Compiling Programming Languages

Barrett R. Bryant

Software Composition eI Modeling Laboratory

SoFT colM
Ot

Department of Computer and Information Sciences

l..|r1i~.narsit3..f of Alabama at Birmingham




Introduction

- All software running on all computers is
written in some programming language.

- To be executed by a computer, a
program must be translated into the
machine language of that computer.

- A compileris the software system that
does this translation.



The von Neumann Architecture

Results of
operations

Memory (stores both instructions and data)

Instructions and data

Arithmetic and
logic unit

A

Control _
unit ~—> |nput and output devices

Central processing unit

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Execution of Machine Code by
Hardware Interpreter

- Fetch-execute-cycle

initialize the program counter
repeat forever
fetch the i1nstruction pointed by the counter
increment the counter
decode the i1nstruction
execute the i1nstruction
end repeat

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Evolution of Programming Languages

Machine Language - O's and 1's
Assembly Language - mnemonic form of Machine Language

First Generation Languages - higher-level data and control
constructions corresponding to Machine Language data and
control (e.g. FORTRAN)

Second Generation Languages - higher-level data and control
constructions, not always corresponding to, but still modeled after
Machine Language data and control (e.g. ALGOL 60, COBOL)

Third Generation Languages - introduction of more abstract forms
of data, including user-defined data types (e.g. Pascal, C)

Object-Based Languages - support for objects and abstract data
types (e.g. Ada)

Object-Oriented Lan%uages - support for classes of objects
organized as a class hierarchy (e.g. Smalltalk, C++, Java)

Natural Languages - humans communicate directly with the
machine (e.g. English) 5



Implementation Methods

- Compilation

- Programs are translated into machine
anguage, which is then executed by the
nardware interpreter

- Pure Interpretation

- Programs are interpreted by another
program known as a software interpreter

- Hybrid Implementation Systems

- A compromise between compilers and
pure interpreters

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Compilation

SMITCE prograiu

+

Compiler
rarget program . —=1 Hardware
- Interpreter —= output
Lnput —

Aho, A. V., Lam, M. S,, Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2" ed., Addison-Wesley, 2007.



Implementation Methods

- Compilation

Programs are translated into machine
anguage, which is then executed by the

nardware interpreter

- Pure Interpretation
- Programs are interpreted by another

program known as a software interpreter

- Hybrid Implementation Systems
- A compromise between compilers and

pure interpreters

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Pure Interpretation

source program —= Software

Interpreter [ output

mput —e

Aho, A. V., Lam, M. S,, Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2" ed., Addison-Wesley, 2007.



Pure Interpretation

Software
Interpreter

source program —= Hardware
Interpreter [ outpul

imput —=

Aho, A. V., Lam, M. S,, Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2" ed., Addison-Wesley, 2007.

10



Implementation Methods

- Compilation

Programs are translated into machine
anguage, which is then executed by the

nardware interpreter

- Pure Interpretation
- Programs are interpreted by another

program known as a software interpreter

- Hybrid Implementation Systems
- A compromise between compilers and

pure interpreters

11

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Hybrid Implementation

SOUTrce prograill

'

Compiler

'

imtermediate program —e

lnput —e

Virtual
Machine

—= Output

Aho, A. V., Lam, M. S,, Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques, and Tools, 2" ed., Addison-Wesley, 2007.



Layered View of Computer

The operating system
and language
implementation are
layered over the
machine interface of the
underlying computer.
Each language runs on
its own virtual machine.

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

Virtual C
computer

Virtual
C++ computer

Virtual
LISP
computer

Virtual
FORTRAN
computer

LISP
interpreter

FORTRAN
compiler

Operating system

Operating
system

command
interpreter

Macroinstruction
interpreter

Bare
machine

Assembler

Ada
compiler

Virtual
assembly

language
Virtual computer
Ada
computer
13



Compilation

- Translate high-level program (source language)
into machine code (machine language)

- Slow translation, fast execution

- Compilation process has several phases:

- lexical analysis: converts characters in the source program
into lexical units

- syntax analysis: transforms lexical units into parse trees
which represent the syntactic structure of program

- semantics analysis: generate intermediate code
- code generation: machine code is generated

14

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




The Compilation Process
( progrom )

Lexical
analyzer

Lexical units

r

Syntax
analyzer

Parse trees

Intermediate
code generator

(and semantic
analyzer)

Optimization

Intermediate
code

Code
generator

Machine

Computer

!

