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Abstract
Distributed applications are challenging to program because they have to deal with a plethora of concerns, including synchro-
nization, locality, replication, security and fault tolerance. Aspect-oriented programming (AOP) is a paradigm that promotes
better modularity by providing means to encapsulate crosscutting concerns in entities called aspects. Over the last years, a
number of distributed aspect-oriented programming languages and systems have been proposed, illustrating the benefits of
AOP in a distributed setting. Chemical calculi are particularly well-suited to formally specify the behavior of concurrent and
distributed systems. The join calculus is a functional name-passing calculus, with both distributed and object-oriented exten-
sions. It is used as the basis of concurrency and distribution features in several mainstream languages like C# (Polyphonic
C#, now Cω), OCaml (JoCaml), and Scala Joins. Unsurprisingly, practical programming in the join calculus also suffers
from modularity issues when dealing with crosscutting concerns. We propose the aspect join calculus, an aspect-oriented and
distributed variant of the join calculus that addresses crosscutting and provides a formal foundation for distributed AOP. We
develop a minimal aspect join calculus that allows aspects to advise chemical reactions. We show how to deal with causal
relations in pointcuts and how to support advanced customizable aspect weaving semantics. We also provide the foundation
for a decentralized distributed aspect weaving architecture. The semantics of the aspect join calculus is given by a chemical
operational semantics. We give a translation of the aspect join calculus into the core join calculus, and prove this translation
correct by a bisimilarity argument. This translation is used to implement Aspect JoCaml on top of JoCaml.

1 Introduction

Distributed applications are complex to develop because of
a plethora of issues related to synchronization, distribution,
and mobility of code and data across the network. It has
been advocated that traditional programming languages do
not support the separation of distribution concerns from stan-
dard functional concerns in a satisfactory way. For instance,
data replication, transactions, security, and fault tolerance
often crosscut the business code of a distributed applica-
tion. Aspect-Oriented Programming (AOP) promotes better
separation of concerns in software systems by introducing
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aspects for the modular implementation of crosscutting con-
cerns [20,30]. Indeed, the pointcut/advice mechanism of
AOP provides the facility to intercept the flow of control
when a program reaches certain execution points (called join
points) and perform new computation (called advice). The
join points of interest are denoted by a predicate called a
pointcut.

AOP is frequently used in distributed component infras-
tructures such as Enterprise Java Beans, application frame-
works (such as Spring1) and application servers (such as
JBoss2). Recently, there is a growing interest in the use of
AOP forCloud computing [11,38], including practical infras-
tructures such as CloudStack3. In all these cases however,
AOP systems do not support the remote definition or appli-
cation of aspects. Rather, non-distributed aspects are used to
manipulate distributed infrastructures [49].

To address these limitations, distributed AOP has been the
focus of several practical developments: JAC [44], DJcut-
ter [39], QuO’s ASL [19], ReflexD [57], AWED [4,5],

1 http://spring.io.
2 http://www.jboss.org.
3 http://cloudstack.apache.org/.
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Lasagne [59], as well as a higher-order procedural language
with distribution and aspects [55]. These languages introduce
new concepts for distributed AOP such as remote pointcut
(advice triggered by remote join points), distributed advice
(advice executed on a remote host), migration of aspects,
asynchronous and synchronous aspects, distributed control
flow, etc.Most of these systems are based on Java and RMI in
order to promote the role of AOP on commonly-used large-
scale distributed applications. But the temptation of using
a rich language to develop interesting applications has the
drawback that defining the formal semantics of distributed
aspects is almost impossible. While the formal foundations
of aspects have been laid out in the sequential setting [15,62],
to date, no theory of distributed aspects has been developed.4

This paper develops the formal foundations of distributed
AOP using a chemical calculus, essentially a variant of
the distributed join calculus [22]. The join calculus is a
functional name-passing calculus based on the chemical
abstract machine and implemented in several mainstream
languages like OCaml [24], C# [6] and Scala [26]. Chemical
execution engines are also being developed for Cloud com-
puting [40,45]. Due to its chemical nature, the join calculus
is well-suited to describe parallel computation. The explicit
treatment of localities and migration in the distributed join
calculusmakes it possible to express distribution-related con-
cerns directly.

In the join calculus, communication channels are created
together with a set of reaction rules that specify, once and
for all, how messages sent on these channels are synchro-
nized and processed. The crosscutting phenomena manifest
in programs written in this style, just as they do in other
languages. The reason is that reactions in the join calculus
are scoped: it is not possible to define a reaction that con-
sumes messages on external channels. Therefore, extending
a cache process with replication implies modifying the cache
definition itself. Similarly, establishing alternative migration
policies based on the availability of locations requires intru-
sively modifying components.

The aspect join calculus developed in this paper addresses
crosscutting issues in the join calculus by introducing the
possibility to define aspects that can react to chemical reac-
tions. In doing so, it provides a formal foundation that can be
used to understand and describe the semantics of existing and

4 This article builds upon a previous conference publication [53].Much
of the text has been completely rewritten. The aspect join calculus has
been simplified and clarified, in particular by removing the type sys-
tem and the management of classes, because they are orthogonal to the
extensions considered in this work. In addition, the technical treatment
has been extended in many ways, including more expressive quantifica-
tion, per-reaction weaving, and decentralized weaving. The translation
from the aspect join calculus to the standard join calculus has been
updated accordingly, as well as the proof of correctness of the trans-
lation. Finally, an implementation based on JoCaml is presented and
provided online.

future distributed aspect languages.We also use it to describe
interesting features that have not (yet) been implemented in
practical distributed AOP systems.

Section 2 presents the distributed objective join calculus,
which serves as the basis for the aspect join calculus. The syn-
tax and semantics of the aspect join calculus are described in
Sect. 3. In order to address the implementation of the aspect
join calculus, Sect. 4 describes a translation from the aspect
join calculus to the core join calculus; the correctness of this
translation is proven by a bisimilarity argument. Section 5
discusses several design options. Then, Sect. 6 describes
Aspect JoCaml, a prototype implementation of the aspect join
calculus on top of JoCaml based on the translation described
in Sect. 4. Finally, Sect. 7 discusses related work and Sect. 8
concludes.

2 The distributed objective join calculus

We start by presenting a distributed and object-oriented ver-
sion of the join calculus.5 This calculus, which we call the
distributed objective join calculus, is an original, slightly
adapted combination of an object-oriented version of the join
calculus [23] and an explicit notion of location to account
explicitly for distribution [21].

2.1 Message passing and internal states

Before going into the details of the distributed objective join
calculus, we begin with the example of the object buffer pre-
sented in [23]. The basic operation of the join calculus is
asynchronous message passing over channels. In the objec-
tive join calculus, channels are associated with an object
and called labels. Accordingly, the definition of an object
describes how messages received on some labels can trigger
processes. For instance, the term

obj r = reply(n) � out .print(n)

defines an object that reacts to messages on its own label
reply by sending a message with label print and content n
to an object named out that prints on the terminal. In the
definition of an object, the ’�’ symbol defines a reaction rule
that consumes themessages on its left hand side and produces
the messages on its right hand side.

Note that labels may also be used to represent the internal
state of an object. Consider for instance the definition of a
one-place buffer object:

5 There is a good reason why we choose a variant of the join calculus
with objects; we discuss it later in Sect. 3.4, once the basics of aspects
in the calculus are established.
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Chemical foundations of distributed aspects 195

Fig. 1 Syntax of the distributed objective join calculus (a combina-
tion of simplified versions of the distributed join calculus [21] and the
objective join calculus [23])

obj b = put(n) & empty() � b.some(n)

or get(r) & some(n) � r .reply(n) & b.empty()
in b.empty()

A buffer can either be empty or contain one element. The
buffer state is encoded as a message pending on empty or
some, respectively. A buffer object is created empty, by send-
ing a first message b.empty in the in clause. Note that to keep
the buffer object consistent, there should be a single message
pending on either empty or some. This remains true as long
as external processes cannot send messages on these internal
labels directly. This can be enforced by a privacy discipline,
as described in [23].

2.2 Syntax

The grammar of the distributed objective join calculus is
given in Fig. 1; it has syntactic categories for processes P ,
definitions D, patterns M , and named definitions D. We use
three disjoint countable sets of identifiers for object names
x, y, z ∈ O, labels l ∈ L and host names H ∈ H. Tuples are
written (vi )

i∈I or simply v̄. We use v to refer indifferently to
object or host names, i.e. v ∈ O⋃H.

To introduce all the syntactic constructs of the distributed
objective join calculus, it is helpful to start by considering that
a program is described as a configuration C, called a chemical
solution, which is a set of machines running in parallel:

C = D1 �ϕ1 P1 ‖ · · · ‖ Dn �ϕn Pn

A machine D �ϕ P consists of a set of named definitions
D and of a multiset of processes P running in parallel at a
given location ϕ.
Locations.A locationϕ (we also sometimes usemetavariable
ψ to denote locations) is a unique sequence of host names
H , i.e. ϕ = H1 · · · Hn . We assume that the rightmost host
Hn defines the location ϕ uniquely.

Intuitively, a root location H can be thought of as an IP
address on a network and a machine at host/root location
H can be thought of as a physical machine at this address.
Then, a machine at sub-location HH ′ can be thought of as a
system process H ′ executing on a physical machine (whose
location is H ). This includes for example the treatment of
several threads, or of multiple virtual machines executing on
the same physical machine. For instance, a concrete repre-
sentation of locations (using | as a separator between Hs)
could be 1.2.3.4:56|vm1|t2 to denote thread t2 of virtual
machine vm1 running at IP address 1.2.3.4:56.
Named definitions. Named definitionsD are a disjunction of
object definitions x .D, where x is an object name, and D is
a disjunction of reaction rules. Object definitions in D rep-
resent “active” objects ready to react to message sends. A
reaction rule M � P associates a pattern M with a guarded
process P . Every message pattern l(v̄) in M binds the object
names and/or hosts v̄ with scope P . Note that in the join cal-
culus, it is required that every pattern M guarding a reaction
rule be linear, that is, labels and object names appear at most
once in M . Also, each object is associated with exactly one
named definition.

Named definitions also include sub-location definitions
H [D : P], hosting the named definitionsD and process P at
host H .
Processes. Processes include the null process 0, message
sending x .M , and object definition obj x = D in P , which
corresponds to the creation of a new object (not yet ready
to react). An object definition binds the name x to the defi-
nitions of D. The scope of x is every guarded process in D
(here x means “self”) and the process P . Objects are taken
modulo renaming of bound names (or α-conversion). H [P]
is the process that starts a fresh new location with process
P . Note that H [P] acts as a binder for creating a new host.
A migration request is described by go(H ′); P . It is subjec-
tive in that it provokes the migration of the current host H
to any location of the form ψH ′ (which must be unique by
construction) with continuation process P .

