
Polymorphic Relaxed Noninterference

Raimil Cruz
PLEIAD Lab, Computer Science Department (DCC)

University of Chile
Santiago, Chile

racruz@dcc.uchile.cl

Éric Tanter
PLEIAD Lab, Computer Science Department (DCC)

University of Chile
Santiago, Chile

etanter@dcc.uchile.cl

Abstract—Information-flow security typing statically preserves
confidentiality by enforcing noninterference. To address the prac-
tical need of selective and flexible declassification of confidential
information, several approaches have developed a notion of
relaxed noninterference, where security labels are either functions
or types. The labels-as-types approach to relaxed noninterference
supports expressive declassification policies, including recursive
ones, via a simple subtyping-based ordering, and provides a
local, modular reasoning principle. In this work, we extend this
expressive declassification approach in order to support poly-
morphic declassification. First, we identify the need for bounded
polymorphism through concrete examples. We then formalize
polymorphic relaxed noninterference in a typed object-oriented
calculus, using a step-indexed logical relation to prove that all
well-typed terms are secure. Finally, we address the case of
primitive types, which requires a form of ad-hoc polymorphism.
Therefore, this work addresses practical hurdles to providing
controlled and expressive declassification for the construction of
information-flow secure systems.

1 Introduction
An information-flow security type system statically ensures

that public outputs (e.g. StringL) cannot depend on secret

inputs (e.g. StringH), a property known as noninterference

(NI) [1]. NI provides a modular reasoning principle about

security, indexed by the observational power of an adversary.

For instance, a function f : StringH → StringL does not reveal

any information about its argument; in fact, in a pure language,

it is necessarily a constant function.

But noninterference is too strict in practice: for a system

to be useful, confidential information sometimes needs to be

declassified. Beyond introducing a declassification operator in

the language, which compromises formal reasoning, various

approaches have explored structured ways to support declas-

sification policies [2, 3, 4, 5]. In particular, Li and Zdancewic

[3] introduce relaxed noninterference, supporting expressive

declassification policies via security labels as functions. In

this approach, instead of having security labels such as H for

private and L for public information that are drawn from a

fixed lattice of symbols, security labels are the very functions

that describe how a given secret can be manipulated in order

to produce a public value: for instance, one can realize the

declassification policy “only the result of comparing the hash

This work is partially funded by CONICYT FONDECYT Regular Projects
1150017 and 1190058. Raimil Cruz is partially funded by CONICYT-
PCHA/Doctorado Nacional/2014-63140148

of the secret string s with a public guess can be made
public” by attaching to s a function that implements this

declassification (λx.λy. hash(x) = y). Any use of the secret

that does not follow the declassification policy yields private

results. One can express the standard label H (resp. L) as a

constant function (resp. the identity function). A challenging

aspect of this approach is that label ordering relies on a

semantic interpretation of declassification functions.

A more practical approach than this labels-as-functions ap-

proach was recently developed by Cruz et al. [5] in an object-

oriented setting, with a labels-as-types perspective: security

types are faceted types of the form T � U where the first

facet T—called the safety type—represents the implementation

type, exposed to the private observer, and the second facet U—

called the declassification type–represents the declassification

policy as an object interface exposed to the public observer.1

For instance, the type String ��, where � is the empty object

interface, denotes private values (no method is declassified)

and the type String � String represents public values (all meth-

ods are declassified). These security types are abbreviated as

StringH and StringL, respectively. Interesting declassification

policies stand in between these two extremes: for instance,

given the interface StringLen � [length : UnitL → IntL], the

faceted type String � StringLen exposes the method length
to declassify the length of a string as a public integer, but

not its content. This type-based approach to declassification

is expressive as well as simple—in particular, because la-

bels are types, label ordering is simply subtyping. Also, it

extends the modular reasoning principle of NI to account

for declassification [5], a property named type-based relaxed
noninterference (TRNI). For instance, with TRNI one can

prove that a function of type String � StringLen→ BoolL must
produce equal results for strings of equal lengths.

The labels-as-types approach of Cruz et al. however lacks

security label polymorphism. Security label polymorphism is a

very useful feature of practical security-typed languages such

as JIF [6] and FlowCaml [7], which has only been explored

in the context of standard security labels (symbols from a

lattice). To the best of our knowledge, polymorphism has not

been studied for expressive declassification mechanisms, such

as labels-as-functions [3] or labels-as-types [5]. We extend the

1To account for k > 2 observation levels, faceted types can be extended to
have k facets [5]. Here, we restrict the presentation to two observation levels.

101

2019 IEEE Secure Development (SecDev)

978-1-5386-7289-1/19/$31.00 ©2019 IEEE
DOI 10.1109/SecDev.2019.00021

labels-as-types approach with declassification polymorphism,

specifically bounded polymorphism that specifies both a lower

and an upper bound for a polymorphic declassification type.

The main contribution of this paper is to develop the theory

of bounded polymorphic declassification as an extension of

TRNI, called polymorphic relaxed noninterference (PRNI for

short). PRNI brings new benefits in the expressiveness and

design of declassification interfaces. Additionally, we address

the necessary support for primitive types, through a form of

ad-hoc polymorphism.

The labels-as-types approach has the practical benefits of

relying on concepts that are well-known to developers—object

interfaces and subtyping—in order to build systems with in-

formation flow security that cleanly account for controlled and

expressive declassification. This work addresses the two major

shortcomings of prior work in order to bring this approach

closer to real-world secure programming.

Section 2 provides background on labels-as-types and

TRNI. Section 3 then explains the main aspects of poly-

morphic relaxed noninterference (PRNI). Section 4 formal-

izes polymorphic declassification in a core object-oriented

language Ob
〈〉
SEC. Then, Section 5 develops a logical relation

for PRNI and shows that all well-typed Ob
〈〉
SEC terms satisfy

PRNI. Section 6 extends Ob
〈〉
SEC with primitive types. Section 7

discusses related work and Section 8 concludes. We have im-

plemented an interactive prototype of Ob
〈〉
SEC that is available

at https://pleiad.cl/gobsec/.

2 Background:Type-Based Relaxed
Noninterference

We start with a quick review of type-based relaxed noninterfer-

ence [5]. Faceted security types allow programmers to express

declassification policies as type interfaces. For instance, one

can express that a login function can reveal the result of

comparing a secret password for equality with a public guess.

StringL login(StringL guess , String � StringEq password){
if(password.eq(guess))

return "Login Successful"
else

return "Login failed"
}

Note that leaking the secret password by directly returning

it would not typecheck, since StringEq
�
= [eq : StringL →

BoolL] is not a subtype of String (recall that StringL is

short for String � String). Taking advantage of the fact that

object types are recursive, one can also express recursive
declassification, for instance that a list of secret strings can

only be declassified by comparing its elements for equality.

Likewise, one can express progressive declassification by

nesting type interfaces. For instance, assuming that String has

a method hash : UnitL → IntL, we can specify that only the

hash of the password can be compared for equality with the

interface type StringHashEq � [hash : UnitL → Int � IntEq],
where IntEq � [eq : IntL → BoolL]:

StringL login(IntL guess , String � StringHashEq password){

e ::= v | e.m(e) | x (terms)

v ::=
[
z : S ⇒ m (x) e

]
(values)

T, U ::= O | α (types)

O ::= Obj(α).
[
m : S → S

]
(object types)

S ::= T � U (security types)

Γ � e : S Γ ::= • | Γ, x : S (type environment)

(TmD)

Γ � e1 : T � U m ∈ U
msig(U,m) = S1 → S2 Γ � e2 : S1

Γ � e1.m(e2) : S2

(TmH)

Γ � e1 : T � U m /∈ U

msig(T,m) = S1 → T2 � U2 Γ � e2 : S1

Γ � e1.m(e2) : T2 � �

Fig. 1. ObSEC: Syntax and Static semantics (excerpts from [5])

if(password.hash ().eq(guess)) ...
}

Cruz et al. formalize faceted security types in ObSEC, a

core object-oriented language with three kinds of expressions:

variables, objects and method invocations (Figure 1). An objectî
z : S ⇒ m (x) e

ó
is a collection of methods that can refer to

the defining object with the self variable z. An object type

Obj(α).
[
m : S → S

]
is a collection of method signatures

that have access to the defining type through the self type

variable α. Security types S = T � U are composed of two

object types T and U . Note that to be well-formed, a security

type T � U requires U to be a supertype of T . The type

abstraction mechanism of subtyping (by which a supertype

“hides” members of its subtypes) is the key element to express

declassification.