Results

|anguagy_ Input data

(optional)

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

15



Front-End

|
SyMBOL TABLE
1 position
2 initial
3 rate
4

of a Compiler

position := initial + rate = 60

v

lexical analyzer

id] = id2 + id3 * 60

syntax analyzer

intermediate code gencrator

temp1 := inttoreal(60)
temp2 := id3 * temp1
temp3 := id2 + temp2

idl = temp3

Aho, Alfred V., Lam, Monica, Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2" ed., 2007. 16



Back-End of a Compiler

temp1 := inttoreal(60)
temp2 := id3 * temp
temp3 := id2 + temp2
id1 := temp3

'

- code optimizer

|

temp1 := id3 x 60.0
id1 := id2 + temp1

\

codc gencrator

V

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

Aho, Alfred V., Lam, Monica, Sethi, Ravi, and Ullman, Jeffrey D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2" ed., 2007. 17



Additional Compilation Terminologies

- Load module (executable image): the user
and system code together

- Linking and loading: the process of
collecting system program and linking
them to user program

18

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Pure Interpretation

- No translation

- Easier implementation of programs (run-
time errors can easily and immediately be
displayed)

- Slower execution (10 to 100 times slower
than compiled programs)

- Often requires more space

- Now rare for traditional high-level
languages

- Significant comeback with some Web
scripting languages (e.g., JavaScript, PHP) .

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Pure Interpretation Process

Source
program

|

Interpreter

|

Results

/ Input data

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

20



Hybrid Implementation Systems

A compromise between compilers and pure
Interpreters

A high-level language program is
translated to an intermediate language that
allows easy interpretation

Faster than pure interpretation

Examples

- Perl programs are partially compiled to detect errors
before interpretation

- Initial implementations of Java were hybrid; the
intermediate form, byte code, provides portability to any
machine that has a byte code interpreter and a run-time
system (together, these are called Java Virtual Machine)

21

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Hybrid Implementation Process

Source
program

Y

Lexical
analyzer

Lexical units

Syntax
analyzer

Parse trees
A

Intermediate
code generator

Intermediate
code

Input data

Interpreter

Sebesta. Robert W., Concepts of Programming Languages,
8th ed., Addison Wesley Longman, 2008.

Results

22



Just-in-Time Implementation Systems

Initially translate programs to an intermediate
language

- Then compile the intermediate language of the
subprograms into machine code when they are
called

Machine code version is kept for subsequent calls
- JIT systems are widely used for Java programs

- .NET languages are implemented with a JIT system

- All such languages are translated to a Common
Intermediate Language (CIL) whose virtual machine is
called the Common Language Run-Time (CLR)

23

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.




Execution of a Java Applet

: '-,'-?_"_
| Byteacods Yarifiar _[
5 n

SEh
|_ Class Loadsr ]

R

S B
Javs J
Fun-times §
itarpreter |

Just-in-Tima
Loxmnpiler

| i TN

=

Mardueare oo blie, (602
Flatform T, LB
Windosves, =,

I Server Cliant

Figure 2-3. The Byieesde Cyecle: Fram Production io Execuliss,

Orfali, R. and Harkey, D., Client/Server Programming with Java and CORBA, 1% ed., Wiley, 1997.

24



Preprocessors

- Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

- A preprocessor processes a program
immediately before the program is
compiled to expand embedded

Preprocessor macros

- A well-known example: C preprocessor

- expands #include, #define, and similar
macros

Sebesta. Robert W., Concepts of Programming Languages, 8th ed., Addison Wesley Longman, 2008.