The definitions of free names (noted fn(.)) for processes,
definitions, patterns and named definitions are given in Fig. 2.

2.3 Semantics

The operational semantics of the distributed objective
join calculus is given as a reflexive chemical abstract
machine [22]. Each rewrite rule applies to a configuration
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Fig. 2 Definition of free names fn(·)

C. A chemical reduction is the composite of two kinds of
rules: (i) structural rules ≡ that deal with (reversible) syn-
tactical rearrangements, (ii) reduction rules −→ that deal
with (irreversible) basic computational steps. The rules for
the distributed objective join calculus are given in Fig. 3.
In chemical semantics, each rule is local in the sense that it
mentions only definitions and messages involved in the reac-
tion; but it can be applied to a wider chemical solution that
contains those definitions and messages. By convention, the
rest of the solution, which remains unchanged, is implicit.

Rules Or and Emptymake composition of named defini-
tions associative and commutative, with unit �. Rules Par
and Nil do the same for parallel composition of processes.
Rule Join gathersmessages that aremeant to bematched by a
reaction rule. RuleObj- Def describes the introduction of an
object (up-toα-renaming, we can consider that any definition
of an object x appears only once in a configuration).

The reduction rule Red specifies how a message x .M ′
interacts with a reaction rule x .[M � P]. The notation
x .[M � P] means that the unique named definition x .D
in the solution contains reaction rule M � P . The message
x .M ′ reacts when there exists a substitution σ with domain

fn(M) such that Mσ = M ′. In that case, x .Mσ is consumed
and replaced by a copy of the substituted guarded process
Pσ . Substitution is standard, replacing free occurrences (as
defined by fn) of the variable to substitute.
Distribution. Rule Message- Comm states that a message
emitted in a given location ϕ on an object name x that is
remotely defined can be forwarded to the machine at loca-
tion ψ that holds the definition of x . Later on, this message
can be used within ψ to assemble a pattern of messages and
to consume it locally, using a localRed step. Note that in con-
trast to some models of distributed systems [46], the routing
of messages is not explicitly described by the calculus.

The handling of locations and migration is directly based
on the join calculus mechanisms presented by Fournet and
Gonthier [21]. Rule Loc- Def describes the introduction of
a sub-location (up-to α-conversion, we can consider that any
host appears only once in a configuration). Rule Sub- Loc
introduces a new machine at sub-location ϕH of ϕ withD as
initial definitions and P as initial process. When read from
right-to-left, the rule can be seen as a serialization process,
and conversely as a deserialization process. The side condi-
tion “H frozen” means that there is no other machine of the
form �ϕHψ in the configuration (i.e. all sub-locations of H
have already been “serialized”). The notation {D} and {P}
states that there are no extra definitions or processes at loca-
tion ϕH . Sub- Loc rule is best understood in tandem with
theMove rule, which gives the semantics of migration. Intu-
itively, the Move rule dispatches a pack of definitions and
processes to a new location, and the Sub- Loc rule allows
unpacking.

More precisely, in theMove rule a sub-location ϕH of ϕ

is about to move to a sub-location ψH ′ of ψ . On the right
hand side, the machine �ϕ is fully discharged of the location
H . Note that P can be executed at any time, whereas Q can
only be executed after the migration. Rule Move says that
migration on the network is based on sub-locations but not
objects nor processes. When a migration order is executed,

Fig. 3 Chemical semantics of the distributed objective join calculus (adapted from [21,23])
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the continuation process moves with all the definitions and
processes present at the same sub-location. Nevertheless, we
can encode object (or process) migration by defining a fresh
sub-location and uniquely attaching an object/process to it.
Then the migration of the sub-location will be equivalent to
the migration of the object/process.
Names and configuration binding. In the distributed join cal-
culus, every name is defined in at most one local solution;
rule Message- Comm hence applies at most once for every
message, delivering the message to a unique location [21].
Similarly, the freshness condition of ruleLoc- Def preserves
the assumption that the rightmost host Hn uniquely defines
the location ϕ.

In the semantics, the ruleObj- Def (resp.Loc- Def) intro-
duces a fresh variable x (resp. H ) that is free in the definitions
and processes of the whole configuration. But the fact that x
(resp. H ) appears on the left hand side of the machine defini-
tionmeans that the free variable is bound in the configuration.
More precisely, for a configuration C = (Di �ϕi Pi )i , we
say that x is bound in C, noted C|−x , when there exists i such
that x .D appears in Di . Similarly, we say that H is bound
in C, noted C| − H , when there exists i such that H [D : P]
appears in Di . This notion of configuration binding will be
used in the definition of the semantics of pointcuts in Sect. 3.

2.4 A companion example

In the rest of the paper, we will use a cache replication
example. To implement the running example, we assume a
dictionary library dict with three labels:

– create(x) returns an empty dictionary on x .get Dict ;
– update(d, k, v, x) updates the dictionary d with value v

on key k, returning the dictionary on x .get Dict ;
– lookup(d, k, r) returns the value associated with k in d

on r .reply

We also assume the existence of strings, which will be used
for keys of the dictionary, written “name".

The cache we consider is similar to the buffer described
in Sect. 2.1 but with a permanent state containing a dictio-
nary and a get Dict label to receive the (possibly updated)
dictionary from the dict library:

obj c = put(k, v) & state(d) � dict .update(d, k, v, c)
or get(k, r) & state(d) � dict .lookup(d, k, r) & c.state(d)

or get Dict(d) � c.state(d)

in dict .create(c)

For the moment, we just consider a single cache and a
configuration containing a single machine as follows:

c.[put(k, v) & state(d) � dict .update(d, k, v, c),
get(k, r) & state(d) � dict .lookup(d, k, r) & c.state(d),

get Dict(d) � c.state(d)],
r .[reply(n) � out .print(n)]
�H c.state(d0) & c.get(“foo", r) & c.put(“foo", 5)

At this point, two reactions can be performed, involving
c.state(d0) and either c.get(“foo", r)or c.put(“foo", 5).
Suppose that put is (non-deterministically) chosen. The con-
figuration amounts to:

Rules �H dict .update(d0,“foo", 5, c) & c.get(“foo", r)

where Rules represents the named definitions introduced so
far. c.get(“foo", r) can no longer react, because there are
no c.state messages in the solution anymore. dict passes
the updated dictionary d1, which is passed in the message
c.state using reaction on label c.get Dict .

Rules �H c.state(d1) & c.get(“foo", r)

Now, c.get(“foo", r) can react with the new message
c.state(d1), yielding:

Rules �H c.state(d1) & r .reply(5)

Finally, 5 is printed out (consuming the r .reply message)
resulting in the terminal configuration:

Rules �H c.state(d1)

2.5 Bootstrapping distributed communication

Since the join calculus is lexically scoped, programs exe-
cuted on different machines do not initially share any port
name; therefore, they would normally not be able to interact
with one another. To bootstrap a distributed computation, it
is necessary to exchange a few names, using a name server.
The name server NS offers a service to associate a name
with a constant string—NS.register(“x", x)—and to look
up a name based on a string—NS.lookup(“x", r), where the
value is sent on r .reply.

For instance, in the above example we (magically)
assumed that dict was in scope. Recall that we wrote:

obj c = . . . in dict .create(c)

The actual bootstrapping through the name server would
occur as follows. First, the dictionary object should be created
and registered:

obj dict = . . .

in NS.register(“dict", dict)

Then, the client program can query the name server to
obtain the dictionary, and then use it:

obj client = reply(d) � obj c = . . . in d.create(c)
in NS.lookup(“dict", client)
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Fig. 4 Syntax of aspects in the aspect join calculus

Finally, note that in order to make the definition of pro-
cesses more readable, we present some part of processes in a
functional programming style that can either be encoded in
the join calculus, or can already be present in the language
(e.g. in JoCaml). In particular, wewill use the notions of lists,
strings, integers, equality testing, conditionals (if-then-
else), and a particular variable lhost that represents the
current location on which a process is executing.

3 The aspect join calculus

We now describe the aspect join calculus, an extension of
the distributed objective join calculus with aspects. Support
for crosscutting in a programming language is characterized
by its join point model [37]. A join point model includes
the description of the points at which aspects can potentially
intervene, called join points, the means of specifying the join
points of interest, here called pointcuts, and the means of
effecting at join points, called advices. We first describe each
of these elements in turn, from a syntactic and informal point
of view, before giving the formal semantics of aspectweaving
in the aspect join calculus. The syntax of aspects is presented
in Fig. 4.

3.1 Defining the join point model

Join points.Dynamic join points reflect the steps in the execu-
tion of a program. For instance, inAspectJ [31] join points are
method invocations, field accesses, etc. In functional aspect-
oriented programming languages, join points are typically
function applications [18,61].

The central computational step of any chemical language
is the application of a reaction rule, here specified by Rule
Red. Therefore, a reaction join point jp in the aspect join

Fig. 5 Syntax of join points

calculus is a pair (ϕ, x .M), where ϕ is the location at which
the reduction occurs, and x .M is the matched synchroniza-
tion pattern of the reduction.

In a pointcut definition, it is often of interest to know not
only the current reaction join point but also the causality tree
of reaction join points that gave rise to it.6 Therefore, we
introduce a general notion of join point (with causality) J to
denote a tree of reaction join points. The syntax of join points
is given in Fig. 5: a join point is either an empty tree, noted
•, or a join point with causality, noted j p, J̄ , where j p is a
reaction join point and J̄ is a list of join points.

We note J ′ ≺ J to indicate that J ′ is a subtree of J , i.e. J ′
is a sub join point of J . Formally, J ′ ≺ J is inductively
defined as by the following two rules:

≺now : ∀i, J = Ji ⇒ J ≺ ( j p, [J1, . . . , Jn])
≺next : ∀i, J ≺ Ji ⇒ J ≺ ( j p, [J1, . . . , Jn])

For instance, consider messages c.state(d) with history
J1 and c.get(“foo", r) with history J2. The join point of
the corresponding reaction of both messages on host ϕ is:

((ϕ, c.state(d) & c.get(“foo", r)), [J1, J2])

We give an example of reduction with causality in
Sect. 3.3.
Pointcuts. The aspect join calculus includes two basic point-
cut designators, i.e. functions that produce pointcuts: con-
tains for reaction rules selection, and host for host selection.
The pointcut contains(x .M) selects any reaction rule that
contains the pattern x .M as left hand part, where the vari-
ables occurring in contains(x .M) are bound to the values
involved in the reaction join point. In the sameway, the point-
cut host(h) binds h to the location of the reaction join point.
A pointcut can also be constructed by negations and conjunc-
tions of other pointcuts. Finally, the pointcut causedBy(Pc)
says that Pc matches for a subtree of the current join point.
The semantics of pointcuts is formally described in Sect. 3.3.