The ObSEC type system defines two rules to give a type to a

method invocation depending on whether the invoked method

is in the declassification type or not. Rule (TmD) specifies

that if the invoked method m is in the declassification type

U with type S1 → S2, then the result type of the method

invocation expression is S2. Conversely, if the method m is

only present in the safety type T with type S1 → T2 � U2, then

the result type of the method invocation is T2 �� (TmH): if we

bypass the declassification type, the result must be protected

as a secret.

The security property obtained by this approach is called

Type-based Relaxed Noninterference (TRNI). At the core of

TRNI is a notion of observational equivalence between objects

up to the discrimination power of the public observer, which

is specified by the declassification type. More precisely, two

objects o1 and o2 are equivalent at type T � U if, for any

method m with type S1 → S2 in the declassification type

U , invoking m with equivalent values v1 and v2 at type S1,

produces equivalent results at type S2.

TRNI is formulated as a modular reasoning principle, over

open terms: TRNI(Γ, e, S). The closing typing environment

102

Γ specifies the secrecy of the inputs that e can use, and

the security type S specifies the observation power of the

adversary on the output.

For instance, suppose StringLen is an interface that ex-

poses a length : UnitL → IntL method. Then, with Γ =
x : String � StringLen, the judgment TRNI(Γ, x.length(), IntL)
implies: given the knowledge that two input strings v1
and v2 have the same length, the lower observer does

not learn anything new about the inputs by executing

x.length(). Conversely, TRNI(Γ, x.eq(”a”),BoolL) does not
hold: executing x.eq(”a”) and exposing the result as a pub-

lic value would reveal more information than permitted by

the input declassification type (eq /∈ StringLen). However,

TRNI(Γ, x.eq(”a”),BoolH) does hold, because the result is

private and therefore unaccessible to the public observer.

3 Polymorphic Relaxed Noninterference
We first motivate polymorphic declassification with faceted

types, and then we illustrate the role of bounded polymorphism

for declassification. Finally, we give an overview of the

modular reasoning principle of polymorphic relaxed nonin-

terference.

3.1 Polymorphic Declassification
When informally discussing the possible extensions to their

approach to declassification, Cruz et al. [5] illustrate the

potential benefits of polymorphic declassification by giving the

example of a list of strings that is polymorphic with respect

to the declassification type of its elements:

ListStr〈X〉 � [isEmpty : UnitL → BoolL,

head : UnitL → String � X,

tail : UnitL → ListStr 〈X〉L]
This recursive polymorphic declassification policy allows a

public observer to traverse the list, and to observe up to X on

each of the elements. This restriction is visible in the signature

of the head method, which returns a value of type String � X .

Then, with polymorphic declassification we can implement

data structures that are agnostic to the declassification policies

of their elements, as well as polymorphic methods over these

data structures. For example, we can construct declassification-

polymorphic lists of strings with the following cons method:

ListStr 〈X〉L cons <X >(String � X s, ListStr 〈X〉L l){
return new {

self: ListStr 〈X〉L
isEmpty () => false
head() => s
tail() => l

}
}

The cons method does not even access any method of list

l, it simply returns a new declassification-polymorphic list of

strings as a new object with the expected methods. We can then

use this method to define a declassification-polymorphic list

concatenation method concat: ListStr 〈X〉L × ListStr 〈X〉L →
ListStr 〈X〉L defined below:

ListStr 〈X〉L concat <X >(ListStr 〈X〉L l1 , ListStr 〈X〉L l2){
if(l1.isEmpty ()) return l2
return cons <X >(l1.head(),

concat <X >(l1.tail(),l2))
}

The concat and cons methods are standard object-oriented

implementations of list concatenation and construction, re-

spectively. The concat method respects the declassification

type ListStr 〈X〉 of both lists because it uses l1.isEmpty() and

l1.tail() to iterate over l1, and it uses l1.head() to create a

new declassification-polymorphic list of type ListStr 〈X〉L. In

particular, it uses no string-specific methods.

3.2 Bounded Polymorphic Declassification
The declassification interface ListStr 〈X〉 above is fully poly-

morphic, in that a public observer cannot exploit a priori any

information about the elements of the list. In particular, it

is not possible to implement a polymorphic contains method

that would yield publicly observable results. Indeed, contains
needs to invoke eq over the elements of the list (obtained with

head). Because the result of head has declassification type X ,

for any X , the results of equality comparisons are necessarily

private.

In order to support polymorphic declassification more

flexibly, we turn to bounded parametric polymorphism.

Bounded parametric polymorphism supports the specification

of both upper and lower bounds on type variables. The type

ListStr 〈X〉 is therefore equivalent to ListStr 〈X : String..�〉,
where the notation X : A..B is used to denote that X is a type

variable that ranges between A and B). Note that for ListStr
to be well-formed, the declassification type variable X must

at least be a supertype of the safety type String.

Going back to declassification-polymorphic lists, if we want

to allow the definition of methods like contains, we can further

constrain the type variable X to be a subtype of StringEq:

ListEqStr〈X : String..StringEq〉 �
[· · · , tail : UnitL → ListEqStr 〈X 〉L]

The type ListEqStr denotes a recursive polymorphic declas-

sification policy that allows a public observer to traverse the

list and compare its elements for equality with a given public

element. With this policy we can implement a generic contains
function with publicly observable result:

BoolL contains <X : String..StringEq>
(ListEqStr 〈X〉L l, StringL s){

if(l.isEmpty ()) return false
if(l.head ().eq(s)) return true
return contains(l.tail(),s)

}

The key here is that l.head().eq(s) is guaranteed to be publicly

observable, because the actual declassification policy with

which X will be instantiated necessarily includes (at least) the

eq method. Thus, upper bounds on declassification variables

are useful for supporting polymorphic clients.

As mentioned above, the lower bound of a type variable

used for declassification must at least be the safety type for

well-formedness. More interestingly, the lower bound plays

103

a critical (dual) role for implementors of declassification-

polymorphic functions. Consider a method with signature

〈X : String..�〉 String � StringLen→ String � X

Can this method return non-public values? For instance, can

it be the identity function? No, because returning a string of

type String � StringLen would be unsound. Indeed, a client

could instantiate X with String, yielding

String � StringLen→ String � String

Therefore, to be sound for all possible instantiations of X ,

the implementor of the method has no choice but to return a

public string.

To recover flexibility and allow a polymorphic implemen-

tation to return non-public values, we can constrain the lower

bound of X . For instance

〈X : StringLen..�〉 String � StringLen→ String � X

admits the identity function as an implementation, in addition

to other implementations that produce public results. Returned

values cannot be more private than specified by the lower

bound of X; their type must be a subtype of the lower bound.

Having illustrated the interest of upper and lower bounds

of declassification type variables in isolation, we now present

an example that combines both. Consider two lists of strings,

each with one of the following declassification policies:

ListStrLen 〈X : String..StringLen〉 �
=

[isEmpty : UnitL → BoolL,

head : UnitL → String � X,

tail : UnitL → ListStrLenL]

ListStrFstLen
�
= [isEmpty : UnitL → BoolL,

head : UnitL → String � StrFstLen,

tail : UnitL → ListStrFstLenL]

ListStrLen is declassification polymorphic, ensuring that at

least the length of its elements is declassified (X has up-

per bound StringLen). The second policy, ListStrFstLen, is

monomorphic: it declassifies both the first character and the

length of its elements. If we want a function able to con-

catenate these two string lists, its most general polymorphic

signature ought to be:

〈X : StrFstLen..StringLen〉
ListStrLen 〈X〉L × ListStrFstLenL → ListStrLen 〈X〉L

The upper bound StringLen is required to have a valid in-

stantiation of ListStrLen 〈X〉; the lower bound StrFstLen is

required to be able to add elements of the second list to the

returned list.

