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Introduction

- All software running on all computers is
written in some programming language.

- To be executed by a computer, a
program must be translated into the
machine language of that computer.

- A compileris the software system that
does this translation.
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Execution of Machine Code by
Hardware Interpreter

- Fetch-execute-cycle

initialize the program counter
repeat forever
fetch the i1nstruction pointed by the counter
increment the counter
decode the i1nstruction
execute the i1nstruction
end repeat
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Evolution of Programming Languages

Machine Language - O's and 1's
Assembly Language - mnemonic form of Machine Language

First Generation Languages - higher-level data and control
constructions corresponding to Machine Language data and
control (e.g. FORTRAN)

Second Generation Languages - higher-level data and control
constructions, not always corresponding to, but still modeled after
Machine Language data and control (e.g. ALGOL 60, COBOL)

Third Generation Languages - introduction of more abstract forms
of data, including user-defined data types (e.g. Pascal, C)

Object-Based Languages - support for objects and abstract data
types (e.g. Ada)

Object-Oriented Lan%uages - support for classes of objects
organized as a class hierarchy (e.g. Smalltalk, C++, Java)

Natural Languages - humans communicate directly with the
machine (e.g. English) 5



Implementation Methods

- Compilation

- Programs are translated into machine
anguage, which is then executed by the
nardware interpreter

- Pure Interpretation

- Programs are interpreted by another
program known as a software interpreter

- Hybrid Implementation Systems

- A compromise between compilers and
pure interpreters
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Compilation
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Pure Interpretation
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Pure Interpretation
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Hybrid Implementation
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Layered View of Computer

The operating system
and language
implementation are
layered over the
machine interface of the
underlying computer.
Each language runs on
its own virtual machine.
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Compilation

- Translate high-level program (source language)
into machine code (machine language)

- Slow translation, fast execution

- Compilation process has several phases:

- lexical analysis: converts characters in the source program
into lexical units

- syntax analysis: transforms lexical units into parse trees
which represent the syntactic structure of program

- semantics analysis: generate intermediate code
- code generation: machine code is generated

14
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The Compilation Process
( progrom )
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Front-End

|
SyMBOL TABLE
1 position
2 initial
3 rate
4

of a Compiler

position := initial + rate = 60

v

lexical analyzer

id] = id2 + id3 * 60

syntax analyzer

intermediate code gencrator

temp1 := inttoreal(60)
temp2 := id3 * temp1
temp3 := id2 + temp2

idl = temp3

Aho, Alfred V., Lam, Monica, Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2" ed., 2007. 16



Back-End of a Compiler

temp1 := inttoreal(60)
temp2 := id3 * temp
temp3 := id2 + temp2
id1 := temp3

'

- code optimizer

|

temp1 := id3 x 60.0
id1 := id2 + temp1

\

codc gencrator

V

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

Aho, Alfred V., Lam, Monica, Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2" ed., 2007. 17



Additional Compilation Terminologies

- Load module (executable image): the user
and system code together

- Linking and loading: the process of
collecting system program and linking
them to user program

18
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Pure Interpretation

- No translation

- Easier implementation of programs (run-
time errors can easily and immediately be
displayed)

- Slower execution (10 to 100 times slower
than compiled programs)

- Often requires more space

- Now rare for traditional high-level
languages

- Significant comeback with some Web
scripting languages (e.g., JavaScript, PHP) .

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Pure Interpretation Process
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Hybrid Implementation Systems

A compromise between compilers and pure
Interpreters

A high-level language program is
translated to an intermediate language that
allows easy interpretation

Faster than pure interpretation

Examples

- Perl programs are partially compiled to detect errors
before interpretation

- Initial implementations of Java were hybrid; the
intermediate form, byte code, provides portability to any
machine that has a byte code interpreter and a run-time
system (together, these are called Java Virtual Machine)

21
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Hybrid Implementation Process
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Just-in-Time Implementation Systems

Initially translate programs to an intermediate
language

- Then compile the intermediate language of the
subprograms into machine code when they are
called

Machine code version is kept for subsequent calls
- JIT systems are widely used for Java programs