The free variables of a pointcut (as defined in Fig. 6) are
bound to the values of the matched join points. In this way,
a pointcut acts as a binder of the free variables occurring in

6 We further discuss dealing with causality in Sect. 5.1.
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Fig. 6 Definition of free names for aspects

the corresponding advice, as standard in aspect-oriented lan-
guages. Consider for instance the pointcut contains(x .M).
If x is free, the pointcut will match any reaction whose pat-
tern includes M , irrespective of the involved object, and that
object will be bound to the identifier x in the advice body. If
x is not a free name, the pointcut will match any reaction on
the object denoted by x , whose pattern includes M . Note that
similarly to synchronization patterns in the join calculus, we
require the variables occurring in a pointcut to be linear. This
ensures that unions of substitutions used in the definition of
a semantics of pointcuts (Fig. 7) are always well defined.

In the following, when the variable to be matched is
not interesting (in the sense that it is not used in the
advice), we use the ∗ notation. For instance, the point-
cut contains(∗.put(k, v)) matches all reactions containing
put(k, v) on any object, without binding the name of the
object.
Advices. An advice body Ad is a process to be executed
when the associated pointcut matches a join point. This pro-
cess may contain the special keyword proceed. During the
reduction, proceed is substituted by the resulting process P
of the matched reaction. Note that contrarily to the common
practice in AOP, it is not possible to modify the process P by
altering the substitution that is applied to it. This is because
the notion of arguments of a reaction is not easy to set up in
the join calculus as it should be induced by the substitution
and not by the order in which they appear in the reaction join
point. Nevertheless, it is still possible to skip using proceed
and trigger another process instead. Free names of an advice
are defined in Fig. 6.
Aspects. To introduce aspects in the calculus, we extend the
syntax of definitions D with pointcut/advice pairs (Fig. 4).
This means that an object can have both reaction rules and
possibly many pointcut/advice pairs. This modeling follows
symmetric approaches to pointcut and advice, like Cae-
sarJ [2] and EScala [25], where any object has the potential
to behave as an aspect. Free names of an aspect are defined
in Fig. 6; the only interesting case is the last one, which spec-
ifies that the free variables of a pointcut act as binders in the
advice.

The following example defines an object replicate that,
when sent a deploy message with a given cache replicate

object c and a host H ′, defines a fresh sub-location ϕH ,
migrates it to host H ′, and creates a new replication aspect:

�ϕ obj replicate =
deploy(c, H ′) � H [go(H ′); obj rep =

〈contains(∗.put(k, v)) ∧ host(h),

if (h �= H ′) then c.put(k, v) & proceed
else proceed〉]

in NS.register(“replicate", replicate)

The advice body replicates on c every put message received
by a cache object and makes an explicit use of the keyword
proceed in order to make sure that the intercepted reaction
does occur. The condition (h �= H ′) in the advice is used
to avoid replication to apply to reactions that happen on a
sub-location of the location where the aspect is deployed.
Indeed, the aspect must not replicate local modifications of
the cache.

3.2 Customized reactions

With a single notion of reaction, we are forced to consider a
single weaving semantics that applies uniformly to all reac-
tions. In practice, however, exposing each and every join
point to aspects can be a source of encapsulation breach as
well as a threat to modular reasoning. This issue has raised
considerable debate in the AOP community [32,50], and sev-
eral proposal have been made to restrict the freedom enjoyed
by aspects (e.g. [10,41,42,51,52]).Wenowpresent three vari-
ants of weaving semantics.

First of all, it is important for programmers to be able to
declare certain reactions as opaque, in the sense that they are
internal and cannot be woven. This is similar to declaring a
method final in Java in order to prevent further overriding.

For the many cases in which the semantics of asyn-
chronous event handling is sufficient, it is desirable to be
able to specify that aspects can only observe a given reac-
tion, meaning that advices are not given the ability to use
proceed at all, and are all executed in parallel. This gives
programmers the guarantee that the original reaction hap-
pens unmodified, just once, and that aspects can only “add”
to the resulting computation.

The full aspect join calculus therefore includes three pos-
sibleweaving semantics,which can be specified per-reaction:
opaque (�), observable (�), and asynchronously advisable
(�). The default semantics is asynchronous advisable.
Per-reaction weaving in practice. To illustrate the benefits
of different weaving semantics, we refine the definition of a
cache object to ensure strong propertieswith respect to aspect
interference as follows:

obj c = put(k, v) & state(d)� dict .update(d, k, v, c)
or get(k, r) & state(d)� dict .lookup(d, k, r) & c.state(d)

or get Dict(d) � c.state(d)

in dict .create(c)
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Fig. 7 Semantics of pointcuts

Reactions on both put and get are declared observable,
in order to ensure that aspects cannot prevent them from
occurring normally. In particular, the replication aspect is not
allowed to call proceed, which is anyway implicitly called
in parallel with the advice:

�ϕ obj replicate =
deploy(c, H ′) � H [go(H ′); obj rep =

〈contains(∗.put(k, v)) ∧ host(h),

if (h �= H ′) then c.put(k, v)〉]
in NS.register(“replicate", replicate)

Additionally, reactions on the internal get Dict label of the
cache object are now opaque, hence enforce strong encapsu-
lation: no aspect can observe such reactions.

3.3 Semantics

Semantics of pointcuts. The matching relation, noted j p �
Pc, returns either a substitution τ from free names of Pc to
names or values of j p, or a special value ⊥ meaning that the
pointcut does not match. That is, we enriched the notion of
boolean values to a richer structure (here substitutions), as
commonly done in aspect-oriented programming languages
in particular.We note { } the empty substitution, and consider
it as the canonical true value. We note ∪ the join operation
on disjoint substitutions that returns ⊥ as soon as one of
the substitution is ⊥. Note that conjunction pointcuts are
defined only on substitutions that are disjoint, but because
variables occur linearly in pointcuts, we have the guarantee
that this is always the case. The matching relation is defined
by induction on the structure of the pointcut in Fig. 7.

In the rule for the contains(x .M) pointcut, the inclusion of
patterns Mτ ⊆ M ′ is defined as the inclusion of the induced
multiset of messages. For instance, suppose that the cache
replication aspect defined previously has been deployed and
that the emitted join point is:

(ϕ, x .put(“bar", 5) & state(d)) , J̄

Fig. 8 Tagging of causal history

Then, the pointcut of the aspect:

contains(∗.put(k, v)) ∧ host(h)

matches, with partial bijection:

τ = {k �→ “bar", v �→ 5, h �→ ϕ}

Note that the variable d is not mapped by τ because it is not
captured by the pointcut.

The rule for the host(h) pointcut always returns the sub-
stitution that associates h with the location of the matched
pattern. The semantics of the negation and conjunction is an
extension of the traditional boolean semantics to truth values
that are substitutions.

The rule for the causedBy(Pc) pointcut returns the sub-
stitution that matches Pc for any sub join point J ′ of J , that
is any join point in the causal history of J . It returns ⊥ when
no join point matches Pc.
Remembering causality in processes. In order to conserve
and propagate the causal history during the reduction, each
message l(v̄) is tagged with the join point J that causes it,
noted l J (v̄). Given a pattern M that is matched during the
reduction, we note {{M}} J̄ the pattern tagged with the causal
history of each message present in the pattern (note that M
and J̄ have to be of the same size) as defined by:

– {{l(v̄)}}[J ] = l J (v̄)

– {{M & M ′}} J̄ ++ J̄ ′ = {{M}} J̄ & {{M ′}} J̄ ′

where J̄ ++ J̄ ′ denotes list concatenation, and [J ] is a sin-
gleton list containing J .

Figure 8 presents tagging for processes that are produced
by a reduction. Here, the idea is to tag each message that has
been produced by a reduction. Initially, all messages have an
empty history, so we take l as syntactic sugar for l•.

For instance, consider the reduction from Sect. 2.4, aug-
mented with causality tagging (but without considering
aspects, and omitting location ϕ):
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Fig. 9 Semantics of aspect weaving

c.state•(d0) & c.get•(“foo", r) & c.put•(“foo", 5)
−→ dict .updateJ1 (d0,“foo", 5, c) & c.get•(“foo", r)
−→ c.get DictJ2 (d1) & c.get•(“foo", r)
−→ c.stateJ3 (d1) & c.get•(“foo", r)
−→ c.stateJ4 (d1) & dict .lookupJ4 (d1,“foo", r)
−→ c.stateJ4 (d1) & r .reply J5 (5)

where
J1 = ((ϕ, c.state(d0) & c.put(“foo", 5)), [])
J2 = ((ϕ, dict .update(d0,“foo", 5, c)), [J1])
J3 = ((ϕ, c.get Dict(d1)), [J2])
J4 = ((ϕ, c.state(d1) & c.get(“foo", r)), [J3])
J5 = ((ϕ, dict .lookup(d1,“foo", r)), [J4])

Semantics of aspect weaving. Figure 9 presents the semantics
of aspects. All rules of Fig. 3 are preserved, except for Rule
Red because this is where weaving takes place. This rule is
split into four rules, all of which depend on currently acti-
vated aspects as expressed by the following rule. We use the
notation ◦−→ to distinguish clearly between a reduction that
occurs in the aspect join calculus and in the join calculus.

Rule Deploy corresponds to the asynchronous deploy-
ment of a pointcut/advice pair x .〈Pc, Adv〉 by marking the
pair as activated x .〈Pc, Adv〉◦. Note that activated pairs are
not directly user-definable. The presence of this rule is cru-
cial in the semantics because it allows activating aspects one
by one asynchronously. Another possible semantics would
have been to deploy synchronously altogether pointcut/ad-
vice pairs of the same definition, but then it would have
caused extra synchronization in the translation to the core
join calculus, and hence also in our implementation.

Rule Red/NoAsp is a direct reminiscence of Rule Red in
case where no activated pointcut matches. Note that the new
causal history is propagated to the produced process Pσ .

Rule Red/Asp defines the modification of Rule Red in
presence of aspects. If there is an aspect xi with an activated
pointcut/advice pair xi .〈Pc, Ad〉◦ such that Pc matches the
join point with substitution τ , then the advice Ad is executed
with the process P substituting the keyword proceed and
where the variables bound by the pointcut are substituted
according to τ . The side condition of Rule Red/Asp is that
all Pci s are the activated pointcuts that match the current
join point (ϕ, x .Mσ). In particular,when twopointcut/advice
pairs of the same object definition match, we can have xi =
x j and ψi = ψ j . Note that all advices associated with a
pointcut that matches are executed in parallel.