3.3 Reasoning principles for PRNI
Introducing polymorphism in declassification types yields an

extended notion of type-based relaxed noninterference called

polymorphic relaxed noninterference (PRNI). PRNI exactly

characterizes that a program with polymorphic types must be

secure for any instantiation of its type variables. To account for

type variables, the judgment PRNI(Δ,Γ, e, S) is parametrized

by Δ, a set of bounded type variables (i.e. Δ ::= · | Δ, X :
A..B). As in TRNI(Γ, e, S), the closing typing environment

Γ specifies the secrecy of the inputs that e can use, and S
specifies the observation level for the output. Δ gives meaning

to the type variables that can occur in both S and Γ: e is secure

for any instantiation of type variables that respects the bounds.

For instance, given Δ
�
= X : StrFstLen..StringLen and Γ

�
=

x : String � X , the judgment PRNI(Δ,Γ, x.length(), IntL)
holds because for any type T such that StrFstLen <: T <:
StringLen, and the knowledge that two input strings are

related at String � T , and hence at String � StringLen (i.e.
both strings have the same length), the public observer does

not learn anything new by executing x.length(). However,

PRNI(Δ,Γ, x.first(), StringL) does not hold. If we substitute

X by StringLen, given two strings with the same length “abc”
and “123”, the public observer is able to distinguish them by

executing “abc”.first() and “123”.first() and observing the

results “a” and “1” as public values.
Also, PRNI(Δ,Γ, x, String � StringFst) does not hold.

Again, we can substitute X by StringLen, and take in-

put strings “abc” and “123”, which can be discriminated

by the public observer at type String � StringFst. However,

PRNI(Δ,Γ, x, String � StringLen) does hold: any two equiva-

lent values at String � T where StrFstLen <: T <: StringLen
have at least the same length.

The rest of this paper dives into the formalization of

polymorphic relaxed noninterference in a pure object-oriented

setting (Sections 4 and 5), before discussing the necessary

extensions to accommodate primitive types (Section 6).

4 Formal Semantics
We model polymorphic type-based declassification in Ob

〈〉
SEC,

an extension of the language ObSEC [5] with polymorphic

declassification. ObSEC is based on the object calculi of Abadi

and Cardelli [8], and our treatment of type variables and

bounded polymorphism is inspired by Featherweight Java [9]

and DOT [10].

4.1 Syntax
Figure 2 presents the syntax of Ob

〈〉
SEC. We highlight the

extension for polymorphic declassification, compared to the

syntax of ObSEC.
The language has three kind of expressions: objects, method

invocations and variables. Objects
î
z : S ⇒ m (x) e

ó
are col-

lections of method definitions. Recall that the self variable z
binds the current object.

A security type S is a faceted type T � U , where T is called

the safety type of S, and U is called the declassification type of

S. Types T include object types O and self type variables α.

Declassification types U additionally feature type variables X ,

to express polymorphic declassification. We use metavariables

A and B for declassification type bounds.
An object type Obj(α).

[
m :M

]
is a collection of method

signatures with unique names (we sometimes use R to refer

104

e ::= v | e.m
¨
U
∂
(e) | x (terms)

v ::= o (values)

o ::=
[
z : S ⇒ m (x) e

]
(objects)

S ::= T � U (security types)

T ::= O | α (types)

U,A,B ::= T | X (declassification types)

O ::= Obj(α).R (object types)

R ::=
[
m : M

]
(record types)

M ::=
¨
X : A..B

∂
S → S (method signatures)

Γ ::= • | Γ, x : S (type environments)

Φ ::= • | Φ, α <: β (subtyping environments)

Δ ::= • | Δ, X : A..B (type

variable environments)

α, β (self type variables)

Fig. 2. Ob
〈〉
SEC: Syntax

to just a collection of methods). The self type variable α
binds to the defined object type (i.e. object types are recursive

types). A method signature 〈X : A..B〉S1 → S2 introduces

the type variable X with lower bound A and upper bound B.

To simplify the presentation of the calculus, we model single-

argument methods with a single type variable.2

4.2 Subtyping

Figure 3 presents the Ob
〈〉
SEC subtyping judgment Δ;Φ �

U1 <: U2. The type variable environment Δ is a set of type

variables with their bounds, i.e. Δ ::= • | Δ, X : A..B. The

subtyping environment Φ is a set of subtyping assumptions

between self type variables, i.e. Φ ::= • | Φ, α <: β

The rules for the monomorphic part of the language are

similar to ObSEC. Rule (SObj) justifies subtyping between two

object types; it holds if the methods of the left object type

O1 are subtypes of the corresponding methods on O2. Both

width and depth subtyping are supported. Note that to verify

subtyping of method collections, i.e. Δ;Φ, α <: β � R1 <:
R2, we put in subtyping relation in Φ the self variables α
and β. Rule (SVar) accounts for subtyping between self type

variables and it holds if such subtyping relation exists in the

subtyping environment.

The rules (STrans) and (SSubEq) justify subtyping by

transitivity and type equivalence respectively. We consider

type equivalence up to renaming and folding/unfolding of self

type variables [5].

The novel part of Ob
〈〉
SEC are type variables, handled by rules

(SGVar1) and (SGVar2). We follow the approach of Rompf

and Amin [10]. Rule (SGVar1) justifies subtyping between a

type variable X and a type B, if B is the upper bound of

the type variable in Δ. Rule (SGVar2) is dual to (SGVar1),

justifying that A <: X if A is the lower bound of X .

2The implementation supports both multiple arguments and multiple type
variables.

Δ;Φ � U1 <: U2

(SObj)

O1 � Obj(α).R1 O2 � Obj(β).R2

Δ;Φ, α <: β � R1 <: R2

Δ;Φ � O1 <: O2

(SVar)
α <: β ∈ Φ
Δ;Φ � α <: β

(SSubEq)
O1 ≡ O2

ΔX ; Φ � O1 <: O2

(SGVar1)
X : A..B ∈ Δ
Δ;Φ � X <: B

(SGVar2)
X : A..B ∈ Δ
Δ;Φ � A <: X

(STrans)
Δ;Φ � U1 <: U2 Δ;Φ � U2 <: U3

Δ;Φ � U1 <: U3

Δ;Φ � R1 <: R2

(SR)
m′ ⊆ m mi = m′

j =⇒ Δ;Φ �M <: M ′

Δ;Φ � [
m : M

]
<:

[
m′ : M ′]

Δ;Φ �M1 <: M2

(SM)

Δ;Φ � B′ <: B Δ;Φ � A <: A′

Δ, X : A′..B′ ; Φ � S′
1 <: S1

Δ, X : A′..B′ ; Φ � S2 <: S′
2

Δ;Φ � 〈X : A..B〉S1 → S2 <: 〈X : A′..B′〉S′
1 → S′

2

Δ;Φ � S1 <: S2

(SST)
Δ;Φ � T1 <: T2 Δ;Φ � U1 <: U2

Δ;Φ � T1 � U1 <: T2 � U2

Fig. 3. Ob
〈〉
SEC: Subtyping rules

The judgment Δ;Φ � R1 <: R2 accounts for subtyping

between collections of methods, and is used in rule (SObj).

The judgment Δ;Φ � M1 <: M2 denotes subtyping between

method signatures. For this judgment to hold, the type variable

bounds A′..B′ of the supertype (on the right) must be included

within the bounds A..B of the subtype (on the left); this

ensures that any instantiation on the right is valid on the

left. Then, in a type variable environment extended with X :
A′..B′, standard function subtyping must hold (contravariant

on the argument type, covariant on the return type).

Finally, rule (SST) accounts for subtyping between security

types, which requires facets to be pointwise subtypes.

