the reference should be

no more confidential than the static security level of the reference content (implicit
flow).

(3) the evidence of the current security effect must denote possible labels that are necessarily

lower than those denoted by the evidence of the stored value (implicit flow).
The third condition above, highlighted in gray in Figure 6, is expressed with the lower-
bound comparison operator �≤� between evidences:

〈[�1, �2], [�3, �4]〉 �≤� 〈[�′1, �′2], [�′3, �
′
4]〉 ⇐⇒ �3 � �′3.

This check is necessary to ensure noninterference, and as explained in Section 6.3, it arises
not from the type preservation argument, but from the noninterference argument. In Sec-
tion 4.3, we illustrate each of these three scenarios.

The −→<: reduction rule uses consistent transitivity to combine, if possible, strings of evidence
that accumulate on a raw value. It fails with a runtime error if the evidence cannot be combined.
Section 4.3 presents an example of such a reduction.

Finally, contextual term reduction is specified using term framesf and evidence frames h:

f ::= h[ε[]]
h ::= � ⊕ εt | εu ⊕ � | �@ε εt | εu @ε � | ε � | if � then εt else εt | !� | � :=ε εt | εu :=ε � | refU

ε �.
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Fig. 7. GSLε
Ref : Evaluation frames and reduction.

The reduction rules for frames are presented in Figure 7. Rule (Rf ) reduces under term frames.
Rule (R−→) reduces a term to either a term or error, using −→ from Figure 6. Similarly, Rules
(Rh) and (Rproth) reduce the subterm using the evidence-combining reduction −→<:. Rule (Rprot)
allows the protected subterm to step under a higher security level, which may be a sublabel of the
one determined statically. Finally, rules (Rf err) and (Rproterr) propagate errors when the subterm
reduces to an error, and rules (Rherr) and (Rprotherr) propagate errors when evidence fails to
combine.

4.3 Examples of Reduction

To illustrate the runtime semantics of GSLRef , we first illustrate the three scenarios for which an
assignment can fail, as per Rule (r7).

(1) Consider the following program, which attempts to assign a high-confidentiality value
into a low-confidentiality reference, and its translation (under security effect ⊥):

⊥ � refIntL 20L:=(10H :: Int?) � t : Unit⊥.

Abbreviating [⊥,�] as ?, [�, �] as �, 〈ı, ı〉 as 〈ı〉, and _ for irrelevant evidence, we have

t
_⊥
�−→∗ε1o⊥ :=_ ε210H,

where ε1 = 〈Ref⊥ IntL〉 � Ref⊥ IntL � Ref⊥ IntL, ε2 = 〈IntH, Int[H,�]〉 � IntH � Int?. Then
as (ε2 ◦<: iref (ε1)) = 〈IntH, Int[H,�]〉 ◦<: 〈IntL〉 is not defined, the term reduces to an er-
ror, as expected.

(2) The following program attempts to update a low-confidentiality reference under a high-
confidentiality security effect. Considering a security effect ⊥, a location � o⊥ : Ref⊥ IntL,
the program and its translation are

⊥ � if trueH :: Bool? then o⊥:=10L else unit � t : Unit?.
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The conditional reduces to the first branch under a security effect H:

t
_⊥
�−→∗prot_Hε1H(_(ε2o⊥ :=ε3 _10L)),

where ε1 = 〈H, [H,�]〉 � Â�⊥ ≺ H � ⊥ ≺ ? and ε2 = 〈Ref⊥ IntL〉 � Ref⊥ IntL � Ref⊥ IntL.
Also, because the static security effect of the assignment is ?, we have ε3 =

〈[⊥, L], L〉 � „�? ≺ ⊥ � L. Then as ((ε1 ˜≺ ilbl (ε2)) ◦� ε3 ◦� ilbl (iref (ε2))) = 〈H, [H,�]〉 ◦�
〈[⊥, L], L〉 ◦� 〈L〉 is not defined, the term reduces to an error, successfully preventing an
invalid implicit flow.

(3) Consider a program fragment similar to the previous one, with security effect⊥, a variable
x : BoolH, and a location � o⊥ : Ref⊥ Int ? :

⊥ � if x :: Bool? then o⊥:=10H else unit? � t : Unit?.

Suppose as well that μ (o) = ε20?, where ilbl (ε2) = 〈[⊥,�], [⊥,�]〉 � ? ‹� ? (i.e., the stored
number and heap cell have not acquired any security commitments yet). If x is trueH, then
the first branch is taken:

t
_⊥
�−→∗prot_Hε1H(_(_o⊥ :=_ _10H)),

where ε1 = 〈H, [H,�]〉 � Â�⊥ ≺ H � ⊥ ≺ ?. Since ε1 �≤� ilbl (ε2) is not defined, because
H‹� ⊥, the program reduces to an error. The problem is that if x were changed to falseH,
then the unchanged imprecisely labeled contents of o could be treated as low-security and
thereby used to leak information about x , using for instance a test of !o that conditionally
assigns to some other low-security reference (for more, see the example of Sections 2 and
6.3).

Type-based Reasoning. Finally, we revisit the mix and smix functions from Section 2, which illus-
trate how GSLRef preserves type-based reasoning principles in the gradual setting. The desugared
GSLRef program follows10:

mix = (λpub : L.(λpriv : ?.(if pub < priv then 1L else 2L) :: L)L)L

smix =mix :: L → H → L

smix 1L 5L.

This program elaborates to the following GSLε
Ref program:

mix = (λpub : L.(λpriv : ?.〈[⊥, L], L〉(if 〈?〉(〈L〉pub < 〈?〉priv ) then 〈L〉1L else 〈L〉2L))L)L

smix = 〈L → [H,�] → L, L → H → L〉mix

〈H → L〉(〈L → H → L〉smix @〈[L,�]〉 〈L〉1L) @〈[L,�]〉 〈L,H〉5L.

A trace of the program is given in Figure 8. As before, we abbreviate [⊥,�] as ?, [�, �] as �, and 〈ı, ı〉
as 〈ı〉. We omit the security effect of the reduction, which is always 〈⊥〉⊥, as well as the heap, since
the program is pure. The program fails as expected, because low-security evidence is attached to
the conditional term by a static ascription, which fails to combine with the high-security evidence
of the value produced by the conditional. In other words, reduction fails to prove that H � L.

10For brevity, we only show the labels of base types, and omit latent effect annotations on pure functions.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 4, Article 16. Publication date: December 2018.



16:26 M. Toro et al.

Fig. 8. GSLε
Ref : Example reduction.

4.4 GSLRef: Safety and Graduality

GSLRef satisfies a standard type safety property, whose proofs are in the companion technical
report (Toro et al. 2018). More precisely, type safety is formulated for the evidence-augmented
language GSLε

Ref , and hence appeals to a corresponding typing judgment. As expected, this typing
judgment, denoted Γ; Σ; εgc � t : U , is based on the GSLRef typing judgment.11 The only differ-
ence is that the security effect gc is enriched with evidence ε . This evidence accounts for how the
runtime security effect can evolve to (consistently) lower levels than the security effect originally
determined by the type system.

Proposition 4.1 (Type Safety). If ·; Σ; εgc � t : U , and consider μ, such that Σ � μ, then either:

• t is a value v

• t | μ
εg

c�−→ error

• t | μ
εg

c�−→ t ′ | μ ′ and ·; Σ′; εgc � t ′ : U for some Σ′ ⊇ Σ such that Σ′ � μ ′

Additionally, by design, the type system of GSLRef is crisply and smoothly connected to that of
SSLRef . First, the two typing judgments are crisply connected in that the GSLRef judgment conser-
vatively extends the SSLRef one.

Proposition 4.2 (Static Conservative Extension). Let �S denote SSLRef ’s type system. Then

for any static language term t ∈ Term, ·; Σ; �c �S t : S if and only if ·; Σ; �c � t : S .

11The full definition of the GSLε

Ref type system can be found in Appendix A.3; the (straightforward) theorem that elabora-

tion preserves typing is in the companion technical report (Toro et al. 2018).
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Second, the two typing judgments are smoothly connected in that each well-typed GSLRef pro-
gram (thus each SSLRef one) preserves well-typing as its security information is made less precise,
a property known as the static gradual guarantee (Siek et al. 2015). Precision orders the static infor-
mation content of gradual type or labels from most to least. Type and label precision are defined
as follows:

Definition 4.3 (Type and Label Precision).

g � ? g � g

g1 � g2

Boolg1
� Boolg2

g1 � g2

Unitg1
� Unitg2

U11 � U21 U12 � U22 g11 � g21 g12 � g22

U11
g12−→g11

U12 � U21
g22−→g21

U22

g1 � g2 U1 � U2

Refg1
U1 � Refg2

U2

Type and label precision are naturally lifted to term precision.

Proposition 4.4 (Static Gradual Guarantee). Suppose gc1 � gc2 and t1 � t2.

If ·; ·; gc1 � t1 : U1, then ·; ·; gc2 � t2 : U2 where U1 � U2.

This guarantee is best understood in reverse: if a simply typed program (where all security labels
are ?) has a security-typed counterpart (where all security labels are precise), then GSLRef statically
accepts every intermediate security typing of that program: type checking is continuous with re-
spect to security precision, so security information can be added in any order and at any rate (Siek
et al. 2015).

Siek et al. (2015) also present a dynamic gradual guarantee, which relates the execution behavior
of programs that only differ in their precision. Specifically, if a program takes a step, then the same
program with less precise (or fewer) type annotations also takes a step, i.e., reducing precision does
not introduce new runtime errors. The formal statement of the guarantee can be found in the com-
panion technical report (Toro et al. 2018). Unfortunately, we have uncovered a tension between
the dynamic gradual guarantee and noninterference. To ensure noninterference, the dynamic se-
mantics of GSLRef includes a specific runtime check (highlighted in gray in Figure 6), which breaks
the dynamic gradual guarantee. Dually, without this check, GSLRef satisfies the dynamic gradual
guarantee, but does not enforce noninterference for all programs. We discuss this subtlety in more
detail in Section 6.3.