Rule Red/Opaque is computationally the same as Rule
Red/NoAsp, since activated aspects are essentially ignored
when an opaque reaction occurs.

Rule Red/Observable proceeds the original reaction in
parallel with the application of all deployed pointcut/advice
pairs thatmatch the join point. Note that in this rule, an advice
has to be a simple process, and hence cannot use proceed.
This restriction could be guaranteed by a simple type system.

Coming back to the cache example, the synchronization
pattern reacts to become:

x .putJ1 (“bar", 5) & stateJ2 (d)

◦−→ c.putJ ′ (“bar", 5) & dict .updateJ ′ (d,“bar", 5, x)

where J ′ = ((ϕ, x .put(“bar", 5)), [J1, J2])
The original operation on dict to update d is performed, in
addition to the replication on c.

3.4 Why objects?

When designing the aspect join calculus, we considered
defining it on top of the standard join calculus with explicit
distribution, but without objects. However, it turns out that
doing so would make the definition of aspects really awk-
ward and hardly useful. Consider the standard join calculus
definition of a buffer producer (adapted from [22])7:

def make_buffer(k) �
def put(n) | empty() � some(n)

∧ get(r) | some(n) � r(n) | empty()
in empty() | k(get, put)
make_buffer takes as argument a response channel k on

which the twonewly-created channels get and put are passed
(hence representing the new buffer). Crucially, the channel
names get and put are local and notmeaningful per se; when
the definitions are processed, they are actually renamed to

7 Syntactically, the main differences with our calculus are that conjunc-
tion is noted | instead of & and disjunction of rules is noted ∧ instead
of or. Also, there are no objects with labels, only channels.
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fresh names (rule str- def in [22]). Therefore, there is no
way for an aspect to refer to “a reaction that includes a mes-
sage on the get channel”. Doing so would require modifying
make_buffer to explicitly pass the newly-created channels
also to the aspect, each time it is executed. An aspect would
then have to match on all reactions and check if the involved
channels include one of the ones it has been sent. In addi-
tion, the explicit modification of make_buffer defeats the
main purpose of aspects, which is separation of concerns. A
make_buffer that explicitly communicates its created chan-
nels to a replication aspect is not a general-purpose entity that
can be reused in different contexts (e.g. without replication).

The objective join calculus, on the other hand, includes
both object names and labels. Conversely to object names,
labels have no local scope and are not subject to renam-
ing [23]. They constitute a “shared knowledge base” in the
system, which aspects can exploit to make useful quantifi-
cation. This is similar to how method names are used in the
pointcuts of object-based aspect-oriented languages.

The argumentation above also explains why we have cho-
sen not to include classes as in [23] in our presentation of
the aspect join calculus. Classes support extensible defini-
tions, but do not contribute anything essential with respect to
naming and quantification.

4 From the aspect join calculus to the join
calculus

In this section, we present a translation of the aspect join
calculus into the core join calculus. This allows us to specify
an implementation of the weaving algorithm, and to prove it
correct via a bisimilarity argument. The translation is used in
Sect. 6 to implement Aspect JoCaml on top of JoCaml [24],
an implementation of the join calculus in OCaml.

4.1 General approach

The translation approach consists in considering that an
aspect is a standard object that receives messages from the
weaver to execute a particular method that represents its
advice. This is the usual way to compile aspects to a target
object-oriented language without aspects [27].
Aspect weaving. In order to determine whether an aspect
applies or not, the translation must account for aspect weav-
ing. Note that the description of the semantics of the aspect
join calculus leaves open the question of the underlying
aspectweaving infrastructure. The naive approach, described
in [53], consists in relying on a central weaver that coordi-
nates all distributed computations and triggers theweaving of
all aspects. This centralized approach is however not realistic
in a distributed setting.

Decentralized weaving. We adopt a decentralized weaving
architecture, in which essentially each reaction is in charge
of its own weaving, that is, determining which aspects apply
to it and subsequently triggering their execution. In other
words, with each reaction rule is associated a local, dedi-
cated weaver. Recall that each reaction can have a specific
weaving semantics (Sect. 3.2), hence there are correspond-
ingly different kinds of weavers.

In order to support dynamic deployment of aspects,
weavers consult a central registry that holds the list of
currently-deployed aspects. Similarly, all aspect definitions
register aspects with this registry. In Sect. 5.3, we discuss the
possibility of distributing the aspect registry as well, intro-
ducing different policies of aspect deployment.

More specifically, the key interactions for aspect deploy-
ment and weaving are as follows:

– For each reaction rule M � P in object x , there is a local
weaver Wx .M , on the same host, that can receive weave
messages. These weave messages are sent each time the
reaction rule fires.

– The aspect registry R is executing at location Hw and is
known by all other processes. It exposes the following
definitions DR :

DR = getasp(k) & aspact (ā) � k(ā) & aspact (ā)

deploy(a) & aspact (ā) � aspact (a , ā)

– Aspects get activated by registering to the aspect registry
through the label deploy.

– Upon each (advisable or observable) reaction that fires,
local weavers get the current list of activated aspects from
the aspect registry by passing a continuation to the label
getasp.

Note that to prove correctness of the translation, it is
important that local weavers ask for the current list of aspects
before weaving a reaction because it guarantees the consis-
tencyof the knowledgeof the list of activated aspects between
local weavers—indeed, the reference semantics of the dis-
tributed aspect join (Fig. 9) assumes a globally consistent
view of the list of activated aspects.

4.2 Translation

The general idea of the translation is that, given an aspect
join calculus configuration:

C = D1 �ϕ1 P1 ‖ · · · ‖ Dn �ϕn Pn

weconstruct a distributed join calculus configurationwithout
aspects by translating definitions, processes and aspects, as
defined in Fig. 10, and introducing the aspect registry R on
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Fig. 10 Translating the aspect join calculus to the join calculus (trans-
lation of named definitions is in Fig. 12)

host Hw, yielding the following configuration:

�C� = �D1� �ϕ1 �P1�• ‖ · · · ‖ �Dn� �ϕn �Pn�•
‖ R.DR �Hw R.aspact (�ā�act )

where ā is the list of activated aspects in D1, . . . ,Dn .
The translation of the list of activated aspects of R.aspact

is given recursively by

�x .〈Pc, Ad〉◦ , ā�act = (�Pc�, x .advice) , �ā�act .

That is, the translation of a pointcut/advice pair is given by
the pair of the translated pointcut and the label on which the
advice can be called.

The rest of the translation is given as follows.
Processes. The rules for processes recursively propagate the
translation in sub-processes and definitions. The translation
of objects requires to distinguish between reaction rules (Dr )
and pointcut/advice pairs (Da) in the original definition D,
because each pointcut/advice is translated as a normal object.
The translation of reaction rules is done in two steps. First,
a local weaver is created for each reaction, usingW(Dr , x),
and then each reaction is replaced by a reaction that commu-
nicates with its weaver. We describe weavers in details later
on in this section.
Definitions. The central point of the translation is to replace
a standard reaction rule by a rule that reifies the reaction
through an explicit join point, and then triggers a protocol
with the weaver to decide whether or not some aspect inter-
cepts the reaction rule and must be executed. Specifically,
the translation of a reaction rule M � P in object x , denoted
�M � P�x , produces a call to the weaverWx .M .weave, pass-
ing a locally-created single-use label ret .proceed to perform
the original computation P and the current join point JW ,
obtained by collecting join points of the matched pattern J̄M
and adding the current reaction join point (lhost, x .M).
Here, J̄M is a list of (local) variables (of size equal to the num-
ber of messages in the pattern M) to be bound to the actual
causal history (see the translation of messages explained
below). It is important that the new label is locally-created
and guarantees a single use because it ensures that different
calls to proceed cannot be interleaved.

Observable reactions are translated similarly, since the
difference in semantics is encapsulated in the weaver itself.
Opaque reactions are not woven.
Messages.There are twoways to translatemessages: (1)Case
�−�• corresponds to messages that occur on the right hand
side of a definition. This means that the messages are already
taggedwith the join point J that causes them. The tagged join
point J is simply converted to an argument of the (untagged)
message. (2) Case �−� J̄ corresponds to messages that occur
on the left hand side of a definition. In that case, the index J̄ of
the translation corresponds to the list of variables that are used
to bind the causal history. There is the implicit hypothesis that
the size of J̄ is equal to the number ofmessages. Each variable
J is added as an argument of the corresponding message.
Pointcuts. Pointcuts are recursively transformed into func-
tions that operate on join points and return a list of substi-
tutions (encoded as lists) that correspond to all the possible
matches. When the list is empty, it means that the pointcut
does not match. This is the usual folklore way of computing
altogether the possible results of a non deterministic function
in one step [60]. To preserve the non-deterministic nature of
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pointcut matching, only one substitution will be chosen ran-
domly by the weaver.

In the definition of �contains(x .M)�, the substitution τ is
seen as the list, and contains only free variables of M . The
definition of �Pc∧ Pc′� uses the function product that takes
two lists of lists and returns the list of lists of all possible
concatenations, i.e.:

product(ls, ls′) = [ l ++ l ′ | l ∈ ls, l ′ ∈ ls′ ].

The definition of �causedBy(Pc)� is given by computing
every possible match of Pc on every sub join point. concat
and map are the usual operations on lists.
Aspects. A pointcut/advice pair 〈Pc, Ad〉 is translated as an
object that holds the advice and is registered with the weaver.
The advice has only one label advice which expects the
proceed label, the current join point and the list of variables
that are free in the pointcut Pc.

The initialization sends the pointcut/advice pair to the
weaving registry R by using the dedicated label deploy. Note
that the pointcut is sent to the weaver but is not checked
explicitly in the aspect. Indeed, it is the responsibility of the
weaver to decide whether the advice must be executed or not.
This is because the weaver must have the global knowledge
of which pointcuts match, to perform Rule Red/NoAsp.

Finally, the translation of proceed is obtained by adding
the current join point J as argument to proceed.
Per-reaction weavers. The per-reactions weavers are defined
altogether at the beginning of the translation of an object
using the inductive definitionW(D, x), given in Fig. 11. As
explained above, for each reaction, a weaver is defined as an
object with a weave method, used to trigger weaving at a
join point.

The definition of the weaver depends on the kind of reac-
tion. In the opaque case, the weaver is the null process. In
both the observable (D�) and advisable (D�) cases, when the
weaver receives weave(proceed, J ), it creates a new object
Winit that defines a fresh channel aspL() whose aim is to
get the current list of activated aspects asps from the aspect
registry by spawning getasp(Winit .aspL). When the list is
received, the weaver filters the advices that match the cur-
rent join point, ads (using the usual filter functions on lists).
It then triggers all matching advices (using the iter func-
tion on lists) by selecting randomly a substitution from the
list of substitutions ¯̄v, using the non-deterministic selection
function select.