4.3 Type System

The typing rules of Ob
〈〉
SEC appeal to some auxiliary definitions,

given in Figure 4. Function ub(Δ, U) returns the upper bound

of a type U in the type variable environment Δ. Since Ob
〈〉
SEC

has a top type (Obj(α). []) this recursive definition of ub is

well-founded; as in Featherweight Java [9], we assume that Δ
does not contain cycles. The auxiliary judgment Δ � m ∈ U
holds if method m belongs to type U . For a type variable,

this means that the method is in the upper bound ub(Δ, X).
Function msig(Δ, U,m) returns the polymorphic method sig-

nature of method m in type U . The rule for type variables

105

ub(Δ, U) = T

T �= X

ub(Δ, T) = T

X : A..B ∈ Δ
ub(Δ, X) = ub(Δ, B)

Δ � m ∈ U

O � Obj(α).
[
m : M

]

Δ � mi ∈ O

Δ � m ∈ ub(Δ, X)

Δ � m ∈ X

msig(Δ, U,m) =M

msig(Δ, X,m) = msig(, ub(Δ, X),m)

O � Obj(α).
[
m : M

]

msig(, O,mi) =M [O/α]

Δ � U ∈ A..B

Δ; • � A <: U Δ; • � U <: B

Δ � U ∈ A..B

Fig. 4. Ob
〈〉
SEC: Some auxiliary definitions

looks up the signature in the upper bound. The rule for object

types is standard; note that it returns closed type signatures

with respect to the self type variable. Finally, the judgment

Δ � U ∈ A..B holds if the type U is a super type of A and

a subtype of B in the type variable environment Δ.

Figure 5 presents the typing judgment Δ;Γ � e : S for

Ob
〈〉
SEC, which denotes that “expression e has type S under

type variable environment Δ and type environment Γ”. We

omit the well-formedness rules for types and environments;

they are standard, except that they also verify the subtyping

relation between the facets of a security type.

The first three typing rules are standard: rule (TVar) types

a variable according to the environment, rule (TSub) is the

subsumption rule and rule (TObj) types an object. The method

definitions of the object must be well-typed with respect to

the method signatures taken from the safety type T of the

security type S ascribed to the self variable z. For this, the

method body ei must be well-typed in an extended type

variable environment with the type variable Δ, X : Ai..Bi,

and an extended type environment with the self variable and

the method argument.

Rules (TmD) and (TmH) cover method invocation, and

account for declassification. The actual argument type U ′ must

satisfy the variable bounds Δ � U ′ ∈ A..B. On the one hand,

rule (TmD) applies when the method m is in U with signature

〈X : A..B〉S1 → S2; this corresponds to a use of the object at

its declassification interface. Then, the method invocation has

type S2 substituting U ′ for X . On the other hand, rule (TmH)

applies when m is not in U , but it is in T ; this corresponds

to a use beyond declassification and should raise the security

to high. This is why the result type is T2 [X/U ′] ��. This is

all similar to the non-polymorphic rules (Figure 1), save for

Δ;Γ � e : S

(TVar)
x ∈ dom(Γ)

Δ; Γ � x : Γ(x)
(TSub)

Δ;Γ � e : S′ Δ; • � S′ <: S
Δ;Γ � e : S

(TObj)

S � T � U msig(, T,mi) = 〈X : Ai..Bi〉S′
i → S′′

i

Δ, X : Ai..Bi; Γ, z : S, x : S
′
i � ei : S

′′
i

Δ;Γ � [
z : S ⇒ m (x) e

]
: S

(TmD)

Δ;Γ � e1 : T � U Δ � m ∈ U
msig(Δ;U,m) = 〈X : A..B〉S1 → S2

Δ � U ′ ∈ A..B Δ;Γ � e2 : S1 [U
′/X]

Δ; Γ � e1.m 〈U ′〉 (e2) : S2 [U
′/X]

(TmH)

Δ;Γ � e1 : T � U Δ � m /∈ U
msig(Δ;T,m) = 〈X : A..B〉S1 → T2 � U2

Δ � U ′ ∈ A..B Δ;Γ � e2 : S1 [U
′/X]

Δ; Γ � e1.m 〈U ′〉 (e2) : T2 [U
′/X] ��

Fig. 5. Ob
〈〉
SEC: Static semantics

methimpl(o,m) = x.e

o �
[
z : S ⇒ m (x) e

]

methimpl(o,mi) = x.ei

E ::= [] | E.m(e) | v.m(E) (evaluation contexts)

(EMInvO)
o � [z : ⇒] methimpl(o,m) = x.e

E[o.m 〈 〉 (v)] �−→ E[e [o/z] [v/x]]

Fig. 6. Ob
〈〉
SEC: Dynamic semantics

the type bounds check, and the type-level substitution.

4.4 Dynamic Semantics

The small-step dynamic semantics of Ob
〈〉
SEC are standard,

given in Figure 6. They rely on evaluation contexts and use

the auxiliary function methimpl(o.m) to lookup a method

implementation. Note that types in general, and type variables

in particular, do not play any role at runtime.

4.5 Safety
We first define what it means for a closed expression e to be

safe: an expression is safe if it evaluates to a value, or diverges

without getting stuck.

Definition 1 (Safety). safe(e)⇐⇒ ∀e′. e �−→∗ e′ =⇒ e′ =
v or ∃e′′. e′ �−→ e′′

Well-typed Ob
〈〉
SEC closed terms are safe.

Theorem 1 (Syntactic type safety). � e : S =⇒ safe(e)

But of course, type safety is far from sufficient; we want

to make sure that well-typed Ob
〈〉
SEC terms are secure. To this

end, the next section formalizes the precise notion of security

we consider in Ob
〈〉
SEC, and proves that it is implied by typing.

106

5 Polymorphic Relaxed Noninterference,
Formally

We now formally define the security property of polymorphic
type-based relaxed noninterference (PRNI), and prove that the

Ob
〈〉
SEC type system soundly enforces PRNI.

5.1 Logical Relation

We define how values, terms and environments are related

through a step-indexed logical relation [11] (Figure 7). Step-

indexing is needed to ensure that the logical relation is well-

founded in presence of recursive object types.

The main novelty of this logical relation with respect that of

ObSEC is that it needs to give an interpretation to polymorphic

security types of the form T � X . We do this by quantifying

over all possible actual types U for X and interpreting T � U .

The interpretation of a security type is expressed as sets of

atoms of the form (k, e1, e2), where k is a step index meaning

that e1 and e2 are related for k steps.

The definition also appeals to a simple typing judgment

Γ �1 e : T , which disregards the declassification types, and

is therefore standard. We have that Δ;Γ � e : T � U ⇒
Γ �1 e : T . The use of this simple type system in the logical

relation clearly separates the definitions of security from its

static enforcement by the type system of §4.3 [5].

The logical relation uses several auxiliary definitions.

Atomn [T] requires e1 and e2 to be simply well-typed expres-

sions of type T and the index k to be strictly less than n.

Atomval
n [T] restricts Atomn [T] to values. Atom [T] are atoms

of simply well-typed expressions of type T (i.e. for any step-

index k).

The definition of V�T � O� relates two objects o1, o2 for

k steps if for any method m ∈ O and with signature

〈X : A..B〉S′ → S′′ and j < k, given related arguments for

j steps at S′, invocations of m produce related results for j
steps at S′′. More specifically, given any actual type T ′ that

satisfies the bounds of the type parameter X (i.e., T ′ ∈ A..B)

and given related arguments in V�S′ [T ′/X]� we must obtain

related computations in V�S′′ [T ′/X]�.

The relational interpretation of expressions C�T � U� relates

atoms of the form (k, e1, e2) that satisfy that for all j < k,

if both expressions e1 and e2 reduce to values v1 and v2
in at most k steps then v1 and v2 must be equivalent for

the remaining k − j steps. This definition is termination-

insensitive: if one expression does not terminate in less that k
steps, then the two expressions are trivially equivalent.

Type environments have standard interpretations. G�Γ� re-

lates value substitutions γ, i.e. mappings from variables to

closed values, as triples of the form (k, γ1, γ2), where γ1 and

γ2 are related if they have the same variables as Γ, and for any

variable x, the associated values are related for k steps at type

Γ(x). Finally, a type substitution σ, i.e. a mapping from type

variables to closed types, satisfies a type variable environment

Δ, noted D�Δ�, if it has the same type variables that Δ and

the mapped type T is within the type variable bounds.

5.2 Defining Polymorphic Relaxed Noninterference
Having defined the logical relation, we can now formally

define PRNI. As standard, noninterference properties allow

modular reasoning about open terms with respect to (term-

level) variables. For PRNI, we extend this modular reason-

ing principle to open terms with respect to type variables.

Then, a simply well-typed expression e under Δ and a

well-formed Γ satisfies PRNI at well-formed type S, written

PRNI(Δ,Γ, e, S), if for any type substitution σ that satisfies

Δ and two value substitutions γ1 and γ2 in the relational

interpretation of σ(Γ), applying the two value substitutions

to the expression e produces equivalent expressions at type

σ(S). As usual, the definition quantifies universally on the

step index k. We need only consider a single type substitution

σ; indeed, type variables happen only in declassification types,

which express the observation power of the public observer.