Nevertheless, an interesting conservative extension result holds for the dynamic semantics.
Specifically, static GSLRef terms never produce errors at runtime.

Proposition 4.5 (Static Terms do not fail). Let StaticTerm be the static subset of GSLε
Ref

terms, i.e., with fully static annotations, and StaticStore the set of stores whose codomains are

subsets of StaticTerm. Then consider t ∈ StaticTerm, μ ∈ StaticStore, and ε�c such that ε =

I��c ‹� �′c �. If ·; Σ; ε�c � t : U , then either t is a value, or t | μs
ε�c�−→ t ′s | μ ′s , with t ′ ∈ StaticTerm and

μ ′ ∈ StaticStore.

4.5 Prototype Implementation

We have implemented GSLRef in an interactive prototype available online at https://pleiad.cl/
gradual-security/.
The implementation, realized in Scala, supports all of GSLRef plus let-bindings. Given a source pro-
gram, it either shows the result of the elaboration to GSLε

Ref , or reports a static type error. If the
source program is well-typed, then the evidence-augmented term can be explored interactively,
either collapsing or expanding premises of its well-typedness, including evidences. The user can
then reduce the term step by step, similarly to PLT Redex’s trace facility. At each step, the full

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 4, Article 16. Publication date: December 2018.

https://pleiad.cl/gradual-security/
https://pleiad.cl/gradual-security/


16:28 M. Toro et al.

typing derivation of the term can again be explored. The reduction shows how evidences are com-
bined by consistent subtyping transitivity, eventually ending up in a value or a runtime security
error.

All examples presented in this article are available as pre-loaded source examples.

5 GSLRef: NONINTERFERENCE

This section establishes the type soundness of GSLRef , i.e., that gradual security types ensure nonin-
terference. Noninterference formalizes the intuition that low-security observers of a computation
cannot detect changes in high-security inputs. Therefore, noninterference inherently reflects a
relationship between different runs of the same program with different inputs. We establish non-
interference for GSLRef using logical relations (Heintze and Riecke 1998; Zdancewic 2002). More
precisely, because general references introduce nontermination, we apply step-indexed relations
(Ahmed 2004). As standard, we focus on termination-insensitive noninterference: interference be-
tween two executions is only acknowledged when both terminate in values that are observably
different. In line with prior work on gradual security (Disney and Flanagan 2011; Fennell and Thie-
mann 2013), we consider runtime check errors to be akin to non-termination, because in principle
the semantics could deal with errors by diverging and directly reporting the error through a secure
channel.

Observing Values. The security type of a value dictates both an observation protocol and the
clearance required to observe it. Consider a value � v : U1 →gU2, and an observer with security
level �o : Can �o observe the value? If so, then what observations can it make? First, �o cannot make
any observations if its security level does not subsume that of the function (g /̃� �o ). If clearance
is granted (g ‹� �o ), then �o may make observations in accordance with the structure of v’s type:
it may construct another value v ′ : U1 and apply it to the function; the observations that �o can
make of the result are then dictated by the type U2 ˜≺ g.

The predicate obsVal�o
, defined formally below, intuitively captures what it means for a value

v of type U to be observable at �o : �o must be consistently greater than the security label of
U . To account for the gradual security setting, we need to extend this intuitive notion in two
ways. First, observation must deal with the potential for values to carry type ascriptions, such as
v = trueH :: Bool?. An observer at security level L must not observe the underlying high-security
value. The key intuition is that the observation should ultimately be equivalent to applying the
source language context if � :: BoolL then trueL else falseL to the value, thereby asserting cre-
dentials and then using them. Doing so would trigger a runtime check error, which amounts to a
non-observation. In GSLε

Ref ,v would be represented as an evidence value εtrueH, where ε confirms
that BoolH � Bool?. We capture the observability of the underlying value by defining the notion
of observable evidence at a given observation level. Then, an evidence value v = εu is observable if
its label evidence (ilbl (ε )) is observable.

Definition 5.1 (Observable Evidence). Suppose observation level �o and an evidence judgment
ε � g ‹� g′ for some g and g′. For the evidence ε to be observable at �o , it must be possible to
confirm g ‹� �o using consistent transitivity of label ordering through g′. Formally:

obsEvg′

�o
(ε ) ⇐⇒ ε ◦� I�g′ ‹� �o� is defined.

Second, observation must account for dynamic security effect clearance: observation leaks a
value from its context, so the observer must have the proper credentials. Recall that execution
happens under a dynamic security effect g that, at runtime, can be consistently lower than the
security effect originally determined by the type system. Therefore, the dynamic security effect is
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Fig. 9. Related values.

Fig. 10. Related computations.

accompanied by evidence ε that confirms that g ‹� g′, where g′ is the static security effect. Obser-
vation is allowed if such evidence is observable, i.e., g ‹� �o .

Adding these two refinements of observability to the original notion of observable value yields
the following definition.

Definition 5.2 (Observable Value). Given an observation level �o , we define that a value v , typed
as U , is observable as

obsValU�o
(v ) ⇐⇒ g ‹� �o ∧

Ä
(v = ε1u) =⇒ obsEvg

�o
(ilbl (ε1))

ä
where g = label (U )

Security Logical Relations. We define logical relations between both computations and values in
Figures 9 and 10. The notions of related values and related computations are mutually recursive,
as explained below. Note that the logical relations are only defined for pairs of GSLε

Ref terms that
have the same typeU , so simple type safety ensures that the behaviors dictated byU will produce
defined behavior (including runtime error). To make the relations well-defined in the presence
of nontermination, we index them on the number of steps k that the observer �o may take. If no
inequivalent observations are made afterk steps, then the terms are deemed equivalent. Ultimately,
we require that �o observes equivalence for any arbitrary number of steps, which implies that
nonterminating computations also respect the noninterference guarantees. This is the essence of
step-indexing (Ahmed 2004).

The definition of related values is presented in Figure 9. We use notation εi gci to denote the
evidence-augmented security context εi gi . The notation Σ; gc � 〈ĝ1,v1, μ1〉 ≈k

�o
〈ĝ2,v2, μ2〉 : U in-

dicates that the triple of security context д̂1, valuev1 and store μ1, is related to the triple of dynamic
security context д̂2, value v2 and store μ2 at type U for k steps under store typing Σ and static se-
curity context gc when observed at the security level �o . For two such triples to be related, four
conditions must be satisfied:
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(1) The security effects must be related under security effect gc , meaning they denote execu-
tion contexts that are either both above �o (high-security), or both below (low-security).
Formally, two security effects are related if their underlying evidences are either both
observable or both not observable:

gc �ε1g1 ≈�o
ε2g2 ⇐⇒

(
obsEv

g
c

�o
(ε1) ∧ obsEv

g
c

�o
(ε2)

)
∨
(
¬obsEv

g
c

�o
(ε1) ∧ ¬obsEv

g
c

�o
(ε2)

)
,

where εi � gi
‹� gc .

(2) The stores must be related for k steps under store typing Σ, notation Σ �μ1 ≈k
�o

μ2. This
means that, for locations that are common to both stores,12 the stored values are related
at j < k steps. Formally:

Σ �μ1 ≈k
�o

μ2 ⇐⇒ ∀gc ,д̂i , εi � gi �̃ gc , gc �д̂1 ≈�o
д̂2, j < k, Σ � μi ,

∀o ∈ dom(μ1) ∩ dom(μ2), Σ; gc � 〈д̂1, μ1 (o), μ1〉 ≈j
�o

〈д̂2, μ2 (o), μ2〉 : Σ(U ).

In particular, stored values must be related at all related security effects д̂1, д̂2. This gener-
ality is necessary, because all reference operations involve stamping the current security
effect (and its evidence) onto the stored value, and doing so must preserve relatedness. For
instance, two runs of a program can update a store location with different values under a
high-security effect, because both will be stamped high-security, and thus indistinguish-
able by a low-security observer �o .

(3) The values must both have the same type U under an empty type environment and valid
store type.

(4) The values must be either both observable or both not observable. If the values are not
observable, then they are deemed equivalent. If they are observable, then they must be

related at their specific type, as specified by the auxiliary relation obsRel
Σ;g

c
U

k, �o
, defined by

case analysis on U . If U is Boolg, Unitg, or RefgU
′, then two values are related simply if

their raw values are equal (rval strips away checking-related information such as labels
and evidences). Two functions are related if their application to two related argument
values, in related stores, for j ≤ k steps, are related computations, as explained below.

The definition of related computations is presented in Figure 10. First, two triples of security
effect, term, and store are related computations for k steps at type U if the security effects and
the stores are related, as defined previously. Second, the terms must have type U under any ob-

servationally higher security effect ĝ′.13 We say ĝ′ = ε ′g′ is observationally higher than ĝ = εg,

notation ĝ ≤�o
ĝ′ if ¬obsEv

g
c

�o
(ε ) ⇒ ¬obsEv

g′
c

�o
(ε ′), where ε � g ‹� gc and ε ′ � g′ ‹� g′c . For instance,

in the static language it is the case that for any �, H ≤�o
H ≺ �, because by monotonicity of the

join H /� �o ⇒ H ≺ � /� �o . Additionally, for any j < k , if both terms can be reduced for at least j
steps under security effect ĝ′i , then the resulting stores should be related for the remaining k − j
steps. Finally, if the resulting terms are irreducible, they must be related values for the remaining
k − j steps at type U , as defined previously. The logical relation relates computations that do not
terminate as long as the stores are also related after k steps.