For observable reactions, the weaver D� just spawns in
parallel a call to proceed with all the advices, corresponding
to Rule Red/Obs. For advisable reactions, the weaver D�
needs to distinguish between two cases. If no aspect applies,
the weaver executes the original process by sending the mes-
sage proceed(J ); this corresponds to Rule Red/NoAsp.

Fig. 11 Per-reaction weaving

Fig. 12 Translation of named definitions at location ϕ

Otherwise, the weaver only executes all advices in ads, with-
out calling proceed (Rule Red/Asp).
Named Definitions. Each observable and advisable reactions
introduce their weavers in addition to the named translation
of the reaction itself (Fig. 12). Opaque reactions do not intro-
duce any weaver, since they cannot be advised.

The translation of an activated aspect is simply the trans-
lation of its advice, because the part dealing with its pointcut
has been delegated to the weaver. When the pointcut/ad-
vice pair is not already activated, the translation must place
the message R.deploy(�Pc�, x .advice) in the solution for
future consumption by the aspect registry (hence emulating
Rule Deploy from Fig. 9).

For the other kinds of named definitions, the translation is
just applied recursively.
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4.3 Correctness of the translation

The main interest of translating the aspect join calculus into
the core join calculus is that it provides a direct implementa-
tion of theweaving algorithm that can be proved to be correct.
The first thing to check for the correctness of the translation
is that it preserves structural rules.

Lemma 1 Structural rules are preserved by the translation,
that is if C ≡ C′ then �C� ≡ �C′�.

Proof By case analysis on the structural rule:
– Or:

�D orD′� �ϕ ≡ �D� or�D′� �ϕ ≡ �D�, �D′� �ϕ ≡ �D,D′� �ϕ

– Empty:
��� �ϕ ≡ � �ϕ ≡ �ϕ

– Par:
�ϕ �P & Q�• ≡ �ϕ �P�• & �Q�• ≡ �ϕ �P�•, �Q�• ≡ �ϕ

�P, Q�•
– Nil:

�ϕ �0�• ≡ �ϕ 0 ≡ �ϕ

– Join:
�ϕ �x .(M & M ′)�• ≡ �ϕ x .(�M�• & �M ′�•) ≡
�ϕ �x .M�• & �x .M ′�• ≡ �ϕ �x .M & x .M ′�•

– Sub- Loc:
�H [D : P]� �ϕ ≡ H [�D� : �P�•] �ϕ ≡ {�D�} �ϕH {�P�•}

– Obj- Def:

To simplify, we consider the case of one definition and one aspect
(the general case follows by induction).
�ϕ �obj x = (M � P or〈Pc, Ad〉) in Q�• ≡
�ϕ objW(M�P, x) in obj x = �M�P�x in �〈Pc, Ad〉�& �Q�• ≡

Wx .M .D� or x .�M�P�x or adv.advice(proceed, J , v̄Pc)��Ad�J
�ϕ R.deploy(�Pc�, adv.advice) & �Q�• ≡
�x .M � P� or�adv.〈Pc, Ad〉� �ϕ �Q�• ≡
�x .(M � P or〈Pc, Ad〉)� �ϕ �Q�•

– Loc- Def:
�ϕ �H [P]�• ≡ �ϕ H [�P�•] ≡ H [� : �P�•] �ϕ ≡ �H [� :
P]� �ϕ

��
It is also necessary to check that the translation of a point-

cut is a function that computes all the possible substitutions
returned by the (non-deterministic) semantics of this point-
cut.

Lemma 2 For every pointcut Pc and join point J , we have
�Pc� J = [τ | J � Pc : τ and τ �= ⊥]. In particular, when
a pointcut does not match �Pc� J returns the empty list.

Proof By structural induction on Pc:

– contains(x .M): This case is just a unification problem.
�contains(x .M)� returns at most one substitution.

– host(h): �host(h)� returns the singleton list containing
the substitution that sends h to the current location of the
join point.

– Pc ∧ Pc′: By induction, �Pc� and �Pc′� compute
the lists of all possible substitutions. The definition of

�Pc ∧ Pc′� J thus returns the list of all possible disjoint
union (computed as list concatenation) of two substitu-
tions picked up in �Pc� J and �Pc′� J .

– ¬Pc: By induction, �Pc� J is the empty list if and only
if J � Pc = ⊥.

– causedBy(Pc): By induction, �Pc� J ′ computes the list
of all possible substitutions for any pointcut J ′. Using
this, it is easy to prove by induction on J that

�Pc�rec J = [τ | J ′ � Pc : τ such that τ �= ⊥
and (J ′ ≺ J or J ′ = J )].

It then follows that

�causedBy(Pc)� J = [τ | J ′ � Pc : τ such that τ �= ⊥
and J ′ ≺ J ].

��
As usual in concurrent programming languages, the cor-

rectness of the translation algorithm is given by a proof of
bisimilarity. Namely, we prove that the original configura-
tion with aspects (in the aspect join calculus) is bisimilar to
the translated configuration without aspects (in the objective
join calculus). The idea of bisimilarity is to express that, at
any stage of reduction, both configurations can perform the
same actions in the future. More formally, in our setting, a
simulation R is a relation between configurations such that
when C0 R C1 and C0 reduces in one step to C′

0, there exists
C′
1 such that C′

0 R C′
1 and C1 reduces (in 0, 1 or more steps)

to C′
1. We illustrate this with the following diagram:

C0 R

◦

C1

∗
C′
0

R C′
1

A bisimulation is a simulation whose inverse is also a
simulation.

With this definition, our notion of bisimulation is not
barbed-preserving nor context-closed. This is not surpris-
ing as a context would be able to distinguish between the
original and translated configuration by using messages sent
on auxiliary labels (weave, proceed, advice or deploy).
However, to prevent the trivial translation that sends every
process to the null process 0 to be a correct translation, we
need to be able to observe at least one reduction. To this end,
we consider a special object name output, with a message
result on which to write the output and only one reaction
involving output.result(v̄) � 0. This is essentially the
channel on which one can observe the computational behav-
ior of a configuration. In what follows, we assume that the
definition of this object is always present in the configuration
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at location Houtput. To express that the reaction onoutput
is observable, we additionally require that a simulationR sat-
isfies that any two configurations (C0, C1) ∈ R have the same
number of messages output.result in the solution.

To relate a configuration C with its translation �C�, we
need to tackle two difficulties:

1. During the evolution of �C�, auxiliary messages that
have no correspondents in C are sent for communica-
tion between processes, weavers, aspects and the aspect
registry.

2. In the execution of C, proceed is substituted by the pro-
cess P to be executed, whereas in �C�, P is executed
through a communication with the object where the reac-
tion has been intercepted.

To see the auxiliary communication as part of a reduction
rule of the aspect join calculus, we define a notion of standard
form for the translated configurations. Let

T = {C | ∃C0, �C0� −→∗ C}

be the set of configurations that come from a translated con-
figuration.Weconstruct a rewriting system−→T forT, based
on the reduction rules of the join calculus. Namely, we take
Rule Red andMessage- Comm restricted to the case where
the pattern contains either of the dedicated labels: weave,
proceed, advice, getasp and aspL (the label deploy is
treated differently as it corresponds to the application of
Rule Deploy). In T, those labels only interact alone, or
one-by-one with the constant label aspact . So the order in
which reaction rules are selected has no influence on the
synchronized pattern; in other words, the rewriting system
−→T is confluent. Furthermore, it is not difficult to check
that this rewriting system is also terminating. However, the
reduction is non-deterministic due to the presence of the non-
deterministic function select in the definition of weavers.
Therefore, it makes sense to talk about the normal forms of
C ∈ T, whose set is noted C̃.

We note C gc∼ C′ when C′ is equal to C where every named
definition x .D for which x does not appear in the configura-
tion (but in x .D of course) is removed from the configuration.
This condition dealswith auxiliary definitions appearing dur-
ing the translation that are used linearly and must then be
garbage collected. This is mandatory to synchronize the cur-
rent auxiliary definitions available in the solution.

Theorem 1 The relation

R = {(C0, C1) | ∃C′
1 ∈ C̃1. �C0� gc∼ C′

1}

is a bisimulation. In particular, any configuration is bisimilar
to its translation.

Proof The fact that any two configuration inR have the same
number of messages output.result in the solution is
direct as the translation preserves messages and does not
introduce any message of this form.

(A)R is a simulation.
The fact thatR is a simulation just says that the communi-

cation between aspects, processes and the weaver simulates
the abstract semantics of aspects.

The crux of the proof lies in the confluence of−→T which
means that once the message weave(k, j p) is sent to the
weaver, the translation introduces no further choice in the
configuration. That is, every possible choice in �C� corre-
sponds directly to the choice of a reduction rule in C.

More precisely,we show that for any reductionC0 −→ C′
0,

one can find a corresponding reduction chains from �C0� to
�C′

0�:

C0 R

◦

C1 ∗
T
C′
1 ∈ C̃1 gc∼ �C0�

∗

C′
0

R C′′
1
gc∼ �C′

0�

Rule Deploy.
The activation of an aspect x .〈Pc, Ad〉 is in one-to-

one correspondence with the consumption of the message
R.deploy(�Pc�, x .advice) by the aspect registry.

�x .〈Pc, Ad〉� �ϕ ‖ R.DR �Hw R.aspact (�ā�act ) ≡
�x .〈Pc, Ad〉◦� �ϕ R.deploy(�Pc�, x .advice) ‖
R.DR �Hw R.aspact (�ā�act ) −→
�x .〈Pc, Ad〉◦� �ϕ ‖
R.DR �Hw R.deploy(�Pc�, x .advice), R.aspact (�ā�act ) −→
�x .〈Pc, Ad〉◦� �ϕ ‖
R.DR �Hw R.aspact ((�Pc�, x .advice), �ā�act )

Note at this point, that the fact that aspect activation is asyn-
chronously described by Rule Deploy in the semantics is
crucial in the proof.
Rule Red/NoAsp.

Consider the reduction

x .[M � P] �ϕ x .{{Mσ }} J̄ ◦−→ x .[EM � P] �ϕ {Pσ }J ′
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This rule is simulated by the chain:

�x .[M � P]� �ϕ �x .{{Mσ }} J̄ �•
R.DR �Hw R.aspact (�ā�act ) ≡

x .�[M � P]�x ,Wx .M .D� �ϕ x .�{{Mσ }} J̄ �•
R.DR �Hw R.aspact (�ā�act ) −→

x .�[M � P]�x ,Wx .M .D�, �ϕ Wx .M .weave(ret .proceed, J ′)
ret .proceed(J ) � �Pσ �J

R.DR �Hw R.aspact (�ā�act ) −→T

where J ′ = (ϕ, x .Mσ), J̄

x .�[M � P]�x ,Wx .M .D�,
ret .proceed(J ) � �Pσ �J , �ϕ R.getasp(Winit .aspL)

Winit .aspL(asps) � . . .