Therefore, for each security type of the form T � X we only

need to consider one actual type U within the bounds of X
to pick the observation power of the public observer. The

substitution σ captures all these choices.

Definition 2 (Polymorphic relaxed noninterference).

PRNI(Δ,Γ, e, S)⇐⇒
S � T � U Γ �1 e : T ∧ Δ � Γ ∧ Δ � S ∧
∀k ≥ 0. ∀σ, γ1, γ2. σ ∈ D�Δ�. (k, γ1, γ2) ∈ G�σ(Γ)�

=⇒ (k, σ(γ1(e)), σ(γ2(e))) ∈ C�σ(S)�
This definition captures the intuitive security notion that an

expression is secure if it produces indistinguishable outputs up

to the declassification power of the public observer (specified

by S), when linked with indistinguishable inputs up to their

declassification (specified by Γ).

5.3 Security Type Soundness

To establish that all well-typed Ob
〈〉
SEC terms satisfy PRNI,

we first introduce a notion of logically-related open terms,

and prove that if an expression is related to itself, then it

satisfies PRNI. We then prove the fundamental property of

the logical relation, which states that well-typed terms are

logically-related to themselves.

Two open expressions e1 and e2 are logically related at

type S in environments Δ and Γ if, given a type substitution σ
satisfying Δ and value substitutions γ1 and γ2 in the relational

interpretation of σ(Γ), closing these expressions with the given

substitutions produces related expressions related at type σ(S).

Definition 3 (Logical relatedness of open terms).

Δ;Γ � e1 ≈ e2 : S ⇐⇒
Δ;Γ � ei : S ∧ Δ � Γ ∧ Δ � S ∧
∀k ≥ 0. ∀σ, γ1, γ2. σ ∈ D�Δ�.

(k, γ1, γ2) ∈ G�σ(Γ)�

=⇒ (k, σ(γ1(e1)), σ(γ2(e2)) ∈ C�σ(S)�
Trivially, if an expression is logically related to itself, then

it satisfies PRNI.

107

Atomn [T] = {(k, e1, e2) | k < n ∧ �1 e1 : T ∧ �1 e2 : T}
Atomval

n [T] = {(k, v1, v2) ∈ Atomn [T]}
Atom [T] = {(k, e1, e2) ∈ ⋃

n≥0

Atomn [T]}
V�T � O� = {(k, v1, v2) ∈ Atom [T] |

(∀m ∈ O. msig(O,m) = 〈X : A..B〉S′ → S′′

∀j < k, T ′ , v′1, v
′
2. � T ′ ∧ T ′ ∈ A..B ∧

(j, v1, v2) ∈ V�T � O� ∧ (j, v′1, v
′
2) ∈ V�S′ [T ′/X]� =⇒

(j, v1.m 〈 〉 (v′1), v2.m 〈 〉 (v′2)) ∈ C�S′′ [T ′/X]�)}
C�T � U� = {(k, e1, e2) ∈ Atom [T] | (∀j < k.(e1 �−→≤j v1 ∧ e2 �−→≤j v2) =⇒ (k − j, v1, v2) ∈ V�T � U�)}
G�·� = {(k, ∅, ∅)}
G�Γ;x : S� = {(k, γ1 [x �→ v1] , γ2 [x �→ v2]) | (k, γ1, γ2) ∈ G�Γ� ∧ (k, v1, v2) ∈ V�S�}
D�·� = {∅}
D�Δ;X : A..B� = {σ [X �→ T] | σ ∈ D�Δ� ∧Δ � T ∈ A..B}

Fig. 7. Ob
〈〉
SEC Step-indexed logical relation for type-based equivalence

Lemma 2 (Self logical relation implies PRNI).
Δ;Γ � e ≈ e : S =⇒ PRNI(Δ,Γ, e, S)

We then turn to proving that all well-typed terms are

logically-related to themselves, i.e. the fundamental property

of the logical relation.

Theorem 3 (Fundamental property).
Δ;Γ � e : S =⇒ Δ;Γ � e ≈ e : S

Proof. The proof is by induction on the typing derivation of

e. We use the common approach of defining compatibility

lemmas for each typing rule [11]. Each case follows from

the corresponding compatibility lemma.

Security type soundness follows directly from Theorem 3

and Lemma 2.

Theorem 4 (Security type soundness).
Δ;Γ � e : S =⇒ PRNI(Δ,Γ, e, S)

Having proven that well-typed Ob
〈〉
SEC programs are secure,

we are almost ready to revisit the examples of Section 3 to

illustrate PRNI. We must first address the case of primitive

types, discussed next.

6 Ad-hoc Polymorphism for Primitive Types
Both ObSEC [5] and Ob

〈〉
SEC (so far) ignore the case of primitive

types, such as integers and strings. However, in an object-

oriented language, primitive types are both necessary and

challenging from a security viewpoint. In particular, inte-

grating type-based declassification with faceted types requires

appealing to a form of ad hoc polymorphism.

6.1 The Need and Challenge of Primitive Types
In a pure object-oriented calculus (as in a pure functional

calculus) without primitive types, the only real observation

that can be made on programs is termination. A termination-

insensitive notion of noninterference is therefore useless in a

pure setting: one needs some primitive types with a purely

syntactic notion of equality. Indeed, all the examples we

presented in earlier sections assume a syntactic notion of

observation for strings and integers.

Introducing primitive types calls for some form of label

polymorphism. Indeed, we do not want to fix the security level

of primitive operations, as this would be either impractical for

the public observer (if all security labels were high) or for

the secret observer (if all security labels were low). This is

why practical security-typed languages like FlowCaml [7] and

Jif [6] use label-polymorphic primitive operators, specifying

that the return label is the least upper bound of the argument

labels. For instance, a binary integer operator would have type

∀�1, �2.Int�1 × Int�2 → Int�1��2 . In a monomorphic security

language, the same principle is hardcoded in the typing rules

for primitive operators [12].

Unfortunately this approach does not work with labels-as-

types, even in a label-monomorphic setting. Indeed, because

labels are types, returning the join of the argument security

labels means computing the subtyping join (denoted �<: here-

after) of the declassification types. This is both impractical,

incorrect, and potentially unsound from a security viewpoint:

• Impractical. Consider a function of type Bool � X1 ×
Int � X2 → Bool � (X1 �<: X2). Given two public ar-

guments (i.e. X1 = Bool, X2 = Int), then assuming

Bool�<: Int = �, the result is necessarily private. While

sound, this is far too conservative; it is impractical for

primitive operations to always return private values even

when given public inputs.

• Incorrect. Consider an integer comparison of type

Int � X1 × Int � X2 → Bool � (X1 �<: X2). If we in-

stantiate this signature with Int and Int we obtain an ill-
formed return type, Bool � Int.

• Insecure. Consider a unary integer operator Int � X →
Int � X; this signature is not sound security-wise for all

unary integer operators. Take an operator that trims the

most-significant bit of its argument. If one declassifies

only the parity of the argument, two equivalent inputs

108

will not always yield two equivalent outputs (as the parity

of the trimmed values might differ).

6.2 Sound Signatures for Primitive Types
The observations above reveal one of the flip sides of ex-

pressive declassification policies: because declassification is

captured semantically, declassification polymorphism is a very

strong notion compared to standard label polymorphism. In

the general case, without appealing to intricate semantic con-

ditions, there are therefore only two simple syntactic principles

to define sound signatures for primitive operators:3

(P1) if every argument is public (e.g. StringL) then the return

type can be public.

(P2) if any argument is not public (e.g. String � StringFst)
then the return type must be secret (e.g. StringH).

As is typical, we provide an object-oriented interface for

primitive types (e.g. a+ b is a.+(b) as in Scala for instance).

Therefore the principles above must be extended to account

for the status of the receiver object: if the primitive method

invoked on the primitive value is part of its declassification

type, then it is considered a public “argument”; otherwise, it

is private.

Note that, without any form of polymorphism, i.e. picking

a single syntactic principle above, primitive types would be

impractical. Duplicating all definitions to offer both options is

also not a viable approach.