Noninterference. Armed with these logical relations, we can state a semantics-driven notion of
noninterference, and prove that well-typed terms of the internal language are sound with respect to
it. The judgment Γ; Σ; ĝ |= t : U says that term t is semantically well-typed, meaning that it respects
the security protocol U for all observers, substitutions, stores, and steps (Ahmed 2004).

12For simplicity and without loss of generality, like Austin and Flanagan (2009), we assume that a new reference in two
related executions is allocated at the same address.
13This requirement is motivated by the proof, to obtain a stronger induction hypothesis (Toro et al. 2018).
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Definition 5.3 (Semantic Security Typing).

Γ; Σ; ĝ |= t : U ⇐⇒ ∀ �o ∈ Label,k ≥ 0, ρ1, ρ2 ∈ Subst and μ1, μ2 ∈ Store,∀gc , ĝ = εg,

ε � g ‹� gc , such that Σ � μi and Γ; Σ; gc � 〈ĝ, ρ1, μ1〉 ≈k
�o

〈ĝ, ρ2, μ2〉 ,
we haveΣ; gc � 〈ĝ, ρ1 (t ), μ1〉 ≈k

�o
〈ĝ, ρ2 (t ), μ2〉 : C(U ).

The definition above appeals to a notion of related substitutions. Indeed, the term t may have free
variables, indicating “input parameters.” The term is semantically well-typed if applying related
substitutions (and stores) yields related computations at type U , for any number of steps k , and
for any observer �o . Two substitutions are related if they map each variable in the term to related
closed values:

Definition 5.4 (Related Substitutions). Tuples 〈ĝ1, ρ1, μ1〉 and 〈ĝ2, ρ2, μ2〉 are related on k steps
under Γ, Σ and gc , notation Γ; Σ; gc � 〈ĝ1, ρ1, μ1〉 ≈k

�o
〈ĝ2, ρ2, μ2〉, if ρi |= Γ, Σ �μ1 ≈k

�o
μ2 and

∀x ∈ dom(Γ).Σ; gc � 〈ĝ1, ρ1 (x ), μ1〉 ≈k
�o

〈ĝ2, ρ2 (x ), μ2〉 : Γ(x ).

Note that because a low-security observer equates all high-security values, the actual substitu-
tions and stores can be wildly different, up to the strictures that the logical relation imposes on
their types.

Finally, Security Type Soundness says that the syntactic type system enforces noninterference.

Proposition 5.5 (Security Type Soundness). Γ; Σ; ĝ � t : U ⇒ Γ; Σ; ĝ |= t : U

6 DERIVING GSLRef WITH AGT (ALMOST)

So far the presentation of GSLRef has focused on describing the language as it is and its properties,
without explaining how it came to be designed that way. Several definitions in both the static
and dynamic semantics may seem to come out of nowhere, and hard to accept without further
justification.

This work originated in part from our desire to apply the Abstracting Gradual Typing (AGT)
methodology (Garcia et al. 2016) in a challenging setting. Indeed, AGT has been shown to be
effective in different contexts: records and subtyping (Garcia et al. 2016), static semantics of gradual
effects (Bañados Schwerter et al. 2014, 2016), gradual unions (Toro and Tanter 2017), as well as
refinement types (Lehmann and Tanter 2017) and set-theoretic types (Castagna and Lanvin 2017).
But AGT has never been applied to a type discipline that denotes a relational property over multiple
executions.

Therefore, we have systematically derived GSLRef from SSLRef using AGT. This methodology,
which starts from considering gradual types as abstractions of static types, drove the entire design
of GSLRef . The abstract interpretation framework of AGT provides definitions—semantically de-
fined notions—which may be hard to implement directly. From these definitions, we devise equiv-
alent algorithmic characterizations—easily implementable, but hard to convincingly justify infor-
mally. AGT also explains how to derive the dynamic semantics of a gradual language based on the
type safety argument of the static language. In Section 4, we try to convey guiding intuitions, but in
this section, we show how the definitions are not driven by intuition, but rather formally justified
by AGT. Each algorithmic characterization from Section 4 is equivalent to its semantic definition,
obtained using AGT and presented hereafter. These equivalences are proven in the companion
technical report (Toro et al. 2018).

Before diving into the subtleties of applying AGT to security typing, we quickly describe the
main elements of the AGT approach as spelled out by Garcia et al. (2016): its inputs, steps, and
outputs.
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AGT in a Nutshell. The AGT methodology proposes to derive the static and dynamic semantics
of a gradual language in the following manner:

(1) Deriving the statics.

(a) Start from a language with a fully static typing discipline, including the particulars of
its type safety proof.

(b) Define the syntax of gradual types, and give them meaning via a concretization func-
tion, which maps gradual types to sets of static types; then define the corresponding
most precise abstraction function, forming a Galois connection.

(c) Lift type predicates and functions used in the type system of the static language
through the Galois connection to obtain the gradual type system.

(2) Deriving the dynamics.

(a) Define the structure of evidence for consistent judgments, which represents justi-
fication for why such a judgment holds; this representation depends on a Galois
connection—usually the same as the one used for deriving the static semantics.

(b) Reduce gradual programs by reducing gradual typing derivations decorated with
evidence, mirroring reasoning steps of the static language’s type safety proof,
hence exploiting the correspondence between proof normalization and term reduc-
tion (Howard 1980).

Therefore, the “inputs” to AGT are only the static language, and the Galois connection(s) that
give meaning to gradual types and evidences. As “output”, one obtains the static and dynamic
semantics of the gradual language, together with the guarantee that it is type safe, is a conservative
extension of the static discipline, and satisfies the gradual guarantees.

Note that, as alluded to above, to achieve an implementation one must also provide algorithmic
characterizations of the operators obtained through the abstract interpretation framework. Often
these algorithms can be calculated by induction on types, but sometimes it requires trial-and-error.
In any case, the AI-based definition provides the baseline against which to formally validate such
characterizations.

Applying AGT to Security Typing. As mentioned above, applying AGT ensures by construction
that the derived gradual language is type safe and satisfies the gradual guarantees. In prior work,
we applied AGT to a pure language with security typing, and found the resulting language to sat-
isfy noninterference (Garcia and Tanter 2015). However, in this work, where the languages support
mutable references, applying AGT to SSLRef yielded a gradual language that violates noninterfer-
ence! By applying AGT, we surely obtained a gradual language that was type safe and satisfied the
gradual guarantees, but unfortunately, the crucial semantic property of security types was broken.
In brief, we had to apply two refinements. The first was proposed in the AGT methodology, though
not needed in prior work. The second is novel, but conflicts with the dynamic gradual guarantee.

This section reports on these wrinkles and refinements so that future efforts to apply AGT to
rich type disciplines can build on our experience. In particular:

• Section 6.1 sets up the basics to derive the static semantics of GSLRef with AGT, which was a
successful endeavor. In the process, we identified one subtlety (about compositional lifting)
that is worth highlighting.

• Section 6.2 explains the AGT approach to deriving the dynamic semantics of the gradual
language. Here, we discover that evidence must use a more precise abstraction than the
one used in the static semantics. While this possibility is briefly mentioned in Garcia et al.
(2016), it was not necessary in other applications of AGT.
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• Section 6.3 discusses a crucial point related to enforcing noninterference in the presence of
references, and hence potential implicit flows. This observation led us to add an extra check
to GSLRef ’s dynamic semantics. The check ensures noninterference but breaks the dynamic
gradual guarantee.

6.1 Deriving the Statics

Following the AGT approach, we give meaning to gradual security labels directly in terms of the
original static security labels. The driving intuition is that the unknown label ? represents any
label whatsoever, while a gradual label � represents a single static security label. We formalize this
with a concretization function.

Definition 6.1 (Label Concretization). γ : GLabel → P (Label)

γ (�) = { � }
γ (?) = Label.

Concretization immediately induces the notion of precision, which orders the static information
content of gradual labels from most to least:

Definition 6.2 (Label Precision). g1 � g2 if and only if γ (g1) ⊆ γ (g2).

To exploit AGT to gradualize SSLRef , we also require an abstraction function to precisely sum-
marize a set of static labels as a single gradual label (round hats Ûx denote sets of x ):

Definition 6.3 (Label Abstraction). α : P (Label)⇀GLabel:

α ({ � }) = �
α (∅) is undefined

α (Û�) = ? otherwise.

The γ and α functions are tightly connected by two properties that together form a Galois
connection (Cousot and Cousot 1977).

Proposition 6.4 (α is Sound and Optimal). If Û� � ∅, then

(i) Û� ⊆ γ (α (Û�)).
(ii) If Û� ⊆ γ (g), then α (Û�) � g.

Soundness (i ) means that α always produces a gradual label whose concretization over-
approximates the original set. Optimality (ii ) means that α always yields the best (i.e., least) sound
approximation that gradual labels can represent.

The meaning of gradual security types is derived from the meaning of gradual security labels.
Therefore, we naturally define a Galois connection for gradual security types (see Appendix A.3).

Lifting Predicates and Functions. Following AGT, we exploit the Galois connections to lift all
predicates and functions over labels and types from SSLRef to obtain the definition of their coun-
terparts in GSLRef . In essence, each gradual entity (label, type) represents some set of static entities,
so a consistent predicate holds among gradual entities so long as the underlying static predicate
could plausibly hold. For instance, consistent ordering on gradual labels is defined as follows:

Definition 6.5 (Consistent Label Ordering). g1
‹� g2 ⇐⇒ �1 � �2 for some (�1, �2) ∈ γ (g1) × γ (g2).

Consistent ordering conservatively extends static label ordering, because each static label, when
treated as a gradual label, concretizes to a singleton set that contains only itself; conservative
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extension is central to the concept of graduality (Siek et al. 2015). However, consistent ordering
holds universally for the unknown label ?, since it concretizes to all possible static labels.