R.DR �Hw R.aspact (�ā�act ) −→T

x .�[M � P]�x ,Wx .M .D�,
ret .proceed(J ) � �Pσ �J , �ϕ

Winit .aspL(asps) � . . .

R.DR �Hw R.aspact (�ā�act ),
R.getasp(Winit .aspL) −→T

x .�[M � P]�x ,Wx .M .D�,
ret .proceed(J ) � �Pσ �J , �ϕ

Winit .aspL(asps) � . . .

R.DR �Hw R.aspact (�ā�act ),
Winit .aspL(�ā�•) −→T

x .�[M � P]�x ,Wx .M .D�,
ret .proceed(J ) � �Pσ �J , �ϕ Winit .aspL(�ā�•)

Winit .aspL(asps) � . . .

R.DR �Hw R.aspact (�ā�act ) −→T

gc∼
x .�[M � P]�x ,Wx .M .D�, �ϕ ret .proceed(J ′)
ret .proceed(J ) � �Pσ �J

R.DR �Hw R.aspact (�ā�act ) −→T

gc∼
x .�[M � P]�x ,Wx .M .D� �ϕ �Pσ �J ′

R.DR �Hw R.aspact (�ā�act ) ≡
�x .[M � P]� �ϕ �{Pσ }J ′�•

R.DR �Hw R.aspact (�ā�act )

because by Lemma 2, �Pc�J ′ = [] for every pointcut Pc of
activated aspects, so the result offilter inWinit is empty.Here,

the need for
gc∼ is for garbage collecting unused definitions

such as ret .proceed(J ) � �Pσ �J .
Rule Red/Asp.

Consider the reduction

x .[M � P] �ϕ x .{{Mσ }} J̄ ‖i∈I xi .〈Pci , Adi 〉◦ �ψi ◦−→
x .[M � P] �ϕ ‖i∈I
xi .〈Pci , Adi 〉◦ �ψi {Adi [Pσ/proceed]τi }J ′

This rule is simulated by the chain:

�x .[M � P]� �ϕ �x .{{Mσ }} J̄ �•
R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi −→

similar steps than for Red/NoAsp:

x .�[M � P]�x ,Wx .M .D�,
ret .proceed(J ) � �Pσ �J , �ϕ Winit .aspL(�ā�•)

Winit .aspL(asps) � . . .

R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi −→T

gc∼
x .�[M � P]�x ,Wx .M .D�, �ϕ & i xi .advice(ret .proceed, J ′, τi ),
ret .proceed(J ) � �Pσ �J

R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi −→T

gc∼

because by Lemma 2, τi ∈ �Pci �J ′ for every xi ’s involved,
so there are executions of select that pick up the right sub-
stitutions. Then,

x .�[M � P]�x ,Wx .M .D�, �ϕ

ret .proceed(J ) � �Pσ �J
R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi xi .�Adi �J ′ [ret .proceed/proceed]τi
≡ gc∼

�x .[M � P]� �ϕ

R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi xi .�{Adi [Pσ/proceed]τi }J ′�•

Rule Red/Opaque.
Consider the reduction

x .[M � P] �ϕ x .{{Mσ }} J̄ ◦−→ x .[M � P] �ϕ {Pσ }J ′

This rule is simulated by the chain:

�x .[M � P]� �ϕ �x .{{Mσ }} J̄ �• ≡
x .�[M � P]�x �ϕ x .�{{Mσ }} J̄ �• −→
x .�[M � P]�x �ϕ �Pσ �J ′ ≡
�x .[M � P]� �ϕ �{Pσ }J ′�•

Rule Red/Observable.
Consider the reduction

x .[M � P] �ϕ x .{{Mσ }} J̄ ‖i∈I xi .〈Pci , Adi 〉◦ �ψi ◦−→
x .[M � P] �ϕ {Pσ }J ′ ‖i∈I
xi .〈Pci , Adi 〉◦ �ψi {Adi τi }J ′

This rule is simulated by the chain:

�x .[M � P]� �ϕ �x .{{Mσ }} J̄ �•
R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi −→
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similar steps than for Red/NoAsp:

x .�[M � P]�x ,Wx .M .D�,

ret .proceed(J ) � �Pσ �J , �ϕ Winit .aspL(�ā�•)
Winit .aspL(asps) � . . .

R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi −→T

gc∼
x .�[M � P]�x ,Wx .M .D�, �ϕ ret .proceed(J ′),
ret .proceed(J ) � �Pσ �J & i xi .advice(0, J ′, τi )

R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi −→T

gc∼

because by Lemma 2, τi ∈ �Pci �J ′ for every xi ’s involved,
so there are executions of select that pick up the right substi-
tutions. Then, because no advice involved contains proceed
(side condition of observable reactions):

x .�[M � P]�x ,Wx .M .D�, �ϕ �Pσ �J ′
R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi (xi .�Adi �J ′ )τi ≡ gc∼
�x .[M � P]� �ϕ �{Pσ }J ′�•

R.DR �Hw R.aspact (�ā�act )

‖i∈I �xi .〈Pci , Adi 〉◦� �ψi xi .�{Adi τi }J ′�•

Rule Message- Comm.
Consider the reduction

�ϕ x .M ‖ x .D �ψ ◦−→ �ϕ ‖ x .D �ψ x .M

This rule is simulated by the chain:

�ϕ �x .M�• ‖ �x .D� �ψ ≡
�ϕ x .�M�• ‖ x .D′ orD �ψ −→

�ϕ ‖ x .D′ orD �ψ x .�M�• ≡
�ϕ ‖ �x .D� �ψ �x .M�•

where the fact that there exists D′ andD such that �x .D� ≡
x .D′ orD can be proven by induction on D.
Rule Move.

Consider the reduction

H [D : (P & go(H ′); Q)] �ϕ ‖ �ψH ′ ◦−→
�ϕ ‖ H [D : (P & Q)] �ψH ′

This rule is simulated by the chain:

�H [D : (P & go(H ′); Q)]� �ϕ ‖ �ψH ′ ≡
H [�D� : (�P�• & go(H ′); �Q�•)] �ϕ ‖ �ψH ′ −→
�ϕ ‖ H [�D� : (�P�• & �Q�•)] �ψH ′ ≡
�ϕ ‖ �H [D : (P & Q)]� �ψH ′

(B) R−1 is a simulation.

For the converse direction, we have to show that for
(C0, C1) ∈ R and any reduction C1 −→ C2, one can fill
the following diagram:

C0 R

◦
∗

C1 ∗
T
C′
1 ∈ C̃1 gc∼ �C0�

∗

C′
0

R C2 ∗
T
C′
2 ∈ C̃2 gc∼ �C′

0�

Again, we proceed by analysis of the kind of reduction.
RuleMove.

Suppose we have H [D : (P & go(H ′); Q)] �ϕ∈ C1 and
H [D : (P & Q)] �ψH ′∈ C2.

As no reduction in −→T involves a migration and
the rules are all left-linear, the migration rule is orthog-
onal to rules in −→T. This means that we have H [D :
(P ′ & go(H ′); Q)] �ϕ∈ C′

1 for some P ′, so a similar migra-
tion can be done on C′

1 ending up in H [D : (P ′ & Q)] �ψH ′∈
C′
2 (by orthogonality, we have confluence).
Then, by a direct inversion lemma, we know that H [D :

(P ′′ & go(H ′); Q′)] �ϕ∈ C0 for some P ′′ and Q′ such that
�P ′′�• = P ′ and �Q′�• = Q.

So we can apply the migration rule on C0. We set C′
0 to be

the resulting configuration. It is easy to check that �C′
0�

gc∼ C′
2.

Rule Red.

– If the reduction is −→T, the normal form has not
changed, so C′

1 = C′
2
gc∼ �C0� and we set C0 = C′

0.
– If it consumes a message deploy(pc, ad), then C′

0 is
obtained by applying Rule Deploy to the correspond-

ing pointcut/advice pair and C′
2
gc∼ �C′

0�.
– Otherwise, the reduction consumes a pattern x .Mσ and
produces a message of the form:

w.weave(k, j p).

By an inversion lemma, we know that x .M ′ in C0 for
some pattern M ′ such that �M ′�• = Mσ .
Then, by analyzing the reduction from C2 to C′

2, we
can recognize the simulation of one of the four possi-
ble reductions in the original configuration (as described
above).
Thus, it suffices to pick the right one and define C′

0 as
the result of this rule on C0 (by setting the substitution
computed by the pointcuts to be the one choosing by the
executions of select).
We conclude this case by noting that in the proof that
R is a simulation, the four reductions were handled
similarly, starting with the emission of the message
w.weave(k, j p) and computing the normal form accord-

ing to −→T. So we have �C′
0�

gc∼ C′
2.
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Rule Message- Comm.

– If the reduction is −→T, the normal form has not
changed, so C′

1 = C′
2
gc∼ �C0� and we set C0 = C′

0.
– Otherwise, the reduction migrates a pattern x .M that, by

an inversion lemma corresponds to a pattern x .M ′ in C0,
with �M ′�• = M . So the same communication can occur
in C0.

To conclude the proof, we need to show that any config-
uration is bisimilar to its translation. This follows from the
fact that �C0� is a normal form for −→T without message
proceed(J ), so that C0 R �C0�. ��

5 Discussion

Wenow elaborate on different design considerations, namely
causality, synchronous weaving, and distributed aspect reg-
istries.

5.1 Dealing with causality

In the aspect join calculus, we have introduced join points
with causality, allowing pointcuts to discriminate join points
based on the reactions that contributed to their occurrence.
This choice is motivated by expressiveness, but it does make
the calculusmore complex and its implementationmore chal-
lenging.

The motivation to deal with causality is inspired by prior
work on aspect languages in different settings. Indeed, it
is common in aspect languages to use control-flow related
pointcuts in order to be able to discriminate join points
based on call stack (e.g. cflow and cflowbelow in
AspectJ [31]). Some proposals have even gone further,
proposing history-based pointcuts that are not restricted to
the call stack [16,17,34,43]. Also, all distributed aspect lan-
guages and systems support distributed control flow, although
in a synchronous setting [4,39,44,57,59]. Leger et al. propose
a library for distributed causality-based pointcuts in an asyn-
chronous setting based on vector clocks [33].

