
Compiling Programming LanguagesCompiling Programming Languages

Barrett R. Bryant

Introduction

• All software running on all computers isAll software running on all computers is
written in some programming language.

• To be executed by a computer, aTo be executed by a computer, a
program must be translated into the
machine language of that computer.

• A compiler is the software system that
does this translation.

2

The von Neumann Architecture

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.
3

Execution of Machine Code by
Hardware InterpreterHardware Interpreter

• Fetch-execute-cycley

initialize the program counter
repeat forever
fetch the instruction pointed by the counter
increment the counter
decode the instruction
execute the instruction

end repeatend repeat

4
Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Evolution of Programming Languages
Machine Language - 0's and 1's

Assembly Language - mnemonic form of Machine Language

First Generation Languages - higher-level data and control
constructions corresponding to Machine Language data and
control (e.g. FORTRAN)
Second Generation Languages - higher-level data and control
constructions, not always corresponding to, but still modeled after
Machine Language data and control (e.g. ALGOL 60, COBOL)
Third Generation Languages - introduction of more abstract formsThird Generation Languages - introduction of more abstract forms
of data, including user-defined data types (e.g. Pascal, C)
Object-Based Languages - support for objects and abstract data
types (e.g. Ada)
Object-Oriented Languages - support for classes of objects
organized as a class hierarchy (e.g. Smalltalk, C++, Java)
. . .
Natural Languages - humans communicate directly with the
machine (e.g. English) 5

Implementation Methods

• Compilation
l d h– Programs are translated into machine

language, which is then executed by the
hardware interpreterhardware interpreter

• Pure Interpretation
P i d b h– Programs are interpreted by another
program known as a software interpreter

H b id I l i S• Hybrid Implementation Systems
– A compromise between compilers and

i
6

pure interpreters
Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Compilation

CompilerCompiler

target program Hardware
Interpreter

Copyright © 2006 Barrett R. Bryant. All rights reserved.
7Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2nd ed., Addison-Wesley, 2007.

Implementation Methods

• Compilation
– Programs are translated into machine

language, which is then executed by the
h d i t thardware interpreter

• Pure Interpretation
– Programs are interpreted by another

program known as a software interpreter
• Hybrid Implementation Systems

– A compromise between compilers and

8
pure interpreters

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Pure Interpretation

Software
Interpreter

Copyright © 2006 Barrett R. Bryant. All rights reserved.
9Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2nd ed., Addison-Wesley, 2007.

Pure Interpretation

Software
Interpreter

Hardware
I t tInterpreter

Copyright © 2006 Barrett R. Bryant. All rights reserved.
10Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2nd ed., Addison-Wesley, 2007.

Implementation Methods

• Compilation
– Programs are translated into machine

language, which is then executed by the
h d i t thardware interpreter

• Pure Interpretation
– Programs are interpreted by another

program known as a software interpreter
• Hybrid Implementation Systems

– A compromise between compilers and

11
pure interpreters

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Hybrid Implementation

CompilerCompiler

Copyright © 2006 Barrett R. Bryant. All rights reserved.
12Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2nd ed., Addison-Wesley, 2007.

Layered View of Computer
The operating system
and language
i l iimplementation are
layered over the
machine interface of the
underlying computerunderlying computer.
Each language runs on
its own virtual machine.

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.
13

Compilation

• Translate high-level program (source language)
into machine code (machine lang age)into machine code (machine language)

• Slow translation, fast execution
• Compilation process has several phases:• Compilation process has several phases:

– lexical analysis: converts characters in the source program
into lexical units
s nta anal sis transforms le ical nits into parse trees– syntax analysis: transforms lexical units into parse trees
which represent the syntactic structure of program

– semantics analysis: generate intermediate code
d h d d– code generation: machine code is generated

14
Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

The Compilation Processp

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

15

Front-End of a Compiler

Aho, Alfred V., Lam, Monica, Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2nd ed., 2007.

id1 := temp3

16

Back-End of a Compiler

Aho, Alfred V., Lam, Monica, Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2nd ed., 2007. 17

Additional Compilation Terminologies

• Load module (executable image): the user (g)
and system code together

• Linking and loading: the process of g g p
collecting system program and linking
them to user program

18
Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Pure Interpretation

• No translation
E i i l t ti f (• Easier implementation of programs (run-
time errors can easily and immediately be
displayed)displayed)

• Slower execution (10 to 100 times slower
than compiled programs)than compiled programs)

• Often requires more space
• Now rare for traditional high-level• Now rare for traditional high level

languages
• Significant comeback with some Web

19

Significant comeback with some Web
scripting languages (e.g., JavaScript, PHP)

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Pure Interpretation Process

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.
20

Hybrid Implementation Systems

• A compromise between compilers and pure
interpretersinterpreters

• A high-level language program is
translated to an intermediate language thattranslated to an intermediate language that
allows easy interpretation

• Faster than pure interpretationp p
• Examples

– Perl programs are partially compiled to detect errors
before interpretationbefore interpretation

– Initial implementations of Java were hybrid; the
intermediate form, byte code, provides portability to any
machine that has a byte code interpreter and a run-time

21

y p
system (together, these are called Java Virtual Machine)

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Hybrid Implementation Process

Sebesta. Robert W., Concepts of Programming Languages,
8th ed., Addison Wesley Longman, 2008.