Similarly, the join of two gradual labels is defined by lifting static label join:

Definition 6.6 (Gradual Label Join). g1 ˜≺ g2 = α ({ �1 ≺ �2 | (�1, �2) ∈ γ (g1) × γ (g2) }).

The gradual join of two gradual labels is the best abstraction of the set of all plausible static joins.
For more insight, recall its equational characterization in Section 4: the unknown label disappears
when joined with �, while it otherwise survives all joins. This is an emergent property of lifting:
We did not anticipate it.

Compositional vs. Aggregate Lifting. One unanticipated subtlety observed in Section 4 involves
the compound premises of the (Sapp) and (Sref) rules, such as �c ≺ � � �′. One might be tempted
to lift this premise compositionally as gc ˜≺ g ‹� g′. But Garcia et al. (2016) explicitly warn against
blindly lifting static predicates compositionally: compositional lifting must be proven (for instance,
they show that lifting their subtyping premises compositionally yields the same result as lifting
them aggregately). Here it matters! Consider the definition induced by AGT:

Definition 6.7 (Consistent Bounding).

‰�g ≺ gc � g′ ⇐⇒ �1 ≺ �2 � �3 for some (�1, �2, �3) ∈ γ (g1) × γ (g2) × γ (g3)

This definition is not equivalent to compositional lifting. For instance, the relation H ˜≺ ? ‹� L
holds, but we know that no static label � satisfies H ≺ � � L (because H ≺ � must be at least as
high as H).14 In fact, precise lifting becomes critical when we reason about combining such lattice
relations in the dynamic semantics. To the best of our knowledge, this is the first instance of
aggregate lifting affecting the application of AGT.

6.2 Deriving the Dynamics

Garcia et al. (2016) derive the dynamic semantics of a gradual language by reduction of gradual typ-

ing derivations (augmented with evidence), thereby exploiting the correspondence between proof
normalization and term reduction (Howard 1980). This approach, which directly exploits the proof
of syntactic type safety for the static language (SSLRef in our case), provides the direct runtime se-
mantics of gradual programs, instead of the usual approach by translation to some internal cast
calculus (Siek and Taha 2006).

Since writing down reduction rules over (two-dimensional) derivation trees is unwieldy, Garcia
et al. (2016) use intrinsically typed terms (Church 1940) as a convenient flat notation for derivation
trees. Intrinsic terms are heavy notationally, because they carry all type annotations, yielding to re-
duction rules that are hard to read. To alleviate this burden, we have chosen to present the dynamic
semantics by reducing evidence-augmented terms, which are more lightweight notationally, and es-
tablish a more direct connection with the traditional translational approach. The counterpart of
this choice is that we had to present a translation from source GSLRef terms to evidence-augmented
GSLε

Ref terms. Apart from this cosmetic difference, the central approach to reduction is the same:
evidence is combined during reduction, producing either new evidence to support the plausibility
of the contractum, or a runtime error if no evidence remains, thereby refuting type safety.

In essence, GSLε
Ref terms are intrinsic terms from which computationally irrelevant static an-

notations have been erased. Proofs of theorems about GSLRef ’s dynamic semantics need these

14To be honest, despite the warning of Garcia et al., we first overlooked the issue and applied compositional lifting, assuming
it would hold. We then observed that the resulting design loses enough precision to miss some evident inconsistencies,
with dramatic consequences for security.
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annotations, so they use intrinsic terms. The companion technical report formalizes the relation-
ship between intrinsic terms and evidence-augmented terms by giving a translation from intrinsic
terms to evidence-augmented terms (Toro et al. 2018). We show that, intrinsic terms can always be
erased to GSLε

Ref terms, and that the process can be reversed for well-typed GSLε
Ref terms. Further-

more, related intrinsic and GSLε
Ref terms either reduce to related terms or yield errors. Therefore,

the theorems about intrinsic terms transfer to GSLε
Ref terms.

Reduction and Consistent Deductions. All instances of combining evidence in the reduction rules
are dictated by SSLRef ’s type safety proof. To illustrate this deep connection, we now analyze a
case of the SSLRef type safety proof and describe how to lift the argument to GSLRef . Consider the
assignment case of SSLRef ’s preservation proof, which in essence reduces a type derivation D to
a new one and updates the program counter �c and store μ.

D =

o : S ∈ Σ

·; Σ; �c � o� : Ref� S
D1

·; Σ; �c � v : S2 S2 <: S �c ≺ � � label(S )

·; Σ; �c � o� :=v : Unit⊥

The relevant reduction rule (Figure 2) follows:

o� :=v |μ
�′

c−→ unit⊥|μ[o �→ v ≺ �′c ≺ �].

The fact that D reduces to ·; Σ; �c � unit⊥ : Unit⊥ is immediate, but we must also prove that the
stored valuev ≺ �′c ≺ � respects the store type, i.e., S2 ≺ �′c ≺ � <: S . Since ·; Σ; �c � v : S2 and S2 <: S ,
it suffices to show that �′c ≺ � � label(S ). We do so as follows. Since ≺ is monotone with respect
to � in both arguments, we can combine �′c � �c (assumed in the statement of preservation) and
� � � (deduced by� reflexivity) to deduce �′c ≺ � � �c ≺ �. Finally, since� is transitive, we combine
the above with the �c ≺ � � label(S ) to deduce �′c ≺ � � label(S ). To recap, this “reduction” applies
reasoning steps with a computational flavor: it composes � relations to deduce new ones, using
both join monotonicity and order transitivity.

In the gradual setting, transitivity of ordering of gradual labels does not always hold: e.g., H ‹� ?
and ? ‹� L but H �‹� L. As such, transitivity of consistent ordering is plausible but not definite, so we
have to check. How? Here is the key intuition: recall that a consistent judgment like H ‹� ? means
that �1 � �2 holds for some pair of labels (�1, �2) drawn from the concretizations γ (H) = { H } and
γ (?) = Label, respectively. We do not know which pair, so we must consider all plausible ones,
i.e., { (H,H), (H,�) }: the rest are surely wrong, so we discard them. Similarly, the plausible pairs
for ? ‹� � are { (�,�) | � � � }. Now, given these two sets of plausible orderings, is transitivity

plausible? Yes, because two plausible deductions arise: 1) H � H and H � � implies H � �; and
2) H � � and � � � implies H � �. When collected, the deduced pairings collapse to the singular
expected result: { (H ,�) }. If we replay the same reasoning for H ‹� ? and ? ‹� L, however, then we
deduce ∅, which means that transitivity is not plausible: it has been refuted. An analogous process
applies for join monotonicity, as well as transitivity of consistent subtyping, yielding sets of pairs
of candidate subtypings.

In both of the above deductions, we reason imprecisely yet still deduce definite results: a single
possibility in one, and none in the other. But in general, imprecision begets imprecision. The main
source of complication is that static safety arguments deduce ordering relationships by interleav-
ing transitivity and monotonicity arguments, so corresponding consistent deductions must mirror
them. Furthermore, it would be especially burdensome to explicitly track sets of pairs of labels at
runtime, let alone the sets of pairs of types that arise when reasoning about consistent subtyp-
ing. This is where AGT suggests to use an abstraction of the possible static candidates, evidence.
Evidence of a consistent judgment is a pair of abstractions of sets of static entities that justify
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a consistent judgment. Which abstraction to use turns out to be a crucial decision to preserve
noninterference, as discussed next.

Problems with Evidence as Gradual Labels. The “natural” abstraction of sets of labels are gradual
labels, as used in the static semantics. In fact, Garcia et al. (2016) use the same abstraction to
represent both runtime evidence and static gradual types; we initially followed suit. However, the
first major subtlety we uncovered while deriving GSLRef ’s dynamic semantics is that using gradual
labels (and consequently, gradual types) for evidence yields a design that achieves both type safety
and the gradual criteria, but violates noninterference!

This problem manifested in two parts of the noninterference proof. First, the noninterfer-
ence proof relies on the associativity of consistent transitivity.15 However, consistent transitiv-
ity of label ordering is not associative if gradual labels are used to represent evidence. Recall
the program true? :: BoolH :: Bool? :: BoolL, introduced in Section 4.2, which we expect to fail
at runtime, and which ultimately involves combining three consistent label ordering judgments:
ε1 � ? ‹� H, ε2 � H ‹� ?, and ε3 � ? ‹� L. If we use a pair of gradual labels to represent evidence, then
eventually, we have to calculate (ε1 ◦<: ε2) ◦<: ε3. But ε1 = 〈?,H〉, ε2 = 〈H, ?〉, and ε3 = 〈?, L〉, then
ε1 ◦� ε2 = 〈?, ?〉 and 〈?, ?〉 ◦� ε3 = 〈?, L〉, so no runtime error is produced. Note that ε1 ◦<: (ε2 ◦<: ε3)
fails as expected, because ε2 ◦<: ε3 is not defined, but this is not the composition order that arises
at runtime.

Second, the proof of noninterference relies on the observational completeness of the consistent
join operator:

Lemma 6.8. Suppose ε1 � g′1 ‹� g1 and ε2 � g′2 ‹� g2 such that ε1 ˜≺ ε2 � Â�g′1 ≺ g′2 � g1 ≺ g2.

Then (¬obsEv
g1
�o

(ε1) ∨ ¬obsEv
g2
�o

(ε2)) ⇐⇒ ¬obsEv
g1˜≺g2
�o

(ε1 ˜≺ ε2).