Causality, be it synchronous or not, is important in practice
for different reasons. A first basic motivation is that, more
often than not, one needs to avoid advising aspects them-
selves. For instance, if a cache replication aspect is deployed
on each host of interest, then aspects will indefinitely repli-
cate the cache replicated by aspects on other hosts. These
infinite loops can be avoided with control-flow pointcuts, or
similar flow-based approaches [8,56].

Let us illustrate with the cache replication example. To
be able to identify aspect-specific activity, we declare an
aspect object, with a specific label rput whose goal is to

make the activity of the aspect visible. Then the new def-
inition of the cache replication aspect below also excludes
the activity caused by a cache replication aspect using the
pointcut ¬ causedBy(∗.rput).

�ϕ obj replicate =
deploy(c, H ′) � H [go(H ′);

obj rep =
rput(k, v) � c.put(k, v)

or 〈contains(∗.put(k, v)) ∧ host(h) ∧
¬ causedBy(contains(∗.rput(∗, ∗))),

if (h �= H ′) then c.put(k, v)〉]
in NS.register(“replicate", replicate)

This ensures that a cache replication aspect never matches a
put join point that has been produced by the rule rput(k, v)�
c.put(k, v), thereby ignoring aspect-related computation.

Causality in aspect languages is also very much useful for
many typical applications of aspect-oriented programming.
One salient example is security enforcement, such as access
control [48], which can be handled by aspects. In particu-
lar, stack-based access control, as provided in Java, requires
inspecting the call stack to determine whether a resource can
be accessed or not; aspectizing these mechanisms requires
pointcuts to access the call context [58]. Another related
securitymechanism that requires causality is integrity check-
ing [7]: enforcing that certain actions are performed (or not)
depending on whether the data or code comes from trusted
parties.

In models of synchronous aspect languages, join points
in context are represented as a linked data structure where a
join point has a reference to its parent in the call stack [18].
The causality trees we have introduced in the aspect join
calculus are a direct generalization of this model to the
chemical setting. Of course, efficient implementations of
aspect languages do not implement control-flow pointcuts or
trace-based matching by relying on such costly structures [3,
27,37]: instead, following the principles of partial evalua-
tion [29], they statically evaluate which join points might
potentially affect causality-related decisions, and introduce
as little state-based indicators and bookkeeping operations
as possible. Related techniques have been explored outside
of the AOP community as well. For instance, Clements and
Felleisen show that stack-based security mechanisms can be
efficiently implemented using continuation marks [12].

Accordingly, we do not expect practical, scalable imple-
mentations of the aspect join calculus to implement causality
trees as such. Causality trees are a fine semantic device,
not a realistic implementation technique. It remains to
be studied how the existing optimization techniques men-
tioned above for stack-based and trace-based mechanisms
could be extended and adapted to the general setting
of the causality tree. Simple techniques might be quite
effective. For instance, assuming aspect definitions are
available ahead of time, if an aspect uses the pointcut
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causedBy(“untrusted_label") in order to discrimi-
nate doubtful computation, the implementation could simply
taint all such join points as they are produced, making the
implementation of causedBy a simple tag check.

5.2 Synchronous aspects

A particularity of aspects compared to traditional event han-
dling is the possibility to advise around join points and
therefore have the power to proceed the original computa-
tion, either once, several times, or not at all. Doing so requires
careful thinking about the synchronization of advices. The
semantics we have presented corresponds to asynchronous
reactions, in which all advices that match are triggered asyn-
chronously. We could devise a weaving semantics that rather
reflects the one of AspectJ by chaining implicitly advices and
invoking them in a synchronous manner. First, this presents
the issue of choosing the order in which advices are chained,
which is not clear in an asynchronous setting. Second, the
synchronous semantics can be encoded by an explicit chain-
ing of advices and thus is not a primitive operations. For those
two reasons, we have decided not to integrate a synchronous
reaction in the semantics.

Also, note that the semantics of aspect weaving relies on
the currently-deployed aspects.Aswe have seen, deployment
is asynchronous, whichmeans that to be sure that an aspect is
in operation at a given point in time, explicit synchronization
has to be setup. This design is in line with the asynchronous
chemical semantics of the join calculus. For instance, the
same non-determinism occurs in the definition of an object,
in which the initialization process is not guaranteed to be
completed before the object process starts executing. In case
such sequentiality is needed, it has to be manually encoded
using the typical explicit continuation-passing style. Fournet
and Gonthier show how a wide variety of synchronization
primitives can be easily encoded in the join calculus [21].

5.3 Distributed aspect deployment

Distributed aspect deployment is a complex task, for which
several different policies can be conceived. This is reflected in
the different designs and choices of specific distributed AOP
systems, such as DJcutter (one central aspect server) [39],
AWED (aspects are either deployed on all hosts, or only on
their local host of definition) [4], and ReflexD (distributed
aspect repositories to which base programs are connected at
start-up time) [57], among others.

The formal model of the aspect join calculus that we have
presented in this paper considers one central aspect registry.
Extending this model to several registries is quite direct, does
not affect the main results of this paper regarding the transla-
tion approach, and is straightforward to implement (in fact,
our implementation of Aspect JoCaml supports multiple reg-

Fig. 13 Objects registering their public weavers to an open aspect reg-
istry (white), and the weavers of their sensitive reactions to a closed
registry with only two trusted aspects (grey)

istries). We describe here such an extension, and discuss the
possibility to definefine-grained policies that go beyondprior
work.

As a first step, we should extend the syntax of reactions
with an exponent M �reg P to express that the reaction is
registered in the aspect registry reg. In particular this means
that only aspects deployed in registry reg are able to advise
this reaction. (The case we have formally developed, where
all aspects see all computations, corresponds to one global
aspect registry to which all weavers and aspects are regis-
tered.)

An additional refinement of our model is to allow aspect
registries to have different policies. For instance, the registry
we have formalized is open, as it accepts dynamic aspect
registration requests. One could allow some registries to
be closed: a closed aspect registry is initiated with a fixed
number of aspects deployed, and subsequently ignores any
new aspect registration request. A closed registry would be
defined with the following reactions:

Dclosed
R = getasp(k) & aspact (ā) � k(ā) & aspact (ā)

deploy(a) & aspact (ā) � aspact (ā)

Figure 13 illustrates some of the topological flexibility
offered by weaving registries and their policies: objects can
register their reactionweavers in different registries with spe-
cific policies.

For instance, suppose a closed aspect registry regc with
only a cache replication aspect and an open aspect registry
rego. The following definition of the cache example guaran-
tees that only cache replication can have access to the cache
history, while any aspect registered with rego can observe
accesses to the dictionary:
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obj c = put(k, v) & state(d)�regc dict .update(d, k, v, c)
or get(k, r) & state(d)�rego dict .lookup(d, k, r) & c.state(d)

or get Dict(d) �rego c.state(d)

in dict .create(c)

Note that closed repositories would allow a more efficient
(and still correct) implementation of weaving, whereby the
communication between weavers and the aspect registry can
be limited to one initial request. Since the list of aspects is
known to be immutable, there is no need to request it again
upon each firing reaction.

An aspect registry policy may further specify that only
weavers of a specific kind are accepted, such as observable
reactions (Sect. 3.2). The design space of distributed deploy-
ment policies is wide and its exhaustive exploration is left
open for future work.

6 Aspect JoCaml

Aspect JoCaml is a prototype implementation of the aspect
join calculus on top of JoCaml, an extension of OCaml with
join calculus primitives [24]. The implementation is directly
based on the translation described in Sect. 4.

While slightly different in the syntax, Aspect JoCaml sup-
ports all the functionalities of the aspect join calculus, except
for migration, which is not supported in JoCaml. Using the
facilities provided by OCaml, we have also introduced new
concepts not formalized in the aspect join calculus, such
as classes for both objects and aspects, and the distinction
between private and public labels.

This section presents a quick overview of the language
through the implementation and deployment of the cache
replication example. We then discuss salient points in the
implementation.

6.1 Overview of Aspect JoCaml

Aspect JoCaml uses directly the class system of OCaml, pro-
viding a new dist_object keyword to define distributed
objects with methods and reactions on public or private
labels. For instance, a continuation class that defines a label
k that expects an integer and prints it to the screen can be
defined as:

class continuation ip =
dist_object(self)
reaction react_k at ip: ’opaque k(n) =

print_int(n); print_string(" is read\n");0
public label k

end

The label k is declared as public, meaning that it is vis-
ible in a reaction join point. Conversely, a private label
is not visible, and hence can be neither quantified over nor
accessed by aspects. Private labels hence provide another

Fig. 14 Cache class in Aspect JoCaml

Fig. 15 Cache replication aspect in Aspect JoCaml

level of encapsulation by hiding patterns, in addition to the
possibility to hide reactions discussed in Sect. 3.2. The differ-
ent per-reaction weaving semantics are specified by a quoted
keyword, e.g. ’observable.

A reaction definition is parametrized by an IP address
using at. This IP address is meant to be the address of an
aspect registry, just as the extension discussed in Sect. 5.3.
The parameter ip is passed at object creation time, making it
possible to choose a different aspect registry for each created
continuation object.

The definition of the cache class is given in Fig. 14 and can
be directly inferred from the definition of Sect. 3.2. We omit
the code for the dictionary class, which directly uses hash
tables provided by the Hashtbl OCaml module. A message
that creates a dictionary is initially emitted using spawn in
the initializer process.

Aspects are defined as classes with a pointcut and an
advice. The instantiation mechanism is identical to that of
objects, using the new keyword. The cache replication aspect
is defined in Fig. 15. Labels in Contains pointcut are han-
dled as strings and boolean pointcut combinators are defined
by infix operators &&& and |||.
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Deployment. Before creating any process, at least one aspect
registry must be created and registered to the name server.
For instance, the following code creates a permanent aspect
registry at IP 12345:

(* create a permanent aspect registry *)
let () =

let _ = new aspect_registry 12345 in
while true do Thread.delay 1.0 done

Then, a cache replication aspect can be registered to this
aspect registry:

(* register a cache replication aspect *)
let () =

let ip = 12345 in
let dict = new Dict.dict ip in
let buf = new cache ip dict in
let repl = new replication ip buf in
let _ = my_asp ip repl in
while true do () done

Finally, the execution of the cache process defined below
is replicated on the machine where the aspect has been
deployed:

(* a cache process loop *)
let () =
let ip = 12345 in
let dict = new Dict.dict ip in
let z = new cache ip dict in
let k = new continuation ip in
for arg = 1 to 10 do

spawn z#put("key",arg);
spawn z#get("key",k#k)

done;

6.2 Implementation

We now briefly discuss some elements of the Aspect JoCaml
implementation.
Architecture. An Aspect JoCaml file is translated into a
JoCaml file and then compiled using the JoCaml compiler.
To simplify the parser, there are { …} separators for plain
JoCaml code (for clarity, those separators have been omitted
in Fig. 15). While these separators clutter the code, they have
the advantage that new features of JoCaml or OCaml can be
directly back ported to Aspect JoCaml.