6.3 Polymorphic Primitive Signatures
To support the two syntactic principles exposed above, we

propose to use ad-hoc polymorphism (akin to overloading)

for primitive types P in Ob
〈〉
SEC. We introduce polymorphic

primitive signatures, written P � ∗ → P � ∗. A primitive

security type P � ∗ is resolved polymorphically at use site,

following principles (P1) and (P2) above. Object-oriented

interfaces for primitive types are exclusively composed of

polymorphic primitive signatures. For instance, in Ob
〈〉
SEC

strings are primitives, declared by the following String type:

String
�
= [concat : String � ∗ → String � ∗,

first : Unit � ∗ → String � ∗,
length : Unit � ∗ → Int � ∗,
eq : String � ∗ → Bool � ∗,
· · ·]

To illustrate, assume a : StringL, b : StringL and c : StringH.

Then a.eq(b) has type BoolL, while a.eq(c) has type BoolH.

Primitive types can also be subject to declassification poli-

cies. For instance, consider:

StringEqPoly
�
= [eq : String � ∗ → Bool � ∗]

and d : String � StringEqPoly. Then d.eq(b) has type BoolL,

while d.concat(a) : StringH.

3The syntactic principles (P1) and (P2) are formally justified by the proof
of Lemma 5, discussed in Section 6.5.

e ::= · · · | e.m(e) (terms)

v ::= · · · | p (values)

T ::= · · · | P (types)

M ::= · · · | I (method signatures)

S ::= · · · | P � ∗ (security types)

I ::= P � ∗ → P � ∗ (primitive signatures)

P ::= (eg. Int, String) (primitive types)

Φ ::= · · · | Φ, P <: β (subtyping environments)

Fig. 8. Ob
〈〉
SEC: Extended syntax for primitive types

Δ;Φ � U1 <: U2

· · · (SPObj)

meths(P) = R1 O � Obj(β).R2

Δ;Φ, P <: β � R1 <: R2

Δ;Φ � P <: O

(SPVar)
P <: β ∈ Φ
Δ;Φ � P <: β

Δ;Φ �M1 <: M2

· · · (SImpl)
Δ;Φ � I <: I

Fig. 9. Ob
〈〉
SEC: Subtyping rules for primitive types

Furthermore, one can use any type signature in a declassi-

fication policy for a primitive type, as long as it is sound. For

instance, StringEqL
�
= [eq : StringL → BoolL] respects prin-

ciple 1). Conversely, StringEqBad
�
= [eq : StringH → BoolL]

cannot be used as it would violate the soundness principles

above (in Ob
〈〉
SEC, String � StringEqBad is ill-formed).

6.4 Formal Semantics
We now formalize the treatment of primitive types in Ob

〈〉
SEC.

Figure 8 presents the extended syntax to support primitive

values p and primitive types P . Expression e.m(e) is for

method invocation on primitives; as explained previously,

primitive types expose an object-oriented interface, so a + b
is a. + (b). We extend the category S with security types of

the form P � ∗ and introduce a new category I , for primitive

signatures P � ∗ → P � ∗. The security type P � ∗ can be used

for standard signatures 〈X : A..B〉S1 → S2 as well.

The changes to subtyping are in Figure 9. Now, subtyping

assumptions can be also made between a primitive type

and a self type variable, i.e. Φ ::= • | Φ, α <: β | Φ, P <: β,

and function meths returns the methods of a primitive type.

Rule (SPObj) justifies subtyping between a primitive type

and an object type, and it is very similar to rule (SObj) of

Figure 3 for object types. Rule (SPVar) accounts for subtyping

between primitive types and type variables and it holds if such

subtyping relation exists in the subtyping environment Φ. Note

that there is no rule for subtyping between an object type

and a primitive type, because this would not be sound. Rule

(SImpl) accounts for subtyping between the same primitive

109

Δ;Γ � e : S

· · · (TPrim)
P = Θ(p)

Δ; Γ � p : P � P

(TPmD)

Δ;Γ � e1 : T � U Δ � m ∈ U
msig(Δ, U,m) = P1 � ∗ → P2 � ∗

Δ;Γ � e2 : P1 � U1

rdecl(P1 � U1, P2) = P ′
2

Δ;Γ � e1.m(e2) : P2 � P
′
2

(TPmH)

Δ;Γ � e1 : T � U Δ � m /∈ U
msig(Δ, T,m) = P1 � ∗ → P2 � ∗

Δ;Γ � e2 : P1 � U1

Δ;Γ � e1.m(e2) : P2 ��
rdecl(P1 � U1, P1) = U

rdecl(P1 � U1, P2) =

ß
P2 P1 = U1

� otherwise

Fig. 10. Ob
〈〉
SEC: Extended static semantics for primitive types

signature. There is no rule to justify subtyping between a

primitive signature and a standard signature.

As we discussed at the end of Section 6.2, we need an

extra condition for the well-formedness of security types to

ensure sound declassification. Given the type T � U , if T has

a method m : I , the method signature of m in U must be

either the same primitive signature I , or a normal signature

that is sound. We use the predicate soundsig to express that

signature 〈X : A..B〉S1 → S2 is sound, which must satisfy

that either the argument type is public, or the return type is

private:

soundsig(〈 〉P � U1 → T2 � U2)⇐⇒ U1 = P ∨ U2 = �

Figure 10 presents the extension to the typing rules of

Ob
〈〉
SEC. Rule (TPrim) justifies typing for primitive values,

using a function Θ that specifies each primitive type. The

new typing rules (TPmD) and (TPmH) realize ad hoc poly-

morphism for primitive types. Rule (TPmD) is key: it applies

when m is in the declassification type U , and uses the function

rdecl to calculate the declassification type of the return type,

based on the type of the argument: if the argument is public,

so is the returned value. Rule (TPmH) applies when m is not

in the declassification type U , and similarly to (TmH), ensures

that the returned value is private.

Figure 11 shows the extension to the dynamic semantics to

support primitive values. Rule (EMInvP) executes a method

invocation on a primitive value using the function θ, which

abstracts over the internal implementation of primitive values.

To prove type safety for Ob
〈〉
SEC with primitives, we only

need to assume that Θ and θ—which are parameters of the

language—agree on the specification and implementation of

all primitive types and their operations.

(EMInvP)
E[p1.m(p2)] �−→ E[θ(m, p1, p2)]

Fig. 11. Ob
〈〉
SEC: Dynamic semantics of primitive values

V�P � P � = {(k, p, p) ∈ Atom [P]}
V�T � O� = {(k, v1, v2) ∈ Atom [T] | . . .

∀m ∈ O. msig(•, O,m) = P1 � ∗ → P2 � ∗
∀j < k, v′1, v

′
2.U1 >: P1

((j, v′1, v
′
2) ∈ V�P1 � U1� =⇒

(j, v1.m(v
′
1), v2.m(v

′
2)) ∈ C�P2 � rdecl(P1 � U1, P2)�)}

Fig. 12. Ob
〈〉
SEC: Step-indexed logical relation with new definitions for

primitive types

6.5 Logical Relation for Primitive Types
Figure 12 presents the extension to the logical relation of

Figure 7 to account for primitive types. First, V�P � P � relates

syntactically equal primitive values of type P . Second, the

definition of V�T � O� now accounts for primitive values that

are observed with a declassification type O. V�T � O� still

relates values v1 and v2 if, for all methods of O, given related

arguments, the invocations of m on v1 and v2 produce related

computations. However, the definition now discriminates be-

tween each type of signatures. For a method m with primitive

signature P1 � ∗ → P2 � ∗, we require one of the following

conditions to hold. If we get related arguments v′1 and v′2
at P1 � P1 (i.e. public values), method invocations v1.m(v

′
1)

and v2.m(v
′
2) need to be related at the public type P2 � P2.

Otherwise, if the arguments v′1 and v′2 are related at a non-

public type (P1 � U, P1 �= U), then v1.m(v
′
1) and v2.m(v

′
2)

need to be related at the top type P ��. These conditions

are expressed in the definition by requiring related method

invocations in C�P2 � rdecl(P1 � U1, P2)�.

Extending the fundamental property (Lemma 3) for prim-

itive types requires the following lemma, which states that

syntactically-equal primitive values of type P are in the object-

oriented interpretation of any type P � O—essentially, equal

values cannot be discriminated.