- .NET languages are implemented with a JIT system

- All such languages are translated to a Common
Intermediate Language (CIL) whose virtual machine is
called the Common Language Run-Time (CLR)
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Execution of a Java Applet
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Preprocessors

- Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

- A preprocessor processes a program
immediately before the program is
compiled to expand embedded

Preprocessor macros

- A well-known example: C preprocessor

- expands #include, #define, and similar
macros

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.
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Compiler Construction Tools

- Scanner generators - produce lexical
analyzers from regular expression
descriptions of tokens

- Parser generators - produce syntax
analyzers from grammars

- Syntax-directed translation engines -
produce collections of routines for walking
a parse tree and generating intermediate
code

26



Scanner Generation

Specification of Tokens
(Regular Expressions)

|

Lexical Analyzer
Generator (e.g., Jflex)

l

Lexical Analyzer
(Finite Automaton)
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JFlex Example

Identifier = [:letter:] [:letter: | :digit:]*
Integer = [:digit:] [:digit:]*
%%
[ \t\n] {echo ();}
{ echo (); return new Token (Token.SEMICOLON); }
{ echo (); return new Token (Token.PERIOD); }
<t { echo (); return new Token (Token.RELOP, Token.LT); }
> { echo (); return new Token (Token.RELOP, Token.GT); }
= { echo (); return new Token (Token.RELOP, Token.EQ); }
"4 { echo (); return new Token (Token.ADDOP, Token.PLUS); }
{ echo (); return new Token (Token.MULTOP, Token.TIMES); }
if { echo (); return new Token (Token.IF); }
while {echo (); return new Token (Token.WHILE); }
{Integer} { echo ();

return new Token (Token.INTEGER, yytext ()); }
{Identifier} { echo ();

return new Token (Token.ID, yytext ()); } 8
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Parser Generation

Specification of Syntax
(Context-Free Grammar)

|

Parser Generator
(e.g., CUP)

l

Syntax Analyzer
(Pushdown Automaton)
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CUP Example

program ::= block PERIOD ;
block ::= constDecl varDecl procDecl| statement ;
constDecl ::= CONST constAssignmentList SEMICOLON | ;

constAssignmentList ::= ID EQ INTEGER | constAssignmentList
COMMA ID EQ INTEGER ;

varDecl ::= VAR identList SEMICOLON | ;

identList ::= ID | identList COMMA ID ;

procDecl ::= procDecl PROC ID SEMICOLON block SEMICOLON | ;
statement ::= ID ASSIGN expression | BEGIN statementList END |

IF condition THEN statement | WHILE condition DO statement | ;
30



Syntax-Directed Translation
Engines

Specification of Semantics
(Attributed Context-Free Grammar)

|

Attribute Grammar
Evaluator (e.g., LISA)

l

Semantic Analyzer and
Intermediate Code Generator
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Attribute Grammar Example

<term> ::= <factor>
<factor> . env — <term> . env
<term> . tree — <factor> . tree
<term> . type — <factor> . type
| <term>[1] <multiplying-operator> <factor>
<term>[1] . env —« <term> . env
<factor> . env — <term> . env
<term> . tree «—
tree (<multiplying-operator> . lexeme,
<term>[1] . tree, <factor> . tree)
<term> . type
compatible (<term>[1] . type, <factor> . type)
<multiplying-operator> ::= * | /
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Applications of Compiler Technology

- Implementation of High-Level
Programming Languages

- Optimizations for Computer Architectures
(e.g. parallelism, memory hierarchies)

- Design of New Computer Architectures (e.qg.
RISC, embedded systems)

- Program Translations (e.g. binary
translation, hardware synthesis, database
query interpreters)

- Software Productivity Tools (e.g.
type/bounds checking, memory
management)
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A Grand Challenge for Computing
Research

- A verifying compiler uses automated
mathematical and logical reasoning to
check the correctness of the programs that
it compiles.

- The criterion of correctness is specified by
types, assertions, and other redundant
annotations that are associated with the
code of the program.

- C. A. R. Hoare, The Verifying Compiler: A
Grand Challenge for Computing Research,
Journal of the ACM 50, T (January 2003),
pp. 63 - 69.
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