The analogous static lemma, i.e., (¬obsEv�o

�1 (�1) ∨ ¬obsEv�o

�2 (�2)) ⇐⇒ ¬obsEv�o

�1 ≺�2 (�1 ≺ �2),
holds trivially by the very definition of the join, but this property fails to hold in the presence
of the unknown label. Suppose ε ′1 � H ‹� ? and ε ′2 � ? ‹� ?. If we use a pair of gradual labels to
represent evidence, then ε ′1 = 〈H, ?〉, ε ′2 = 〈?, ?〉, and ε ′1 ˜≺ ε ′2 = 〈?, ?〉 losing information about H. But

¬obsEv?
L (〈H, ?〉) and obsEv?

L (〈?, ?〉), therefore invalidating the lemma.

Representing Evidence as Intervals. These observations forced us to seek a more precise abstrac-
tion whose composition (through consistent transitivity) is associative and preserves the obser-
vational completeness of consistent join. Since it suffices to know whether the upper- and lower-
bounds of the plausible static labels overlap to deduce the plausibility of consistent ordering, inter-

vals seem to be a fitting abstraction.16 Indeed, this abstraction is sufficiently precise to guarantee
the desired properties.

Definition 6.9 (Interval Concretization). γı : Interval → P (Label), where Interval =
{[�1, �2] ∈ Label2 | �1 � �2}

γı ([�1, �2]) = {� | � ∈ Label, �1 � � � �2}.

15Note that associativity of cast composition is also critical for space-efficient semantics of gradual typing, e.g., Siek and
Wadler (2010). We conjecture that associativity may be a fundamentally desirable property, and intend to pursue this
question.
16One could design a gradual security language that uses label intervals instead of gradual labels right from the start, includ-
ing in the static semantics. While this would unify the abstractions used in the statics and dynamics, it would yield a gradual
type system that rejects more secure programs than GSLRef does. For instance, the program (if falseL :: ? then 1H else 2L) ::
L, is accepted and runs without errors in GSLRef . But if we use intervals in the static semantics, then the security level of
the conditional expression that boils down to the join between ?, H, and L would be [L, H], therefore the program would
be rejected statically. Applying a ? ascription to 1H would fix this program.
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Definition 6.10 (Interval Abstraction). αı : P (Label) → Interval

αı (∅) is undefined αı ({ �i }) = [

≺

�i , ≺�i ] otherwise.

With evidence based on intervals, (ε1 ◦� ε2) ◦� ε3 and ε1 ◦� (ε2 ◦� ε3) are equivalent. Back to
the example, now ε1 = 〈[⊥,H], [H,H]〉, ε2 = 〈[H,H], [H,�]〉 and ε3 = 〈[⊥, L], [L, L]〉, then ε1 ◦�
ε2 = 〈[⊥,H], [H,�]〉. Because 〈[⊥,H], [H,�]〉 ◦� ε3 is undefined, a runtime error is raised, avoid-
ing the breach of noninterference. Also, the observational-monotonicity of the join is pre-
served. Now ε ′1 = 〈[H,H], [H,�]〉 and ε ′2 = 〈[⊥,�], [⊥,�]〉, then ε ′1 ˜≺ ε ′2 = 〈[H,�], [H,�]〉 and now

¬obsEv?
L (〈[H,�], [H,�]〉) as expected.

Lifting Consistent Lattice Relations. We now explain how the definitions of consistent transitivity
and join monotonicity are semantically justified. As discussed in Section 6.1, premises such as
�c ≺ � � �′ must be lifted as aggregates. In fact, such a judgment is likely the consequence of
similar deductions from earlier reduction steps. For instance � must be some lattice expression

F (�i ) comprising joins (and meets) of source program labels �i . Therefore, to mirror static type
safety reasoning steps at runtime, and catch inconsistencies if they arise, we must generalize each
ordering premise in a derivation and consider it as some lattice relation F1 (�i ) � F2 (�j ). The notion
of evidence must consequently account for the plausibility of consistent lattice relations:

〈ı1, ı2〉 � Â�F1 (gi ) � F2 (gj )

The definitions of consistent join monotonicity and consistent transitivity then follow directly
from AGT by consistent lifting.

Definition 6.11 (Consistent Transitivity for Label Ordering).

◦� : Interval2 × Interval2 ⇀ Interval2

〈ı1, ı21〉 ◦� 〈ı22, ı3〉 = α2
ı ({〈�1, �3〉 ∈ γ 2

ı (〈ı1, ı3〉) | ∃� ∈ γı (ı21) ∩ γı (ı22).�1 � � ∧ � � �3}).

Consistent transitivity produces evidence for all plausible instances of consistent ordering that
can be deduced using transitivity from the plausible instances of ordering represented by the two
inputs. By design, α2

ı (∅) is undefined, so consistent transitivity is also undefined if no plausible
pairings remain to support a deduction.

Definition 6.12 (Consistent Join Monotonicity). ˜≺ : Interval2 × Interval2 ⇀ Interval2

ε1 ˜≺ ε2 = α2
ı ({〈�1, �2〉) | ∃〈�11, �12〉 ∈ γ 2

ı (ε1), 〈�21, �22〉 ∈ γ 2
ı (ε2).�1 = �11 ≺ �21, �2 = �12 ≺ �22, �1 � �2}).

Consistent join monotonicity is analogous, but note that due to lattice and interval properties,
consistent join monotonicity is really a total function. Also, the �1 � �2 condition is superfluous;
we present the definition in this form to preserve the general structure of consistent deduction
definitions.

The algorithmic characterizations from Section 4.2 are equivalent to the above definitions. More
importantly, we can prove that these operators indeed yield valid evidence for the combined con-
sistent judgments.

Proposition 6.13. Suppose ε1 � Â�F11 (gi ) � F12 (gj ) and ε2 � Â�F21 (gi ) � F22 (gj )

Then ε1 ˜≺ ε2 � Â�F11 (gi ) ≺ F21 (gi ) � F12 (gj ) ≺ F22 (gj )

Proposition 6.14. Suppose ε1 � Â�F1 (gi ) � F2 (gj ) and ε2 � Â�F2 (gj ) � F3 (gk ).

If ε1 ◦� ε2 is defined, thenε1 ◦� ε2 � Â�F1 (gi ) � F3 (gk )
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From Labels to Types. Finally, in addition to reasoning about consistent label ordering, the dy-
namic semantics must track and check the plausibility of consistent subtyping. Since (consistent)
subtyping is induced by (consistent) ordering, the reasoning in question arises by lifting the same
constructions to gradual security types, consistent subtyping, and consistent subtyping join and
meet.

Just as we extend gradual labels g to gradual security typesU (e.g., Intg) in the source language,
so do we extend label intervals ı point-wise to type intervals E (e.g., Intı ) and corresponding notions
of evidence for consistent subtyping ε (e.g., 〈Intı1 , Intı2〉), which represent sets of pairs of candi-
dates for plausible subtyping. We introduce evidence judgments ε � U1 � U2 to associate runtime
evidence with particular consistent subtyping judgments. The entire development mirrors the one
for labels, and does not convey any new insights (see Appendix A.5).

6.3 Policing Dynamic Heap Updates

Although adopting label intervals for evidence of consistent label judgments addressed some as-
pects of the noninterference proof, this refinement alone is not sufficient.

To illustrate the remaining problem, recall the example of implicit flows from Section 2, in par-
ticular the second version of the example, which has some missing static annotations.

1 fun x: BoolH =>
2 let y: Ref Bool ? = ref true ?

3 let z: Ref BoolL = ref trueL

4 if x then y := false ? else unit
5 if !y then z := falseL else unit
6 !z

This program is accepted statically and also runs without errors: if x is trueH then the program
reduces to trueL, and if x is falseH it reduces to falseL: a clear breach of noninterference!

To understand the problem, consider what happens for the different values of x. When x is
trueH the assignment in line 4 under security effect H is valid, because H ‹� ?. In that moment, we
know that the security level of the content of y, must be higher than H. But when x is falseH, in
line 5 we assume that the security level of the content of y is lower than L. In other words, under
supposedly related executions we get contradictory evidence for y. Notice that in the assignment
at line 4, the judgment H ‹� ? holds, but so does its negation H /̃� ?. To preserve noninterference,
we must ensure that its negation never holds.

To recover noninterference, we add an extra check to the assignment reduction rule (r7) from
Figure 6:

ε1og :=ε3 ε2u | μ
εg

c−→
{

unit⊥ |μ[o �→ ε ′(u ˜≺ (gc ˜≺ g))]

error if ε ′ is not defined, or ε �≤� ilbl (ε ′′) does not hold ,

where μ (o) = ε ′′u ′. The highlighted check ensures that if the security effect is not observable, then
the content of the heap to be replaced must also be not observable.17 This concept is formalized in
the following lemma, which is used in the noninterference proof:

Lemma 6.15. Consider ε1 � g′1 ‹� g1 and ε2 � g′2 ‹� g2. Then (¬obsEv
g1
�o

(ε1) ∧ ε1 �≤� ε2) ⇒
¬obsEv

g2
�o

(ε2).

With the additional check, if x is trueH, the program fails at runtime, preserving noninterference.

17This check is analogous to the no-sensitive-upgrade check introduced by Austin and Flanagan (2009), taken to the gradual
context, and hence involving unknown labels, evidences, and consistent judgments.
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The necessity of the check shows up in the noninterference proof for the if case. When two
computations have related non-observable conditionals, the booleans can be different. This may
lead to two related computations that reduce different branches under a high-security context.
At that point, we must enforce that those different executions only write high-security values to
the heap. In other words, as long as both executions reduce under high-security contexts, their
executions can desynchronize only on private information. Formally, the following lemma should
hold:

Lemma 6.16. Consider ·; Σ; εgc � t : U , g′c and μ such that, ε � gc
‹� g′c , ¬obsEv

g′
c

�o
(ε ) and Σ � μ,

and ∀k > 0, such that t | μ
εg

c�−→ kt ′ | μ ′,

(1) ∀o ∈ dom(μ ′)\dom(μ ), ¬obsValU�o
(μ ′(o)).