Lemma 5 (Equal values are logically related).
∀k ≥ 0, p, P,O.

�1 p : O ∧ P <: O =⇒ (k, p, p) ∈ V�P � O�

Proof. Because P � O is a well-formed security type, O
consists of primitive signatures and standard, sound signa-

tures. For the case of primitive signatures, at some point we

have P1 � ∗ → P2 � ∗ and equivalent values at (j, v1, v2) ∈
P1 � U1 and we have to prove that (j, δ(m, b, v1), δ(m, b, v2) ∈
C�P2 � rdecl(P1 � U1, P2)�. We do case analysis on U . If

U1 = P1, we know that v1 = v2 and hence if δ(m, b, v1)
and δ(m, b, v2) are defined, their results are syntactically

equal, so (j, δ(m, b, v1), δ(m, b, v2)) ∈ C�P2 � P2)�. If U �=
P1, then the proof obligation is (j, δ(m, b, v1), δ(m, b, v2) ∈
C�P2 ���; this is trivial because any two values are re-

110

lated at �. For the case of standard signatures, at some

point we have P1 � U1 → P2 � U2 and we have to prove

that (j, δ(m, b, v1), δ(m, b, v2)) ∈ C�P2 � rdecl(P1 � U1, P2)�.

Since the signature is sound, we know that either U1 = P1

or U2 = �; then the result follows similarly to the primitive

signature case.

Note that the two syntactic principles for sound signatures

of primitive types introduced in Section 6.2 are justified by

the need to establish Lemma 5. Principle (P1) is necessary

because we cannot assume anything about two invocations of

an arbitrary partial function δ, except that given syntactically
equal arguments, if it produces results, then those results are

syntactically equal. Principle (P2) is justified because any

two invocations of δ are observationally equivalent at � (like

any computation in general), so the actual relation between

the arguments does not matter. For any primitive operator

signature that does not abide by either (P1) or (P2), it is

possible to devise a δ that violates Lemma 5

Consequently, Ob
〈〉
SEC with primitive types is a sound

security-typed language, i.e. all well-typed programs satisfy

PRNI (Theorem 4).

6.6 Illustration

In Section 3 we gave informal examples of secure and insecure

programs with respect to PRNI. Now, armed with Theorem 4,

and the definitions for primitive types, we can formally check

if a given program is secure by typechecking it. The prototype

implementation of Ob
〈〉
SEC features a number of examples and

allows one to try out the language and typechecker. In this

section, we unfold the reasoning underlying the proof of

Theorem 4 for a specific example, in order to illustrate the

technical details of PRNI and the relational interpretation of

object types, including primitive signatures.

To lighten notation, we omit unused type parameters in

method declarations and type instantiations in method invo-

cations. Note that we introduce the Unit type with its unique

unit primitive value.

We illustrate polymorphic declassification by considering

type and variable environments Δ
�
= X : String..StringLen

and Γ
�
= x : String � X . We discuss two possible formal defi-

nitions for StringLen, either using standard method signatures,

or using primitive signatures:

1) Obj(α). [length : UnitL → IntL]
2) Obj(α). [length : Unit � ∗ → Int � ∗]
With definition 1) above, the program x.length(unit) has

type IntL; i.e. Δ;Γ � x.length(unit) : IntL. Then, by Theo-

rem 4, we know that PRNI(Δ,Γ, x.length(unit), IntL) holds;

the program is secure for any public observer.

Let us unfold PRNI(Δ,Γ, x.length(unit), IntL) to ver-

ify why it holds. For any type substitution X �→
T ∈ D�Δ� and equivalent value substitutions (k, x �→
v1, x �→ v2) ∈ G�•, x : String � T �, we have that

(k, v1.length(unit), v2.length(unit)) ∈ C�Int � Int�.

To verify this:

1) By (k, x �→ v1, x �→ v2) ∈ G�•, x : String � T �
we know that (k, v1, v2) ∈ V�String � T �. Be-

cause T <: StringLen, we have V�String � T � ⊆
V�String � StringLen� by a subtyping lemma, and hence

(k, v1, v2) ∈ V�String � StringLen�.

2) Then, instantiate the definition of V�String � StringLen�
with length, k, T, unit, unit. Note that:

• length ∈ StringLen
• msig(•, StringLen, length) = UnitL → IntL
• T ∈ String..StringLen, which follows from X �→

T ∈ D�Δ�
• and (k, unit, unit) ∈ V�Unit � Unit� (by definition

of V�P � P �),

Then (k, v1.length(unit), v2.length(unit)) ∈ C�Int � Int�.

With definition 2) above of StringLen, we apply the same

steps until the instantiation of V�String � StringLen�. At this

point, since length has a primitive signature, we have to

consider the extended case for primitive type signatures from

Figure 12. Instantiate it with length, k, unit, unit, and observe

that msig(•, StringLen, length) = Unit � ∗ → Int � ∗.
Then, given that (k, unit, unit) ∈ V�Unit � Unit�,

we have that (k, v1.length(unit), v2.length(unit)) ∈
C�Int � rdecl(Unit � Unit, Int)� = C�Int � Int�.

7 Related work
Declassification. Expressive declassification policies were in-

troduced by Li and Zdancewic [3] with the labels-as-functions

approach. They define two kinds of declassification policies:

local and global. Local policies are concerned with one secret,

while global policies express coordinated declassification of

several secrets. Label operations in this approach rely on a

semantic interpretation of declassification functions based on

a general notion of program equivalence. In addition to the

induced complexity, this precludes recursive policies.

The labels-as-types approach [5] uses type interfaces instead

of functions to express declassification policies. This simplifies

the concepts involved (label ordering is simply subtyping),

making an implementation more easily realizable. The ap-

proach naturally support local policies. More advanced typing

disciplines such as refinement types [13] could in principle be

used to express global policies.

Conceptually, Cruz et al. [5] relate secure information

flow with type abstraction, a connection also explored under

different angles by Bowman and Ahmed [14] and Wash-

burn and Weirich [15]. Bowman and Ahmed [14] translate

the noninterference result of the Dependency Core Calculus

(DCC) [16] to parametricity, while Washburn and Weirich [15]

use information control mechanisms to ensure a generalized

from of parametricity in presence of runtime type inspection.

The Decentralized Label Model (DLM) [17] of Jif enforces

robust declassification [18]: restricting who can declassify val-

ues, using the integrity policy to ensure that the declassification

is not triggered by conditions affected by an active attacker.

Here, we do not model any notion of authority, focusing on

the what dimension of declassification [2].

111

As noted by Sabelfeld and Sands [2], many declassification

approaches of the what dimension can be expressed using

partial equivalence relations to model the public observer

knowledge. Here, we use the logical interpretation of security

types (Figure 7) to specify the partial equivalence relation

that a public observer can use to distinguish values and

computations.

Label polymorphism. Support for label polymorphism in

security-typed programming languages can be classified in two

categories: static and dynamic label polymorphism. Static label

polymorphism can either be provided via explicit syntactic

constructions to introduce generic labels [6], or implicitly with

constraint-based label inference [6, 7, 19]. The dynamic form

of label polymorphism relies on labels as first-class entities

that can be passed around like standard values [6, 20, 21].

The Jif language [6] supports all three forms of label

polymorphism. It provides a direct syntax to introduce labels

at the method and class levels, which can be constrained.

Also, Jif features label inference: local variables are inferred

to have a fresh generic label that is resolved using constraints

from the context. Inferred fields and method arguments have

default labels. In addition, Jif supports first-class labels. Our

work focuses on the foundations of explicit declassification

polymorphism, and currently does not address label inference

and first-class labels. Because labels are types, label inference

would boil down to fairly standard type inference; first-class

labels however would require a notion of first-class types,

which should be considered with care.

Sun et al. [19] design a constraint-based label inference

mechanism for an object-oriented language with classes and

inheritance. Classes and methods are label polymorphic. The

programmer can rely on the inference mechanism to achieve

label polymorphism or to specify generic labels at the class

level; method-level explicit polymorphism is not considered.

Stefan et al. [20, 21] provide label-polymorphism via first-

class labels much like Jif.