22

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate y p g
language

• Then compile the intermediate language of the
subprograms into machine code when they aresubprograms into machine code when they are
called

• Machine code version is kept for subsequent callsp q
• JIT systems are widely used for Java programs
• .NET languages are implemented with a JIT system

– All such languages are translated to a Common
Intermediate Language (CIL) whose virtual machine is
called the Common Language Run-Time (CLR)

23
Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Execution of a Java Appletpp

Orfali, R. and Harkey, D., Client/Server Programming with Java and CORBA, 1st ed., Wiley, 1997. 24

Preprocessors

• Preprocessor macros (instructions) are
l d f h d fcommonly used to specify that code from

another file is to be included
A• A preprocessor processes a program
immediately before the program is
compiled to expand embeddedcompiled to expand embedded
preprocessor macros

• A well-known example: C preprocessorA well known example: C preprocessor
– expands #include, #define, and similar

macros

25
Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Compiler Construction Tools

• Scanner generators – produce lexical g p
analyzers from regular expression
descriptions of tokens

• Parser generators – produce syntax
analyzers from grammars

• Syntax-directed translation engines –
produce collections of routines for walking

t d ti i t di ta parse tree and generating intermediate
code

26

Scanner Generation

Specification of TokensSpecification of Tokens
(Regular Expressions)

Lexical Analyzer
Generator (e g Jflex)

l l

Generator (e.g., Jflex)

Lexical Analyzer
(Finite Automaton)

27

JFlex Example
Identifier = [:letter:] [:letter: | :digit:]*
Integer = [:digit:] [:digit:]*
%%
[\t\n] { echo (); }
";" { echo (); return new Token (Token.SEMICOLON); }
" " { h () T k (T k PERIOD) }"." { echo (); return new Token (Token.PERIOD); }
"<" { echo (); return new Token (Token.RELOP, Token.LT); }
">" { echo (); return new Token (Token.RELOP, Token.GT); }
" " { echo (); return new Token (Token RELOP Token EQ); }= { echo (); return new Token (Token.RELOP, Token.EQ); }
"+" { echo (); return new Token (Token.ADDOP, Token.PLUS); }
"*" { echo (); return new Token (Token.MULTOP, Token.TIMES); }
if { echo (); return new Token (Token IF); }if { echo (); return new Token (Token.IF); }
while { echo (); return new Token (Token.WHILE); }
{Integer} { echo ();

return new Token (Token.INTEGER, yytext ()); }(, yy ()); }
{Identifier} { echo ();

return new Token (Token.ID, yytext ()); } 28

Parser Generation

Specification of SyntaxSpecification of Syntax
(Context-Free Grammar)

Parser Generator
(e g CUP)

S l

(e.g., CUP)

Syntax Analyzer
(Pushdown Automaton)

29

CUP Example
program ::= block PERIOD ;

bl k D l D l D lblock ::= constDecl varDecl procDecl statement ;

constDecl ::= CONST constAssignmentList SEMICOLON | ;

constAssignmentList ::= ID EQ INTEGER | constAssignmentList
COMMA ID EQ INTEGER ;

varDecl ::= VAR identList SEMICOLON | ;

identList ::= ID | identList COMMA ID ;

procDecl ::= procDecl PROC ID SEMICOLON block SEMICOLON | ;

t t t ID ASSIGN i | BEGIN t t tLi t END |statement ::= ID ASSIGN expression | BEGIN statementList END |
IF condition THEN statement | WHILE condition DO statement | ;

30

Syntax-Directed Translation
EnginesEngines

Specification of SemanticsSpecification of Semantics
(Attributed Context-Free Grammar)

Attribute Grammar
Evaluator (e g LISA)

S l d

Evaluator (e.g., LISA)

Semantic Analyzer and
Intermediate Code Generator

31

Attribute Grammar Example
<term> ::= <factor>

<factor> . env ← <term> . env
<term> . tree ← <factor> . tree
<term> . type ← <factor> . type

| <term>[1] <multiplying operator> <factor>| <term>[1] <multiplying-operator> <factor>
<term>[1] . env ← <term> . env
<factor> . env ← <term> . env
<term> . tree ←

tree (<multiplying-operator> . lexeme,
<term>[1] . tree, <factor> . tree)

<term> . type ←
compatible (<term>[1] . type, <factor> . type)

<multiplying-operator> ::= * | /<multiplying-operator> ::= | /

32

Applications of Compiler Technology

• Implementation of High-Level
Programming LanguagesProgramming Languages

• Optimizations for Computer Architectures
(e.g. parallelism, memory hierarchies)

• Design of New Computer Architectures (e.g.
RISC, embedded systems)

l (b• Program Translations (e.g. binary
translation, hardware synthesis, database
query interpreters)query interpreters)

• Software Productivity Tools (e.g.
type/bounds checking, memory

33
management)

A Grand Challenge for Computing
ResearchResearch
• A verifying compiler uses automated

mathematical and logical reasoning tomathematical and logical reasoning to
check the correctness of the programs that
it compiles.

• The criterion of correctness is specified by
types, assertions, and other redundant
annotations that are associated with theannotations that are associated with the
code of the program.

• C. A. R. Hoare, The Verifying Compiler: AC. A. R. Hoare, The Verifying Compiler: A
Grand Challenge for Computing Research,
Journal of the ACM 50, 1 (January 2003),

63 69
34

pp. 63 – 69.

Further Information

Primary References:
• Aho, Alfred V., Lam, Monica, Sethi, Ravi,

and Ullman, Jeffrey D., Compilers:
Principles Techniq es and Tools 2nd edPrinciples, Techniques, and Tools, 2nd ed.,
Addison Wesley Longman, 2007.
Sebesta Robert W Concepts of• Sebesta. Robert W., Concepts of
Programming Languages, 8th ed., Addison
Wesley Longman, 2008.Wesley Longman, 2008.

Contact Information:
bryant@cis uab edubryant@cis.uab.edu
http://www.cis.uab.edu/softcom 35