(2) ∀o ∈ dom(μ ′) ∩ dom(μ ) where μ ′(o) � μ (o),
(a) ¬obsValU�o

(μ (o)), and

(b) ¬obsValU�o
(μ ′(o)).

Without the additional check in rule (r7), we cannot prove (2.a) in Lemma 6.16: before updating
a reference, the current content should be non observable. And as we can see in the example above,
without the check, the reference before the assignment would be observable, hence breaking the
lemma.

In its current formulation (Garcia et al. 2016), AGT derives the dynamic semantics of the gradual
language from the type safety argument of the static language. Here, we are facing a typing dis-
cipline in which type safety does not imply type soundness (i.e., noninterference), and hence, the
methodology falls short of naturally preserving that property. This suggests that extending AGT
to ensure type soundness of the derived gradual language might require adapting the conceptual
framework to take the purely static type soundness proof as a source of design insight.

Noninterference vs. Dynamic Gradual Guarantee. Although the extra check above allows GSLRef

to ensure noninterference, it sacrifices the dynamic gradual guarantee. Recall that this guarantee
says that removing a static security annotation cannot introduce new runtime errors.

Consider the following example:

1 fun x: BoolH =>
2 let y: Ref BoolH = ref trueH

3 if x then y := falseH else unit

The program is accepted statically and runs without error as it does not break noninterference. If
we remove the type annotations on line 2:

1 fun x: BoolH =>
2 let y: Ref Bool ? = ref true ?

3 if x then y := falseH else unit

then the program is conservatively rejected at runtime, because of the additional check for assign-
ments. This behavior violates the dynamic gradual guarantee.18

To sum up, if decreasing the precision of a type annotation results in performing an assignment
to a reference whose content now has an unknown security label, and that assignment occurs
under a non-public security effect, a runtime error can be raised, whereas the more precise program
did not fail. More precisely, even in such situations, a runtime error will only be raised if the

18Removing the additional check on assignments recovers the dynamic gradual guarantee, but it breaks noninterference:
there is no free lunch in presence of mutable references.
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dynamic security information about the stored value up to the point of the actual assignment is
lower than the current security effect. For instance, in our example above, if we modify the security
level of the boolean in line 2 to H (leaving the type of y as it is), then the program performs a valid
assignment on a reference whose content has a statically unknown security level, but dynamically
H; therefore no runtime error is raised. Unfortunately, beyond pure and read-only programs, it
seems impossible to provide any useful syntactic characterization of the programs for which the
dynamic gradual guarantee holds, because both the current security effect and the accumulated
evidence about a given value are essentially dynamic information.

7 RELATED WORK

Static and dynamic information-flow control techniques have been extensively studied in the lit-
erature. The area is too vast to exhaustively review here: we refer to Hedin and Sabelfeld (2012b),
Russo and Sabelfeld (2010), and Sabelfeld and Myers (2003) for broad overviews of the area. This
section first focuses on security type systems, as well as some specific approaches to dynamic in-
formation flow control, given the static-to-dynamic spectrum that gradual security typing covers.
We also discuss existing proposals that combine static and dynamic checking. Finally, we relate
our work to other efforts to gradualize advanced type disciplines.

Static Information Flow Control. Volpano et al. (1996) present one of the first type systems for
information flow analysis, developed for a first-order imperative language with conditionals and
loops. They present and formalize the first soundness result for a security-typed language, namely
that altering the initial values of locations cannot affect resulting values of locations with a lesser
security level.

Subsequently, Heintze and Riecke (1998) present a security-typed higher-order language called
the Secure Lambda Calculus (SLam). SLam is a functional language extended with sums, products,
and recursion, that supports both confidentiality and its dual notion, integrity (Biba 1977). They
introduce the prot expression, which we also use, to increase the ambient security level for the
dynamic extent of evaluating a term. The noninterference proof for SLam is also based on logical
relations. The authors extend SLam with concurrency and references. They prove that the result-
ing language is type safe, but they do not prove noninterference, deemed too problematic in a
concurrent setting. SSLRef is also a higher-order language with references, but it does not support
sums, products, recursion and concurrency. We prove noninterference for both GSLRef and SSLRef .
Extending GSLRef to richer types and concurrency is a challenge worth addressing in future work.

To consolidate different related efforts, Abadi et al. (1999) develop the Dependency Core Calcu-
lus (DCC), an extension of the lambda calculus that tracks dependencies such as security, partial
evaluation, program slicing and call-tracking. In particular, they show that different languages
such as SLam can be translated to DCC. They present a semantic model of DCC that helps to pro-
vide a simple proof of noninterference. It would be interesting to study the application of AGT to
DCC, to provide a general account of gradual dependency tracking.

JFlow (Myers 1999; Myers and Liskov 1997), which later evolved into Jif (Myers and Liskov
2000), is a practical extension of the Java language that protects both confidentiality and integrity
of sensitive data. Jif supports statically checked information flow annotations, a decentralized label
model with principals, automatic label inference, and security label polymorphism, all integrated
with object-oriented features like class inheritance, as well as exceptions, among other features.
Jif supports runtime label tests that can be used to encode explicit security casts, although such
casts break type-based reasoning about noninterference. Scaling up GSLRef to cover the feature set
of Jif would open the door to a practical implementation of gradual security typing.

Zdancewic (2002) proposes λSEC , a simple security language similar to SLam, and proves non-
interference using logical relations. He then extends the language with references, yielding λSEC

REF ,
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which was the starting point for our design of SSLRef . Unlike SSLRef , the operational semantics of
λSEC

REF includes additional checks to control whether it is safe to assign to references; the type system
then makes these checks redundant. In SSLRef , we omit these checks, and the runtime only tracks

security levels. The runtime checks needed in the gradual setting arise as evidence combination.
Also, Zdancewic does not prove noninterference for λSEC

REF directly, but instead by a CPS transla-
tion to a lower-level imperative language with explicit continuations, for which noninterference
is established (Zdancewic and Myers 2001). This setting permits studying information flow with
concurrency and as such could be a judicious starting point to study the interaction of gradual
security typing and concurrency.

Much work on static information flow analysis focuses on declassification, which is the limited,
intentional, and controlled release of confidential information. Declassification is outside the scope
of this work, though a very interesting perspective for future work; we refer to Sabelfeld and Sands
(2009) for an introductory survey.

An important distinction in information flow analysis is whether an analysis is flow-sensitive,
i.e., whether memory cells are allowed to store values of different security levels at different times.
Hunt and Sands (2006) explore families of sound flow-sensitive type systems, indexed by the choice
of the security lattice. In particular, they show that every program typeable in a flow-sensitive
static type system can be translated to an equivalent program typeable in a flow-insensitive type
system. SSLRef is a flow-insensitive purely static analysis; GSLRef inherits flow-insensitivity for its
static semantics. However, at runtime the security level of references is allowed to vary (through
evidence composition) within the bounds imposed by the static type of the reference. This means
that a reference that is created with an unknown security label can store values of any security
level at different times. This leads us to sharing challenges faced by dynamic information-flow
control techniques, discussed hereafter.

Dynamic Information Flow Control. Russo and Sabelfeld (2010) show that static mechanisms can
be more precise than dynamic ones about certain kinds of information flows. Indeed, noninterfer-
ence can be characterized as a 2-safety property, meaning that it can only be refuted by observing
two different executions of the same program with different inputs. This makes it particularly
challenging for dynamic information flow control, which traditionally makes decisions based on a
single execution. Most work on dynamic information flow analysis therefore monitors a 1-safety
property that conservatively approximates noninterference, but has the advantage of being ob-
servable in a single execution. Such approximations necessarily introduce false alarms, especially
when mutable references are involved.

To avoid implicit leaks through the heap in a purely dynamic information-flow analysis, Austin
and Flanagan (2009) introduce a no-sensitive-upgrade check to prevent implicit security leaks
through partially leaked data, i.e., data produced from updates to public heap data that depend
on private information. We adapt this approach to GSLRef , imposing an extra check when assign-
ing to references. Subsequently, Austin and Flanagan (2010) propose a more permissive analysis,
where partially leaked data is allowed, but carefully tracked to ensure that it is upgraded before
being used in conditional tests. This allows programmers to iteratively add security upgrades to
partially leak data only when needed, through multiple executions of a program.

Later, Austin and Flanagan (2012) introduce a completely different approach: faceted execution,
which simulates multiple executions of a program for different security levels in a single run. A
faceted execution yields a faceted value, which in a traditional two-point lattice is a pair of a public
and a private value. This novel approach enables a characterization of noninterference as a 1-safety
property, without introducing false alarms. It does however raise questions regarding how to effi-
ciently implement such faceted executions, especially in the presence of complex security lattices.
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Faceted execution was recently extended to support dynamic information flow with exceptions,
declassification and clearance (Austin et al. 2017). It would be interesting to explore whether bas-
ing GSLRef on faceted execution might yield a gradual security language that fully respects the
dynamic gradual guarantee, by avoiding the extra runtime check in assignments.

Stefan et al. (2017) present a dynamic information-flow control system called LIO. Contrary to
most approaches to dynamic information flow, LIO does not modify the underlying language run-
time semantics, being implemented as a Haskell library. LIO supports both mutable references and
exceptions. Exceptions are used to recover from security monitor failures, preserving both confi-
dentiality and integrity. The possibility of securely recovering from runtime security exceptions
is an interesting perspective to study in the context of gradual security typing. More generally, re-
covering from runtime type errors raises a number of questions about the metatheory of gradual
typing, because doing so can directly affect the dynamic gradual guarantee as well as type-based
reasoning (e.g., it becomes possible to encode explicit type tests).