Declassification and Polymorphism. When present, the

declassification mechanisms of the label-polymorphic propos-

als discussed above [6, 7, 19, 21] are completely orthogo-

nal to label polymorphism. The polymorphic labels-as-types

approach developed in this work allows us to reason about

declassification and label polymorphism with the single and

unified concept of standard types.

Our approach is closely related to that of Hicks et al. [4],

which propose trusted declassification in an object-oriented

language based on the DLM [17], where each label is com-

posed of principals. Declassification is globally defined, asso-

ciating principals to the trusted methods that can be used to

declassify an expression to another principal. Because classes

are polymorphic with respect to principals, this induces a form

of implicit label polymorphism. More precisely, a class defini-

tion is checked at instantiation-time with the actual principals

provided for the instantiation. This use-site polymorphism for

principals is similar to our treatment of polymorphic primitive

signatures (Section 6).

Tse and Zdancewic [22] propose certificate-based declas-

sification and conditioned noninterference. They extend Sys-

tem F<: with monadic labels similarly to DCC [16], using

DLM [17]. Declassification is modeled as a read privilege
that a principal is allowed to give to another principal in a

certain context. Their work merges standard types with labels,

principals and privileges in the same syntactic category of

types. Since System F<: supports type polymorphism, the

language supports label polymorphism. However, it is not

clear how to use label polymorphism to express polymorphic

declassification in that setting.

Finally, the syntactic principles we introduce for primitive

signatures are related to the work of Li and Zdancewic [3]

on labels-as-functions. For local policies, the typing rules for

integer primitive operators follow the same principles, but are

more expressive. In particular, they provide typing rules for

binary integer operators where one operand has an arbitrary

declassification policy and the other operand is public; the

resulting label is a functional composition of the operand label

with a function wrapping the operator. As explained before,

this semantic implication cannot be expressed with the labels-

as-types approach, unless one is willing to consider much more

advanced typing disciplines.

8 Conclusion
We extend relaxed noninterference in a labels-as-types ap-

proach to selective and expressive declassification in order

to account for polymorphism. The proposed declassification

polymorphism is novel and useful to precisely control declas-

sification of polymorphic structures and to define procedures

that are polymorphic over the declassification policies of their

arguments. Bounded polymorphism further controls the guar-

antees and expectations of clients and providers with respect to

declassification. Bringing type-based declassification to real-

world programming also requires addressing the issue of

primitive types, which were ignored in prior work. For this we

introduce a novel form of ad-hoc polymorphism. We formalize

the approach, prove its soundness, and provide a prototype

implementation.

This work provides a necessary and solid basis to integrate

type-based declassification in existing languages. A particu-

larly appealing alternative is to study the realization of our

approach in Scala: its type system is expressive enough to

encode bounded polymorphic declassification, and adjusting

the typechecker to account for security levels (i.e. the addi-

tional rule for method invocation) should be achievable via a

compiler plugin.

Acknowledgment
We thank Cătălin Hriţcu and the anonymous reviewers for their

detailed comments and suggestions.

112

References
[1] D. Volpano, C. Irvine, and G. Smith, “A sound type

system for secure flow analysis,” Journal of Computer
Security, vol. 4, no. 2-3, pp. 167–187, Jan. 1996.

[2] A. Sabelfeld and D. Sands, “Declassification: Dimen-

sions and principles,” Journal of Computer Security,

vol. 17, no. 5, pp. 517–548, 2009.

[3] P. Li and S. Zdancewic, “Downgrading policies and

relaxed noninterference,” in Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005). Long Beach,

CA, USA: ACM Press, Jan. 2005, pp. 158–170.

[4] B. Hicks, D. King, P. McDaniel, and M. Hicks, “Trusted

declassification: high-level policy for a security-typed

language,” in Proceedings of the workshop on Program-
ming Languages and Analysis for Security (PLAS 2006,

2006, pp. 65–74.

[5] R. Cruz, T. Rezk, B. Serpette, and É. Tanter, “Type

abstraction for relaxed noninterference,” in Proceedings
of the 31st European Conference on Object-Oriented
Programming (ECOOP 2017), ser. Leibniz International

Proceedings in Informatics (LIPIcs), P. Müller, Ed.,

vol. 74. Barcelona, Spain: Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Jun. 2017, pp. 7:1–7:27.

[6] A. C. Myers, “Jif homepage,”

http://www.cs.cornell.edu/jif/, accessed March 2019.

[7] F. Pottier and V. Simonet, “Information flow inference

for ML,” ACM Transactions on Programming Languages
and Systems, vol. 25, no. 1, pp. 117–158, 2003.

[8] M. Abadi and L. Cardelli, A Theory of Objects.

Springer-Verlag, 1996.

[9] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight

Java: a minimal core calculus for Java and GJ,” ACM
Transactions on Programming Languages and Systems,

vol. 23, no. 3, pp. 396–450, 2001.

[10] T. Rompf and N. Amin, “Type soundness for dependent

object types (DOT),” in Proceedings of the 31st ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, (OOPSLA 2016),
part of SPLASH 2016, E. Visser and Y. Smaragdakis,

Eds. Amsterdam, The Netherlands: ACM Press, Oct.

2016, pp. 624–641.

[11] A. Ahmed, “Step-indexed syntactic logical relations for

recursive and quantified types,” in Proceedings of the
15th European Symposium on Programming Languages
and Systems (ESOP 2006), ser. Lecture Notes in Com-

puter Science, P. Sestoft, Ed., vol. 3924. Vienna, Austria:

Springer-Verlag, Mar. 2006, pp. 69–83.

[12] S. Zdancewic, “Programming languages for information

security,” Ph.D. dissertation, Cornell University, Aug.

2002.

[13] P. M. Rondon, M. Kawaguchi, and R. Jhala, “Liquid

types,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI 2008), R. Gupta and S. P. Amarasinghe, Eds.

ACM Press, Jun. 2008, pp. 159–169.

[14] W. J. Bowman and A. Ahmed, “Noninterference for

free,” in Proceedings of the 20th ACM SIGPLAN Con-
ference on Functional Programming (ICFP 2015). Van-

couver, Canada: ACM Press, Aug. 2015, pp. 101–113.

[15] G. Washburn and S. Weirich, “Generalizing parametricity

using information-flow,” in Proceedings of the 20th IEEE
Symposium on Logic in Computer Science (LICS 2005).
Chicago, IL, USA: IEEE Computer Society Press, Jun.

2005, pp. 62–71.

[16] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke,

“A core calculus of dependency,” in Proceedings of the
26th ACM Symposium on Principles of Programming
Languages (POPL 99). San Antonio, TX, USA: ACM

Press, Jan. 1999, pp. 147–160.

[17] A. C. Myers and B. Liskov, “Protecting privacy using

the decentralized label model,” ACM Transactions on
Software Engineering and Methodology, vol. 9, pp. 410–

442, Oct. 2000.

[18] S. Zdancewic and A. C. Myers, “Robust declassification,”

in Proceedings of the 14th IEEE Computer Security
Foundations Workshop (CSFW 2001). Cape Breton,

Nova Scotia, Canada: IEEE Computer Society Press, Jun.

2001, pp. 15–23.

[19] Q. Sun, A. Banerjee, and D. A. Naumann, “Modular and

constraint-based information flow inference for an object-

oriented language,” in Proceedings of the 11th Static
Analysis Symposium (SAS 2004), ser. Lecture Notes

in Computer Science, R. Giacobazzi, Ed., vol. 3148.

Verona, Italy: Springer-Verlag, Aug. 2004, pp. 84–99.

[20] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,

“Flexible dynamic information flow control in Haskell,”

in Proceedings of the 4th ACM Symposium on Haskell.
ACM Press, 2011, pp. 95–106.

[21] D. Stefan, D. Mazières, J. C. Mitchell, and A. Russo,

“Flexible dynamic information flow control in the pres-

ence of exceptions,” Journal of Functional Programming,

vol. 27, 2017.

[22] S. Tse and S. Zdancewic, “A design for a security-

typed language with certificate-based declassification,”

in Proceedings of the 14th European Symposium on
Programming Languages and Systems (ESOP 2005), ser.

Lecture Notes in Computer Science, S. Sagiv, Ed., vol.

2986. Berlin, Heidelberg: Springer-Verlag, 2005, pp.

279–294.

113