A more advanced solution would be to use Camlp5, the
preprocessor-pretty-printer of OCaml, to produce a type-
safe translation. Unfortunately, compatibility issues between
Camlp5 and JoCaml forbids this solution at the moment.
Typing issues. As the code produced is compiled using
JoCaml, everything needs to be typed. Sometimes, this
requires type annotations in class definitions when dealing
with parametric polymorphism.

However, asmentioned in the JoCamlmanual: “communi-
cations through the name server are untyped. This weakness
involves a good programming discipline” [36]. On the one

hand, this limitation of distributed programming in OCaml
simplifies the task of creating a list of aspects of different
types. On the other hand, to avoid type errors at runtime, an
anti-unification mechanism has to be developed to guarantee
type safe application of aspects [54].
Static/dynamic pointcuts. Recall that the aspect registry is
responsible for bootstrapping the communication between
weavers and aspects. This is performed by adding aspects
to the list of current aspects connected to the weaver. But
part of communications between weavers and aspects can be
avoided. Indeed, it is sometimes possible to statically decide
whether a pointcut can match a join point coming from a
given weaver. If the pointcut can never match, the aspect
registry does not need to pass the aspect to the weaver for
weaving.

To that end, our implementation differentiates between the
static and dynamic parts of a join point. The static part is used
at registration time, whereas the dynamic part is used during
runtime weaving.
Depth of causality tree. As discussed in Sect. 5.1, an opti-
mized, scalable management of the causality tree is a chal-
lenging research challenge. The current implementation of
Aspect JoCaml is naive in this regard: it is a direct implemen-
tation of the calculus, and as such keeps track of every causal
match. Thismeans that the causality treemay grow unbound-
edly. A simple general optimization to implement is to put a
bound on themaximumdepth of the tree, although this would
change the semantics of pointcut matching. For instance,
keeping only a bounded version of the causality tree may
imply that a causedBy(“untrusted_label") pointcut
does not match, whereas the compromised label occurs is in
fact in the complete causality tree, thus introducing a security
flaw. In this sense, partial evaluation techniques, which sac-
rifice dynamism but preserve the matching semantics, might
be preferable.
Non-determinism. The family of join calculi are non-
deterministic. Similarly, the aspect join calculus is non-
deterministic. In the translation, weavers rely on a random
selection of amatching substitution (Fig. 11). Aspect JoCaml
is a direct implementation of the translation, and as such, uses
the non-deterministic select function. This non-deterministic
behavior in the translated code is important to prove the
bisimulation with the direct semantics, which is also non-
deterministic. Of course, a given implementation couldmake
an arbitrary choice, which would be more efficient than
an actual random selection. But programmers should not
rely on determinism. In essence, this is similar to how the
evaluation order of procedure arguments is left unspecified
in the standards of some languages (such as C, C++, and
Scheme): technically, an implementation can choose any
arbitrary (even random) order for evaluating function argu-
ments. This forces programmers to not rely on a specific
evaluation order in their programs, even thoughmost sequen-
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tial implementations will (arbitrarily) adopt a left-to-right
order. The same happens with JoCaml as an implementation
of the objective join calculus in OCaml. It is supposed to
be non-deterministic in the order of matching reactions, but
it might very well be implemented using a FIFO strategy
internally.

7 Related work

We first discuss work related to the formal semantics of
aspects, and then relate to existing distributed aspect lan-
guages and systems.

7.1 Formal semantics of aspects

There is an extensive body of work on the semantics of
aspect-oriented programming languages (e.g. [13,15,18,28,
62]). These languages adopt either the lambda calculus or
some minimal imperative calculus at their core. To the
best of our knowledge, this work is the first to propose a
chemical semantics of aspects. In addition, none of the for-
mal accounts of AOP considers distributed aspects. Among
practical distributed aspect systems, only AWED exposes a
formal syntax; the semantics of the language is however only
described informally [4].

The approach of starting from a direct semantics with
aspects, and then defining a translation to a core without
aspects and proving the correctness of the transformation is
also used by Jagadeesan et al., in the context of an AspectJ-
like language [28].

7.2 Distributed aspect languages and systems

We now compare specific features of practical distributed
aspect languages and systems—in particular JAC [44],
DJcutter [39],ReflexD [57], andAWED[4]—and relate them
to the aspect join calculus.
Quantification. Remote pointcuts were first introduced in
DJcutter and JAC, to specify on which hosts joint points
should be detected. Remote pointcuts are also supported in
AWED, ReflexD, and in the aspect join calculus, in a very
similar fashion. Remote pointcuts can be seen as a necessary
feature for distributed AOP (as opposed to using standard
AOP in a distributed setting).
Hosts. Remote pointcuts bring about the necessity to refer
to execution hosts. In DJcutter and AWED, hosts are repre-
sented as strings, while in ReflexD they are reified as objects
that give access to the system properties of the hosts. The
host model in ReflexD is therefore general and expressive,
since host properties constitute an extensible set of metadata
that can be used in the pointcuts to denote hosts of interest.
In the aspect join calculus, we have not developed locations

beyond the fact that they are first class values. A peculiarity
is that locations are organized hierarchically, and can possi-
bly represent finer-grained entities than in existing systems
(for instance, a locality can represent an actor within a vir-
tual machine within a machine). A practical implementation
should consider the advantages of a rich host metadata model
as in ReflexD. AWED and ReflexD support dynamically-
definedgroups of hosts, as ameans to dealwith the distributed
architecture in a more abstract manner than at the host level.
Weaving semantics.Most distributedAOP languages and sys-
tems adopt a synchronous aspect weaving semantics. This
is most probably due to the fact that the implementation is
done over Java/RMI, in which synchronous remote calls is
the standard. Notably, AWED supports the ability to spec-
ify that some advices should be run asynchronously. The
aspect join calculus is the dual: the default is asynchronous
communication, but we can also express synchronous weav-
ing (Sect. 5.2). In addition, we have developed the ability
to customize the weaving semantics on a per-reaction basis.
An interesting consequence of this granularity is that we are
able to express opaque and observable reactions. Both kinds
of reactions support stronger encapsulation and guarantees
in presence of aspects, and therefore fit in the line of work
on modular reasoning about aspects [10,41,51,54].
Advanced quantification.DJcutter,AWED, andReflexD sup-
port reasoning about distributed control flow, in order to be
able to discriminate when a join point is in the (distributed)
flow of a given method call. AWED also supports state-
machine-like pointcuts, called stateful aspects, which are
able to match sequences of events that are possibly unre-
lated in terms of control flow. However, stateful aspects per
se do not support reasoning about causality; additionalmech-
anisms are needed, for instance as developed in WeCa [33].
In Sect. 3.3, we describe how join points can capture their
causality links, which can then be used for pointcut match-
ing. While the synchronous communication pattern can be
recognized in order to support a similar notion of distributed
control flow, the causality tree model is much more general.
An interesting venue for future work is to develop a tem-
poral logic for pointcuts that can be used to reason precisely
about causality. Temporal logic has been used in some aspect-
oriented systems to perform semantic interface conformance
checks [9]. Causality in widely-asynchronous (distributed)
contexts is a topic of major interest. It would be interesting
to study how our approach relates to the notion of causality
in the π -calculus proposed by Curti et al. in the context of
modeling biochemical systems [14].
Aspect deployment. DJcutter adopts a centralized architec-
ture with an aspect host where all aspects reside and advices
are executed. JAC supports distributed aspect deployment
onto various containers with a consistency protocol between
hosts, to ensure a global viewof the aspect environment. Both
AWED and ReflexD adopt a decentralized architecture, in
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which it is possible to execute advices in different hosts: mul-
tiple parallel advice execution in specific hosts is possible,
and programmers can control where aspects are deployed.
ReflexD is more flexible than AWED in the localization of
advices and in deployment, by supporting stand-alone aspect
repositories to which a Reflex host can connect. The weav-
ing registries mechanism we have described in Sect. 5.3
subsumes these mechanisms, and also adds support for con-
trolling the openness of the distributed architecture.

JAC, AWED and Reflex support dynamic undeployment
of aspects. While we have not introduced undeployment in
this paper, it is trivial to add it to the core calculus.More inter-
esting, in previous work we explore structured deployment
through scoping strategies [55]. Scoping strategies make it
possible to specify the computation that is exposed to a given
aspect in a very precise manner. The model of scoping strate-
gies relies on per-value and per-control-flow propagation of
aspects; it would be not trivial, but interesting, to study how
these strategies can be adapted to a chemical setting.
Parameter passing. In Java, remote parameter passing is by-
copy, unless for remote objects that are passed by-reference.
ReflexDallowsprogrammers to customize the remote param-
eter passing strategy for each parameter passed to a remote
advice. The join calculus has a by-reference strategy, where
names act as references. It would be possible to add a by-
copy mechanism in the aspect join calculus, by adding a rule
to clone named definitions.

8 Conclusions

This article describes a formal foundation for distributed
aspect-oriented programming based on a chemical calcu-
lus. More precisely, we extend an objective and distributed
version of the join calculus with means to address cross-
cutting through pointcuts and advices. The semantics of the
aspect join calculus is given both directly and by translation
to the standard join calculus. The latter translation is proven
correct by a bisimilarity argument, and is the basis for imple-
menting the Aspect JoCaml language on top of JoCaml. The
aspect join calculus exposes causality trees for join points,
supports customized weaving semantics and decentralized
aspect weaving. In particular, customized weaving supports
strong encapsulation (some reactions can be totally hidden
from aspects) and non-interference guarantees (some reac-
tions can be restricted to observer aspects [47]).

This work shows that the main features of previous dis-
tributed AOP systems can be expressed by the few relatively
simple constructs of the calculus, and that the calculus can
even go beyond existing proposals.We believe the aspect join
calculus can serve as a solid formal basis on top of which to
explore and compare distributed aspect language features. A
particular feature of interest, which we have not addressed

so far, is dealing with failures. Fournet and Gonthier briefly
describe an extension of the join calculus with partial failure
and remote failure detection [21]. The aspect join calculus
can also serve as a basis to implement concurrent and dis-
tributed aspects in other languages for which a variant of the
join calculus has been developed, such as Cω [6] and Scala
Joins [26]. Another interesting perspective is to study the
application of aspects in chemical engines for Cloud com-
puting.
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