Hybrid Information Flow Control. To resolve the tension between flexibility and soundness of
flow-sensitive analyses, Russo and Sabelfeld (2010) propose a general hybrid approach, in which
a static effect analysis is used to dynamically upgrade the security level of variables of untaken
branches of conditionals, thereby preventing implicit leaks through the heap. This hybrid approach
is developed on top of a (first-order) imperative language. Moore and Chong (2011) later show how
to implement this hybrid approach more efficiently using additional static analyses.

A variety of hybrid information-flow control systems have been investigated, whose designs
combine static and dynamic techniques that buttress one another to balance permissiveness and
efficiency. Note that although gradual typing also combines static and dynamic techniques, hy-
brid approaches differ essentially from gradual ones. The key specificity of gradual typing is to
smoothly support the continuum between static and dynamic checking based on the (programmer-
controlled) precision of type annotations (Siek and Taha 2006; Siek et al. 2015). This central notion
of type precision is absent from hybrid approaches, in which the balance between static and dy-
namic checking is often driven by other concerns—such as the (un)decidability of a static predi-
cate (Knowles and Flanagan 2010) or the need to pre-compute information for enhancing runtime
checking.

Chandra and Franz (2007) implement hybrid security information flow control for the Java Vir-
tual Machine. The operational semantics permits policies to change during execution. To prevent
invalid implicit flows through the heap, they perform a static analysis of effects similar to Russo
and Sabelfeld (2010). Information about conditionals is gathered ahead of execution, then used
to update labels at runtime, as if all branching alternatives had been taken. They also statically
determine when the current security effect can be lowered again after a conditional. Performing
an effect analysis statically to drive runtime monitoring is appealing as it could obviate the extra
assignment check in GSLRef that compromised the dynamic gradual guarantee. However, in the
setting of a higher-order imperative language, the effect analysis could easily become too conserva-
tive or too demanding for programmers. Combining gradual security and gradual effects (Bañados
Schwerter et al. 2016) may temper this issue but represents a considerable challenge in itself.

Shroff et al. (2007) present a dynamic information flow system based on runtime tracking of
indirect dependencies between program points, allowing a lazier, hence more flexible, detection
of implicit flows. In particular, they track indirect dependency between dereference points and
branching points. They present two languages, one that captures dependencies statically and one
that uses multiple executions of a program to record dependencies. This is yet another approach
to runtime tracking that is worth considering to achieve a more flexible gradual security language
that fully respects the dynamic gradual guarantee.
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Hybrid approaches can also support programmer-controlled flexibility. Buiras et al. (2015) pro-
pose Hybrid LIO (HLIO), a flexible monadic information-flow control library for Haskell. HLIO is
not gradual in the sense that it does not include an unknown security label; instead, HLIO provides
a primitive to explicitly and selectively defer label-ordering checks to runtime. Their approach to
defer static typing constraints to runtime can even be exploited to postpone type checks beyond
security label constraints, opening the door to hybrid type checking in Haskell. In contrast, as a
gradual security language, GSLRef supports a notion of unknown security information and implic-
itly mediates the interactions between static and dynamic security checking.

Gradual Security Typing. Most directly related to our proposal is prior work on gradual secu-
rity typing, which combines static and dynamic checking with the express intent of supporting
a smooth migration between both checking disciplines by introducing a dynamic (i.e., statically
unknown) security label. Disney and Flanagan (2011) and Fennell and Thiemann (2013) pioneered
what we describe in Section 1 as a check-driven approach to gradual security typing, starting
from dynamic checking. Both develop notions of blame tracking and prove blame theorems for
their semantics. It is important to recall that these approaches, while dubbed “gradual,” are based
on explicit security casts, and are therefore more akin to cast calculi than to gradual languages. In
particular, this means that these languages do not respect the gradual guarantees by design, includ-
ing the static one, because changing the precision of type annotations requires adding/removing
explicit casts. Additionally, as discussed in the introduction, both proposals break type-based rea-
soning about noninterference.

Recently, Fennell and Thiemann (2016) extend their prior work on gradual security typing with
references to the object-oriented setting, in a language called LJGS. Like Jif, LJGS performs local
inference of security labels, and supports polymorphic security signatures. Local variables in LJGS
are typed in a flow-sensitive manner, whereas both SSLRef and GSLRef are flow insensitive regard-
ing security levels. Although LJGS is based on explicit casts like prior work, its semantics differ in
important ways. For instance, recall the example given in Section 1:

let mix : IntL →L IntH →L IntL =

fun pub priv => if pub < (IntL ⇐ IntH)priv then 1L else 2L
mix 1L 5L

This example does not type check in LJGS, because the target type of a security cast cannot be
less secure than the source type. The only way to write this example is to go through the dynamic
security level explicitly:

let mix : IntL →L IntH →L IntL =

fun pub priv => if pub < (IntL ⇐ Int?) (Int? ⇐ IntH) priv then 1L else 2L
mix 1L 5L

This well-typed program fails at runtime, because (Int? ⇐ IntH) upgrades 5L to 5H, but (IntL ⇐
Int?)5H is not defined. This approach to upgrade the security level of values that are cast to the
dynamic label using the statically determined source label seems to restore type-based reasoning
about noninterference in LJGS. Interestingly, the change in semantics in LGJS is solely motivated
by the design goal to avoid having to dynamically track security labels of statically typed program
fragments, so the relation with type-based reasoning appears to be accidental.

Similar to the approach of Russo and Sabelfeld (2010) and Shroff et al. (2007) discussed above,
LJGS relies on a side-effect analysis to tracks the updated variables in method bodies. More pre-
cisely, when typing a method, LJGS generates a set of constraints that represent the information
flow dependencies between parameters and return values, as well as two sets of effects: a local
effect that lists the variables modified in branches of a conditional, used to update local variables
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of untaken branches; and a global effect that records the security types whose fields may be up-
dated with sensitive information. This type analysis and constraint/effect inference is facilitated
by the fact that classes in LJGS are not first-class entities, i.e., all class definitions are top-level
and known ahead-of-time. This means in particular that at every call site, one statically knows
the precise inferred constraints and effects of methods (modulo a standard subsumption criteria
to account for subtyping). In a setting with higher-order types, this information would be more
complex to track. Additionally, the inferred global effect of a method is insufficient information
per se for the dynamic information flow control part of LJGS. Therefore, LJGS also appeals to an
external effect analysis (left opaque) to obtain precise information about heap write effects.

Gradualizing Expressive Typing Disciplines. Since the initial formulation of gradual typing (Siek
and Taha 2006), there has been many efforts to gradualize advanced typing disciplines, like type-
states (Garcia et al. 2014; Wolff et al. 2011), ownership types (Sergey and Clarke 2012), annotated
type systems (Thiemann and Fennell 2014), effects (Bañados Schwerter et al. 2014, 2016; Toro and
Tanter 2015), refinement types (Jafery and Dunfield 2017; Lehmann and Tanter 2017), parametric
polymorphism (Ahmed et al. 2017; Igarashi et al. 2017), and the security type systems discussed
above, among others.

Since the formulation of the refined criteria for gradually typed languages (Siek et al. 2015),
however, only refinement types (Jafery and Dunfield 2017; Lehmann and Tanter 2017) have been
shown to fully respect such guarantees. This work contributes to the general research agenda of
gradual typing disciplines by explicitly attempting to achieve both the gradual guarantees and a
rich semantic property, like noninterference. Indeed, noninterference is not implied by type safety;
in contrast, soundness of refinement types directly follows from type safety. We have shown that
GSLRef does respect the static gradual guarantee (as opposed to other gradual security type sys-
tems); but GSLRef must sacrifice the dynamic gradual guarantee due to a modification of the run-
time semantics that is necessary to enforce noninterference in the presence of mutable references.

Initial work on gradual parametricity (Igarashi et al. 2017) also suggests that parametricity may
be incompatible with the dynamic gradual guarantee, unless one is willing to tweak the type preci-
sion relation; even then, the dynamic gradual guarantee is left as a conjecture. Ahmed et al. (2017)
prove parametricity for a polymorphic cast calculus—not a source language—and also leave the
gradual guarantees as an open question. Therefore, further work is needed to fully understand if
and how the gradual guarantees can be reconciled with rich semantic typing disciplines, and if
additional design criteria for such gradual languages should be devised.

8 CONCLUSION

We develop a novel, type-driven approach to gradual security typing, in which gradual security
types provide strong security invariants, while admitting flexible programming idioms. This is
the first work to address the gradualization of a rich typing discipline in which type safety does
not imply type soundness, while pursuing the most elaborate formulation of criteria for gradually
typed languages (Siek et al. 2015), and preserving type-based reasoning principles. This means that
the amount of static checking is entirely driven by the precision of static security annotations,
and that programmers can reason modularly about the noninterference guarantees of program
fragments by just looking at types.

Using the AGT methodology (Garcia et al. 2016) to derive the gradual security language GSLRef ,
this work sheds light on key semantic issues in the design of gradual languages. AGT was central
in our endeavor to separate the elements of the design that follow by systematically following
the methodology from those that require careful consideration. In particular, we identify a ten-
sion between the smooth continuum on the static-to-dynamic spectrum that the gradual guaran-
tees mandate, and the semantic property of noninterference, which manifests in GSLRef because
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of mutable references. This tension also raises interesting questions for the principled design of
gradually typed languages, whenever the semantics of types has a relational flavor. In particu-
lar, while we have addressed noninterference, relational parametricity remains to be addressed.
Overall, this work suggests that it might be necessary to extend AGT to integrate the purely static
type soundness proof—as opposed to only the type safety proof—as a source for the design of the
dynamic semantics of a gradual language.

Within the context of gradual security typing, our work leaves open the question of whether
it is possible to reconcile both noninterference and the dynamic gradual guarantee. Specifically,
it would be informative to study whether other approaches to sound dynamic information flow
control could help us recover the dynamic gradual guarantee. We believe that there might be an
inherent incompatibility between the strictness required to enforce a hyper-property like nonin-
terference, and the optimistic flexibility dictated by the dynamic gradual guarantee.