25



Compiler Construction Tools

- Scanner generators - produce lexical
analyzers from regular expression
descriptions of tokens

- Parser generators - produce syntax
analyzers from grammars

- Syntax-directed translation engines -
produce collections of routines for walking
a parse tree and generating intermediate
code

26



Scanner Generation

Specification of Tokens
(Regular Expressions)

|

Lexical Analyzer
Generator (e.g., Jflex)

l

Lexical Analyzer
(Finite Automaton)

27



JFlex Example

Identifier = [:letter:] [:letter: | :digit:]*
Integer = [:digit:] [:digit:]*
%%
[ \t\n] {echo ();}
{ echo (); return new Token (Token.SEMICOLON); }
{ echo (); return new Token (Token.PERIOD); }
<t { echo (); return new Token (Token.RELOP, Token.LT); }
> { echo (); return new Token (Token.RELOP, Token.GT); }
= { echo (); return new Token (Token.RELOP, Token.EQ); }
"4 { echo (); return new Token (Token.ADDOP, Token.PLUS); }
{ echo (); return new Token (Token.MULTOP, Token.TIMES); }
if { echo (); return new Token (Token.IF); }
while {echo (); return new Token (Token.WHILE); }
{Integer} { echo ();

return new Token (Token.INTEGER, yytext ()); }
{Identifier} { echo ();

return new Token (Token.ID, yytext ()); } 8

sL
\
S+



Parser Generation

Specification of Syntax
(Context-Free Grammar)

|

Parser Generator
(e.g., CUP)

l

Syntax Analyzer
(Pushdown Automaton)

29



CUP Example

program ::= block PERIOD ;
block ::= constDecl varDecl procDecl| statement ;
constDecl ::= CONST constAssignmentList SEMICOLON | ;

constAssignmentList ::= ID EQ INTEGER | constAssignmentList
COMMA ID EQ INTEGER ;

varDecl ::= VAR identList SEMICOLON | ;

identList ::= ID | identList COMMA ID ;

procDecl ::= procDecl PROC ID SEMICOLON block SEMICOLON | ;
statement ::= ID ASSIGN expression | BEGIN statementList END |

IF condition THEN statement | WHILE condition DO statement | ;
30



Syntax-Directed Translation
Engines

Specification of Semantics
(Attributed Context-Free Grammar)

|

Attribute Grammar
Evaluator (e.g., LISA)

l

Semantic Analyzer and
Intermediate Code Generator

31



Attribute Grammar Example

<term> ::= <factor>
<factor> . env — <term> . env
<term> . tree — <factor> . tree
<term> . type — <factor> . type
| <term>[1] <multiplying-operator> <factor>
<term>[1] . env —« <term> . env
<factor> . env — <term> . env
<term> . tree «—
tree (<multiplying-operator> . lexeme,
<term>[1] . tree, <factor> . tree)
<term> . type
compatible (<term>[1] . type, <factor> . type)
<multiplying-operator> ::= * | /

32



Applications of Compiler Technology

- Implementation of High-Level
Programming Languages

- Optimizations for Computer Architectures
(e.g. parallelism, memory hierarchies)

- Design of New Computer Architectures (e.qg.
RISC, embedded systems)

- Program Translations (e.g. binary
translation, hardware synthesis, database
query interpreters)

- Software Productivity Tools (e.g.
type/bounds checking, memory
management)

33



A Grand Challenge for Computing
Research

- A verifying compiler uses automated
mathematical and logical reasoning to
check the correctness of the programs that
it compiles.

- The criterion of correctness is specified by
types, assertions, and other redundant
annotations that are associated with the
code of the program.

- C. A. R. Hoare, The Verifying Compiler: A
Grand Challenge for Computing Research,
Journal of the ACM 50, T (January 2003),
pp. 63 - 69.

34



Further Information

Primary References:

- Aho, Alfred V., Lam, Monica, Sethi, Ravi,
and Ullman, Jeffrey D., Compilers:
Principles, Technigues, and Tools, 2" ed.,
Addison Wesley Longman, 2007.

- Sebesta. Robert W., Concepts of
Programming Languages, 8t ed., Addison
Wesley Longman, 2008.

Contact Information:
bryant@cis.uab.edu
http://www.cis.uab.edu/softcom 35