Another interesting track for future work is to explore a “pay-as-you-go” (Siek and Taha 2006)
semantics, which only introduces runtime checks for imprecisely typed expressions, as well as
scaling the security discipline to other language-based security features such as integrity, flow
sensitivity and declassification. Additionally, we want to explore the applicability of Garcia and
Cimini (2015)’s approach to type inference in gradual languages to address security label infer-
ence (Pottier and Simonet 2003) in GSLRef .

APPENDIX

A ADDITIONAL DEFINITIONS

In this Appendix, we present additional definitions that were not included in the main body of the
article. Proofs are in the companion technical report (Toro et al. 2018).

A.1 SSLRef: Static Semantics

In this section, we present additional definitions of the static semantics of SSLRef . The join between
types and labels is defined as follows:

Bool� ≺ �′ = Bool(� ≺�′)
(S1

�c−→�S2) ≺ �′ = S1
�c−→(� ≺�′)S2

Ref� S ≺ �′ = Ref (� ≺�′)S .
Figure 11 presents the join and meet type functions.

Fig. 11. SSLRef : Join and meet type functions.
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Definition A.1 (Valid Type Sets).

valid ({ Bool�i
})

valid ({ Si1 }) valid ({ Si2 })

valid ({ Si1
�c i−→�i

Si2 })

valid ({ Si })
valid ({ Ref�i

Si }) valid ({ Unit�i
})

A.2 SSLRef: Noninterference Definitions

In this section, we present definitions and properties of noninterference for SSLRef . Figure 12
presents the full definition of step-indexed logical relations.

Definition A.2. Let ρ be a substitution, Γ and Σ a type substitutions. We say that substi-
tution ρ satisfy environment Γ and Σ, written ρ |= Γ; Σ, if and only if dom(ρ) = Γ and ∀x ∈
dom(Γ),∀�c , Γ; Σ; �c � ρ (x ) : S ′, where S ′ <: Γ(x ).

Definition A.3 (Related Substitutions). Tuples 〈�1, ρ1, μ1〉 and 〈�2, ρ2, μ2〉 are related on k steps,
notation Γ; Σ � 〈�1, ρ1, μ1〉 ≈k

�o
〈�2, ρ2, μ2〉, if ρi |= Γ; Σ, Σ � μ1 ≈k

�o
μ2 and

∀x ∈ Γ.Σ � 〈�1, ρ1 (x ), μ1〉 ≈k
�o

〈�2, ρ2 (x ), μ2〉 : Γ(x ).

Definition A.4 (Semantic Security Typing).

Γ; Σ; �c |= t : S ⇐⇒ ∀ �o ∈ Label,k ≥ 0, ρ1, ρ2 ∈ Subst and μ1, μ2 ∈ Store
such that Σ � μi and Γ; Σ � 〈�c , ρ1, μ1〉 ≈k

�o
〈�c , ρ2, μ2〉 , we have

Σ � 〈�c , ρ1 (t ), μ1〉 ≈k
�o

〈�c , ρ2 (t ), μ2〉 : C(S ).

Proposition A.5 (Security Type Soundness). If Γ; Σ; �c � t : S ′i ⇒ ∀S, S ′i <: S, Γ; Σ; �c |= t : S .

Fig. 12. Security logical relations.
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A.3 GSLRef: Static Semantics

In this section, we present some additional definitions needed in gradualizing SSLRef .

Definition A.6 (Type Concretization). γS : GType → P (Type)

γS (Boolg) = { Bool� | � ∈ γ (g) } γS (U1
g′

−→gU2) = γS (U1)
γ (g′)
−→γ (g)γS (U2)

γS (Unitg) = { Unit� | � ∈ γ (g) } γS (Refg U ) = { Ref� S | � ∈ γ (g), S ∈ γS (U ) }

Type concretization induces notions of precision and abstraction.

Definition A.7 (Type Precision). U1 � U2, if and only if γS (U1) ⊆ γS (U2).

Definition A.8 (Type Abstraction). αS : P (Type) → GType

αS ({ Bool�i
}) = Bool

α ( { �i }) αS ({ Unit�i
}) = Unit

α ( { �i })

αS ({ Si1
�′

i−→�i
Si2 }) = αS ({ Si1 })

α ( { �′
i
})

−→
α ( { �i })αS ({ Si2 }) αS ({ Ref�i

Si }) = Ref
α ( { �i })αS ({ Si })

αS (ÛS ) is undefined otherwise

Proposition A.9 (αS is Sound and Optimal). Assuming ÛS valid:

(i ) ÛS ⊆ γS (αS (ÛS )) (ii ) If ÛS ⊆ γS (U ), then αS (ÛS ) � U .

Definition A.10 (Gradual Label Meet). g1 ˜≺ g2 = α ({ �1

≺

�2 | (�1, �2) ∈ γ (g1) × γ (g2) }).

Fig. 13. GSLRef : consistent meet.

Definition A.11 (Gradual Label Join). g1 ˜≺ g2 = α ({ �1 ≺ �2 | (�1, �2) ∈ γ (g1) × γ (g2) }).

Definition A.12 (Label Meet). g1 � g2 = α (γ (g1) ∩ γ (g2)).

Definition A.13 (Type Meet). U1 �U2 = αS (γS (U1) ∩ γS (U2)).

Also, we introduce a function label, which yields the security label of a given type:

label : GType → Label

label (Boolg) = g label (Unitg) = g label (U1 →g U2) = g label (Refg U ) = g

A.4 GSL
ε
Ref: Static Semantics

The static semantics of GSLε
Ref is presented in Figure 14.
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Fig. 14. GSLε
Ref : Static semantics.

Fig. 15. GSLε
Ref : Auxiliary functions for the dynamic semantics (Labels).

A.5 GSL
ε
Ref: Dynamic Semantics

In this section, we present additional definition of the dynamic semantics of GSLε
Ref . Auxiliary

functions for evidence for labels are presented in Figure 15. Auxiliary functions for evidence for
types are shown in Figure 16, and the inversion functions for evidence are in Figure 17.

Definition A.14 (Type Evidence Concretization). Let γE : GEType → P (Type) be defined as fol-
lows:

γE (Boolı ) = { Bool� | � ∈ γı (ı ) }

γE (E1
ı2−→ı1E2) = γE (E1)

γı (ı2 )
−→γı (ı1 )γE (E2)

γE (Refı E ) = { Ref� S | � ∈ γı (ı ), S ∈ γE (E ) }
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Fig. 16. GSLε
Ref : Auxiliary functions for the dynamic semantics (Types).

where → is the set of all possible combinations of function types, using each member of the sets
obtained by the γE and γı functions.

Definition A.15 (Evidence Concretization). Let γε� : GEType2 → P (Type2) be defined as follows:

γε� (〈E1,E2〉) = {〈S1, S2〉 | S1 ∈ γE (E1), S2 ∈ γE (E2)}.

Definition A.16 (Type Evidence Abstraction). Let the abstraction function αE : P (Type) →
GEType be defined as

αE ({ Bool�i
}) = Bool

αı ( { �i })

αE ({ Si1
�ci−→�i

Si2 }) = αE ({ Si1 })
αı ( { �ci })−→

αı ( { �i })αE ({ Si2 })
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Fig. 17. GSLε
Ref : Inversion functions for evidence.

αE ({ Ref�i
Si }) = Ref

αı ( { �i }) αE ({ Si })

αE (ÛS ) is undefined otherwise.

Definition A.17 (Evidence Abstraction). Let αε : P (Type2) → GEType2 be defined as follows:

αε (∅) is undefined

αε ({ 〈S1i , S2i 〉 }) = 〈αE ({ S1i }),αE ({ S2i })〉 otherwise.

Proposition A.18 (αı is Sound). If Û� is not empty, then Û� ⊆ γı (αı (Û�)).
Proposition A.19 (αı is Optimal). If Û� is not empty, and Û� ⊆ γı (ı ), then αı (Û�) � ı .

Proposition A.20 (αE is Sound). If valid (ÛS ), then ÛS ⊆ γE (αE (ÛS )).

Proposition A.21 (αE is Optimal). If valid (ÛS ) and ÛS ⊆ γE (E ), then αE (ÛS ) � E .

With concretization of security type, we can now define security type precision.

Definition A.22 (Interval and Type Evidence Precision).

(1) ı1 is less imprecise than ı2, notation ı1 � ı2, if and only if γε� (ı1) ⊆ γε� (ı2); inductively:

�3 � �1 �2 � �4
[�1, �2] � [�3, �4]

(2) E1 is less imprecise than E2, notation E1 � E2, if and only if γE (E1) ⊆ γE (E2); inductively:

ı1 � ı2
Boolı1 � Boolı2

E11 � E21 E12 � E22

ı1 � ı2 ı ′1 � ı ′2

E11

ı′1−→ı1E12 � E21

ı′2−→ı2E22

ı1 � ı2 E1 � E2

Refı1E1 � Refı2E2
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Fig. 18. GSLε
Ref : Initial evidence for gradual labels.

A.6 GSLRef: Translation to GSL
ε
Ref

Figure 18 presents the initial evidence function for consistent label ordering. The initial evidence
function for consistent subtyping is presented in Figure 19 using the following definition of oper-
ation pattern:

Definition A.23 (Operation Pattern).

PT ∈ GPattern, P � ∈ LPattern
PT ::= _ | PT opT PT (pattern on types)

opT ::= <
: |

<
: | � (operations on types)

P � ::= _ | P � op� P � (pattern on labels)
op� ::= ≺ |

≺ | � (operations on labels).
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Fig. 19. GSLε
Ref : Initial evidence for gradual types.
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